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In this study, an effective and accurate theoretical analysis method for predicting the shear lag effect in the thin-walled single-box
multicell box girder is presented. )e modifications of longitudinal warping displacement functions at the flanges are fully
investigated, including the shear lag width (bij) of flanges, the coefficients (αij) of shear lag warping functions, the deformation
compatibility conditions in flanges, and the internal force balance (D). )e initial shear deformation (c03) in the top lateral
cantilever flanges is innovatively introduced in multicell box girders and obtained by the designed procedure. In addition, the
transverse distribution function for describing the longitudinal warping displacement is deduced and expressed in the form of the
cosine function. Based on the principle of minimum potential energy, the governing differential equations are derived and solved
with the associated boundary and load conditions. )e accuracy and applicability of the proposed method (SL-THY2) are
validated for four thin-walled single-box multicell (two- and three-cell) box girders with the results derived from the solid finite
element method.

1. Introduction

)e shear lag (SL) effect, describing the nonuniform normal
stress distribution in the flanges of thin-walled flexural
members, has been the subject of many papers and exper-
imental works for decades since first examined by aero-
nautical engineers [1, 2] and later widely studied for thin-
walled single-cell box girder bridges in engineering design
practice. )e research on the shear lag effect mainly involves
two aspects—shear lag coefficient distribution and vertical
deflections of the girder, for the structural behaviors can be
different from those predicted by elementary beam theory
[3–7].

In the past decades, extensive theoretical and experi-
mental studies have been performed on the phenomenon of
shear lag in thin-walled single-cell box girders in order to
develop a reliable method, and considerable progress has

been achieved, especially for Reissner [1], Dezi and Men-
trasti [2], Luo [8–11], Zhang [12–15], and Lin [16, 17], who
promoted the development of theoretical analysis on the
shear lag effect by using the energy variation method. To
improve the precision, accuracy, and perfect the theory
research for predicting the shear lag effect in a thin-walled
single-cell box girder, much work has been conducted and
can be further summarized as follows: (1) the selection of an
appropriate transverse distribution function for describing
the warping displacement in flanges, assuming to be qua-
dratic parabolic [1, 2, 12–15, 18, 19], cubic parabolic [8–10],
cosine [3–5, 20], and polynomial [16, 17]; (2) the inde-
pendent functions are employed for describing the warping
displacement in the flanges [2, 8–10]; (3) the introduction of
coefficients of shear lag warping functions at the flanges
[3, 4, 15]; (4) the consideration of internal force balance in
building warping displacement functions [3, 4, 12–15];
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(5) the influence of shear deformation in webs on the
bending curvature [3, 4], and so on. However, according to
the companion papers [3, 9, 12–15], when the width of the
top lateral cantilever flange is half of the top central flange,
the normal stress at the web-flange junction can be well
predicted, while for those far from the web-flange junction,
the error cannot be neglected. )e main reason can be
explained by lacking theoretical foundation and rationality
verification in selecting the transverse distribution function
for longitudinal warping displacement and by ignoring the
difference of boundary condition between the top lateral
cantilever flanges and the flanges in the closed section. Li
et al. [3] proposed the initial shear rotation for describing the
additional warping displacement in top lateral cantilever
flanges for the thin-walled single-cell box girder and
designed a practical procedure to calculate it.

Nevertheless, the studies included in the aforementioned
literature reviews are mainly focused on analyzing the shear
lag effect in a thin-walled single-cell box girder, and the
investigations on the shear lag effect in the multicell box
girder, to the authors’ best knowledge, are limited. More
importantly, with the rapid increase of traffic flow, the wide
multicell box girders are rapidly applied in highway and
municipal bridges in recent years, especially in China, to
provide more traffic lanes. As a result, it is desirable to
develop a reasonable and reliable theoretical method for
predicting the shear lag effect in thin-walled single-box
multicell box girders.

)e objective of this study is to develop an effective and
accurate theoretical analysis method for predicting the shear
lag effect in thin-walled single-box multicell box girders. To
this end, the longitudinal warping displacement functions
for the flanges are fully investigated. According to the
bending shear flow distribution, the widths of flanges are
redivided and defined as shear lag width (bij), and the co-
efficients of shear lag warping function (αij) are determined
as well. In addition, the deformation compatibility condi-
tions in flanges are considered, and the correction factors
(ξk) are introduced and solved by the given equations. )e
initial shear deformation (c03) in the top lateral cantilever
flanges is innovatively introduced in the multicell box girder
and obtained by the designed procedure. )e governing
differential equations, based on the principle of minimum
potential energy, are derived and solved with the associated
boundary and load conditions. In addition, the finite ele-
ment analysis is proved to be feasible through the sensitivity
analysis of mesh size, and the accuracy and applicability of
the proposed method (SL-THY2) are validated with the
results of solid finite element analyses conducted on four
different multicell (two- and three-cell) box girders.

2. Modified Longitudinal Warping
Displacement Functions

)e aim is to study the shear lag effect in thin-walled single-
box multicell box girders, as illustrated in Figure 1, where
the loads are applied parallel to the middle plane of the
webs uniformly in order to avoid torsion, distortion, and
transverse bending of the cross section [2]. )e

components of the single-box multicell box girder are
composed of basic elements: top and bottom central flanges
(or central flanges instead), top lateral cantilever flanges,
and webs. )e x-axis is taken to coincide with the centroid
axis along the beam span direction, and y- and z-axes are
taken as the principal inertial directions. In addition, for
the simplicity of building longitudinal warping displace-
ment functions in flanges, the local coordinates are also
introduced, as shown in Figure 1.

2.1. Basic Assumptions. )e shear lag phenomenon can be
analyzed on the basis of the theory of elasticity by assuming
the flanges and webs can be analyzed as a plane-stress
problem [21], and the basic assumptions can be summarized
as follows:

(1) )e normal strain and in-plane shear strain are
uniformly distributed along wall-thickness direction

(2) )e out-plane shear deformation and transverse
deformation in flanges are negligible

(3) Due to the assumption of thin-walled beam theory,
the primary shear force is assumed to be entirely
carried by the webs

(4) )e flanges and webs behave in a linear-elastic
fashion

(5) )e deformations are quite small compared with the
dimensions of the cross section

Based on the above assumptions and the generation
mechanism of shear lag phenomenon [22, 23], the longi-
tudinal warping displacement functions in the flanges, in-
cluding the constant contribution from bending according
to Timoshenko beam theory (TBT) and the shear lag con-
tribution, can be rationally written as [3, 4]

uij � uSL,ij(x, y) + uϕ,r(x, z), (1)

in which, uSL,ij(x, y) (i� 1, . . .2, j� 1, . . ., ζ, and i� 3) is the
shear lag warping displacement contribution; the exponent i
(from 1 to 3) in the functions represents the bottom central
flanges, top central flanges, and the top lateral cantilever
flanges, respectively; the exponent j (from 1 to ζ, where ζ is
the number of cells) in the functions represents the partition
of flanges, as shown in Figure 1; uϕ,r(x, z) (r� 1, . . ., 3) is the
bending warping displacement contribution, considering
shear deformation in webs.

According to the companion paper [1], the longitudinal
warping displacement that remotes from the web-flange
junction lags behind that at the web-flange junction, and
thus, the expressions of shear lag warping displacement
functions of flanges can be given in the form

uSL,ij(x, y) � ψij(y)Uij(x), (2)

where ψij(y) (i� 1,. . ., 2, j� 1,. . .,ζ, and i� 3) is the trans-
verse distribution function of the longitudinal warping
displacement of the flange and Uij(x) (i� 1, . . ., 2, j� 1, . . .,
ζ, and i� 3) is the shear lag warping function of the cor-
responding flanges.
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In addition, according to the definition of equation (2),
the boundary conditions of the transverse distribution
function ψij(y) at the flanges should satisfy

ψij(y)
􏼌􏼌􏼌􏼌􏼌y�bij

� 0, (3a)

ψij(y)
􏼌􏼌􏼌􏼌􏼌y�0

� 1. (3b)

)e constant contribution of bending according to TBT,
considering the shear deformation in webs, is given by [3]

uϕ,r(x, z) � −ϕ(x)hm, (4)

ϕ(x) � w′(x) − β(x), (5)

in which, ϕ(x) is the angle of rotation of the cross section;
hm(m= 1, 2, where m= 1 denotes the bottom flanges and
m= 2 denotes the top flanges) is the distance between the
midsurface of the flanges and the neutral axis, which must be
given to the sign; w′(x) is the first derivative of the deflection
of the girder with respect to x; β(x) � α(Q(x)/GAw) is the
average of the shear strain; α is the shear factor; Q(x) is the
shearing force; G is the shear modulus; Aw � (ζ + 1)twhw is
the total area of the webs; hw is the web depth; and tw is the
web thickness.

2.2. Bending Shear Flow Distribution. )e shear lag phe-
nomenon is mainly caused by the lag of shear strains in the
flanges between the webs [24]; hence, the study of bending
shear flow distribution for multicell cross section is quite
necessary.

For the case of the multicell cross section of the
box girder, the bending shear flow, qj(s), can be given by
[24]

qj(s) � pj􏽼􏽻􏽺􏽽
constant

+ pb,j(s)
􏽼√√􏽻􏽺√√􏽽
variable

,
(6)

where pj (j� 1, . . ., ζ, where ζ is the number of cells)
represents the indeterminate shear flow, which is constant
across the jth cell; pb,j(s) � −Q(x)Sy/Iy represents the
variable shear flow due to the bending, and the slit is inserted
at points 1, 7, and 10 of the closed cross section, as illustrated
in Figure 1; Sy represents the static moments with respect to
y; and Iy represents the moment of inertia of the cross
section with respect to y.

Since the slit inserted at points 1, 7, and 10 of the closed
cross section is a hypothetical existence, the condition of
deformation compatibility should be satisfied, based on
which the indeterminate shear flow pj can be solved by the
following equations [24]:
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Figure 1: Cross section of the multicell box girder: (a) single-box two-cell (1B2C) (ζ � 2); (b) single-box three-cell (1B3C) (ζ � 3).
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􏽉
1

q1(s)

Gt1
ds − 􏽚

1,2

q2(s)

Gtw

ds � 0, (7a)

􏽉
j

qj(s)

Gtj

ds − 􏽚
j,j−1

qj−1(s)

Gtw

ds − 􏽚
j,j+1

qj+1(s)

Gtw

ds � 0, (7b)

􏽉
ξ

qξ(s)

Gtξ
ds − 􏽚

ξ,ξ−1

qξ−1(s)

Gtw

ds � 0, (7c)

where 􏽈jqj(s)/Gtjds is the contour closed integral for the jth
cell, 􏽒

j,j−1(qj−1(s)/Gtw)ds is the integral for boundary webs
between jth and (j− 1)th cells, and 􏽒

j,j+1(qj+1(s)/Gtw)ds is
the integral for boundary webs between jth and (j+ 1)th cells.

According to equation (6), once pj (j� 1,. . ., ζ) is de-
termined, the shear flow distribution throughout the mul-
ticell cross section can be plotted easily in Figure 2, and the
directions of shear flow are indicated by the arrows.

As can be seen from Figure 2, the shear flow converges
and diverges at the positions of the web-flange junction and
of zero points of bending shear flow. It should be noted that
the positions of zero points of bending shear flow are not
located at half flange-width, instead, beyond a certain dis-
tance. Hence, the width of the flanges needs to be recon-
sidered based on the positions of zero points of the bending
shear flow.

2.2.1. Shear Lag Width of Flanges bij. Since the shear flow
distribution, qj(s), is determined by the preceding proce-
dure, it is convenient to define the term shear lag width of
flanges (bij, where i� 1, . . ., 2, j� 1, . . ., ζ), which refers to the
width between the positions of zero points of the bending
shear flow and webs, as shown in Figure 2. )e positions of
zero points of the bending shear flow can be obtained by
solving

qj(s) � pj + pb,j(s) � 0. (8)

As a result, the shear lag width of flanges (bij) in the thin-
walled single-box multicell box section can be obtained, as
plotted in Figure 1.

In addition, the geometric equation that the relationship
between displacements uij and v in the direction of coor-
dinate axes (x, y) can be written as [24]

cxy �
zuij

zy
+

zv

zx
, (9)

where v is the transverse deformation, and v � 0 (according
to assumption 2).

At those positions of the shear flow which is equal to
zero, the substitution of equations (2) and (4) into equation
(9) gives the boundary condition of the transverse distri-
bution function with respect to y, that is,

zψij(y)

zy

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�0
� 0. (10)

2.2.2. Coefficients of Shear Lag Warping Functions αij.
Within the shear lag width of flanges (bij), the maximum
value of the longitudinal warping displacement, Δuij, varies
and can be expressed by integrating equation (9) with re-
spect to y:

Δuij � 􏽚
bij

0
cxydy � −

Q(x)

2GIy

hmb
2
ij, (11)

where bij (i� 1, . . ., 2, j� 1, . . ., ζ, and i� 3) represents the
shear lag width of the flanges, as shown in Figure 1.

Since the shearing force, Q(x), is unknown, it is not
convenient to determine the maximum value for the lon-
gitudinal warping displacement. However, the relationship
of the maximum value for the longitudinal warping dis-
placement between different shear lag widths of flanges can
be determined and expressed in the form of the coefficient
αij:

αij �
Δuij

Δu21
� −

b2ijhm

b221h2
. (12)

From this general equation, the coefficient (αij) subjected
to various loads can be determined and only with regard to
geometric parameters.

Furthermore, the maximum value for the longitudinal
warping displacement, Δuij, can also be expressed by
substituting the boundary condition of transverse distri-
bution function equations (3a) and (3b) into equation (2),
which yields

Δuij � Uij(x). (13)

Accordingly, equation (12) can be given in the form

αij �
Uij(x)

U21(x)
� −

b2ijhm

b221h2
. (14)

Finally,

Uij(x) � αijU21(x). (15)

Given that U21(x) � −α21U(x) (where α21 is equal to 1,
from equation (14)), equation (15) can be written as

Uij(x) � −αijU(x). (16)

z
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Zero point 
of bending shear flow
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Figure 2: Bending shear flow in the single-box multicell box girder.
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)e term αij is defined as the coefficients of shear lag
warping functions for the corresponding flanges; U(x) is the
normalized shear lag warping function.

2.3. Continuity of Shear LagWarping Displacement Function.
)e shear lag warping displacement function uSL,ij(x, y) can
be rewritten from equations (2) and (16) as

uSL,ij(x, y) � −αijU(x)ψij(y). (17)

)ese shear lag warping displacement functions should
definitely satisfy the continuity conditions at the positions of
zero points of bending shear flow and the positions of web-
flange junctions.

For the case of 1B2C, at the positions of zero points of
bending shear flow (y� 0) in the top central flanges, the
shear lag warping displacements uSL,21 and uSL,22 are as
follows:

uSL,21(x, y � 0) � −α21U(x), (18a)

uSL,22(x, y � 0) � −α22U(x). (18b)

Since b21 ≠ b22, then α21 ≠ α22 (according to equation
(12)), which yields

uSL,21(x, y � 0)≠ uSL,22(x, y � 0). (19a)

Similarly,

uSL,11(x, y � 0)≠ uSL,12(x, y � 0). (19b)

For the case of 1B3C, the same conclusions can also be
obtained as follows:

uSL,22(x, y � 0)≠ uSL,23(x, y � 0), (20a)

uSL,12(x, y � 0)≠ uSL,13(x, y � 0). (20b)

As a result, equation (17) does not satisfy the continuity
condition at the positions of zero points of the bending shear
flow and needs to be further reorganized as follows.

For the case of 1B2C, the shear lag warping displacement
function u1

SL,ij(x, y) is given by

u
1
SL,ij(x, y) �

−α21ψij(y) + α21 − α22􏼐 􏼑U(x), 0≤y≤ b21,

−α22ψij(y)U(x), 0≤y≤ b22,

−α3ψij(y)U(x), 0≤y≤ b3,

α11ψij(y) − α11 − α12􏼐 􏼑U(x), 0≤y≤ b11,

α12ψij(y)U(x), 0≤y≤ b12,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21a)

and the shear lag warping displacement function u2
SL,ij(x, y)

is given by

u
2
SL,ij(x, y) �

−α21ψij(y)U(x), 0≤y≤ b21,

−α22ψij(y) + α22 − α21􏼐 􏼑U(x), 0≤y≤ b22,

−α3ψij(y) + α22 − α21􏼐 􏼑U(x), 0≤y≤ b3,

α11ψij(y)U(x), 0≤y≤ b11,

α12ψij(y) − α12 − α11􏼐 􏼑U(x), 0≤y≤ b12.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21b)

Similarly, for the case of 1B3C, the shear lag warping
displacement function u1

SL,ij(x, y) is given by

u
1
SL,ij(x, y) �

−α21ψij(y) + α22 − α23􏼐 􏼑U(x), 0≤y≤ b21,

−α22ψij(y) + α22 − α23􏼐 􏼑U(x), 0≤y≤ b22,

−α3ψij(y)U(x), 0≤y≤ b23,

−α3ψij(y)U(x), 0≤y≤ b3,

α11ψij(y) − α12 + α13􏼐 􏼑U(x), 0≤y≤ b11,

α12ψij(y) − α12 + α13􏼐 􏼑U(x), 0≤y≤ b12,

α13ψij(y)U(x), 0≤y≤ b13,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22a)

and the shear lag warping displacement function u2
SL,ij(x, y)

is given by

u
2
SL,ij(x, y) �

−α21ψij(y)U(x), 0≤y≤ b21,

−α22ψij(y)U(x), 0≤y≤ b22,

−α23ψij(y) + α23 − α22􏼐 􏼑U(x), 0≤y≤ b23,

−α3ψij(y) + α23 − α22􏼐 􏼑U(x), 0≤y≤ b3,

α11ψij(y)U(x), 0≤y≤ b11,

α12ψij(y)U(x), 0≤y≤ b12,

α13ψij(y) − α13 − α12􏼐 􏼑U(x), 0≤y≤ b13,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22b)

where u1
SL,ij(x, y) denotes the first method for modification

of shear lag warping displacement function and u2
SL,ij(x, y)

denotes the second method for modification of shear lag
warping displacement function.

It can be seen that the shear lag warping displacement
functions u1

SL,ij(x, y) and u2
SL,ij(x, y) are linearly indepen-

dent; hence, the expression of shear lag warping displace-
ment function can be the combination of u1

SL,ij(x, y) and
u2
SL,ij(x, y) and further be rewritten as follows.
For the top central and lateral cantilever flanges (i� 2,

j� 1, . . ., ζ, and i� 3),

uSL,ij(x, y) �
m1

m1 + m2
· u

1
SL,ij(x, y) +

m2

m1 + m2
· u

2
SL,ij(x, y),

m1 + m2 ≠ 0.

(23a)
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For bottom central flanges (i� 1, j� 1, . . ., ζ),

uSL,ij(x, y) �
m3

m3 + m4
· u

1
SL,ij(x, y) +

m4

m3 + m4
· u

2
SL,ij(x, y),

m3 + m4 ≠ 0,

(23b)

where the coefficients m1, m2, m3, and m4 are the unknown
constants.

Compared with equation (17), it should be noticed that
the additional correction term introduced in equations (23a)
and (23b) should not generate additional internal force in
the top and bottom flanges.

)us, for the case of 1B2C, which should satisfy

m1

m1 + m2
α21 − α22( 􏼁EU′A21 +

m2

m1 + m2

· α22 − α21( 􏼁EU′ A22 + A3( 􏼁 � 0,

(24a)

m3

m3 + m4
−α11 + α12( 􏼁EU′A11 +

m4

m3 + m4

· −α12 + α11( 􏼁EU′A12 � 0.

(24b)

Solving the above set of equations for m1, m2, m3, andm4
and substituting the values into (m1/m1 + m2), (m2/
m1 + m2), (m3/m3 + m4), and (m4/m3 + m4), we obtain

ζ1 �
m1

m1 + m2
�

A22 + A3

A21 + A22 + A3
,

ζ2 �
m2

m1 + m2
�

A21

A21 + A22 + A3
,

ζ3 �
m3

m3 + m4
�

A12

A11 + A12
,

ζ4 �
m4

m3 + m4
�

A11

A11 + A12
.

(25)

Similarly, for the case of 1B3C, which should satisfy

m1

m1 + m2
α22 − α23( 􏼁EU′ A21 + A22( 􏼁 +

m2

m1 + m2

· α23 − α22( 􏼁EU′ A23 + A3( 􏼁 � 0,

(26a)

m3

m3 + m4
−α12 + α13( 􏼁EU′ A11 + A12( 􏼁 +

m4

m3 + m4

· −α13 + α12( 􏼁EU′A13 � 0.

(26b)

Solving the above set of equations for m1, m2, m3, andm4
and substituting values into (m1/m1 + m2), (m2/m1 + m2),

(m3/m3 + m4), and(m4/m3 + m4), we obtain

ζ1 �
m1

m1 + m2
�

A23 + A3

A21 + A22 + A23 + A3
,

ζ2 �
m2

m1 + m2
�

A21 + A22

A21 + A22 + A23 + A3
,

ζ3 �
m3

m3 + m4
�

A13

A11 + A12 + A13
,

ζ4 �
m4

m3 + m4
�

A11 + A12

A11 + A12 + A13
,

(27)

where ζk (k� 1, . . ., 4) is the constant value defined as the
correction factor. Aij � 2bijtij (i� 1, 2, j� 1, . . ., ζ, and i� 3)
is the area of flanges, as shown in Figure 1.

Now, from the equilibrium condition,

􏽚
A
σxdA � 0, (28)

which must be satisfied since there is no axial force present,
that is, Nx � 0. )rough substituting equations (1), (4), and
(23a) into equation (28), we noticed that equation (28)
cannot be fulfilled as the coefficients of the shear lag warping
functions, αij, are given without considering the internal
force balance. )erefore, to satisfy equation (28), one more
correction term, DU(x), should be introduced in equation
(1), and the expression of equation (1) can be further re-
written as

uij � uSL,ij(x, y) + uϕ,r(x, y) + DU(x), (29)

where D is the internal force balance factor, which can be
obtained from equation (28).

2.4. Initial Shear Deformation c03. According to equation
(9), at those positions of shear flowwhich is equal to zero, the
first derivative of the shear lag warping displacement with
respect to y is zero, owing to the continuous condition for
shear lag warping displacement function, and the shear flow
in the opposite direction plays a role as constraints, and the
shear deformation nearby is limited. However, for those
shear flows which are zero at the open-end flanges, lacking
the constraint nearby, hence, the shear deformation nearby
cannot be limited, and the first derivative of shear lag
warping displacement is no more zero. Instead, a shear
deformation exists, which is constant through the top lateral
cantilever flanges and can be further defined as the initial
shear deformation, c03, as illustrated in Figure 3.

Let

α30 �
􏽒

b3

0 cxy(y)dy

􏽒
b21

0 cxy(y)dy
. (30)

)en, the coefficient of shear lag warping function in the
top lateral cantilever flange, α3, can be rewritten from
equation (12), that is,
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α3 �
􏽒

b3

0 cxy − c03dy

􏽒
b21

0 cxydy
� α30 −

c03b3

􏽒
b21

0 cxydy
. (31)

)e substitution of equations (11) and (13) into equation
(31) yields the initial shear deformation c03 regarding to the
function U(x):

c03
α3 − α30( 􏼁α21

b3
U(x). (32)

Because the value of initial shear deformation, c03, is
constant, the additional longitudinal warping displacement
in the top lateral cantilever flanges can be expressed as

u3a � −Δu3a 1 −
y

b3
􏼠 􏼡, 0≤y≤ b3, (33a)

where

Δu3a � c03b3 � α3 − α30( 􏼁α21U(x). (33b)

Consequently, the longitudinal warping displacement in
the top lateral cantilever flanges consists of four parts: shear
lag warping displacement contribution, internal force bal-
ance contribution, initial shear deformation contribution,
and bending contribution. Since the initial shear deforma-
tion (c03) and the coefficient (α3) of the shear lag warping
function in the top lateral cantilever flange are undetermined
and cannot be given directly, it is suggested that, for sim-
plicity, the distribution of warping displacement due to the
initial shear deformation contribution can be regarded as the
same as the transverse distribution function ψij(y). Equa-
tion (33a) can be easily expressed as

u3a � Δu3aψ3, 0≤y≤ b3. (34)

As a result, the initial shear deformation contribution
and shear lag warping contribution can be combined and
reduced to α3ψ3U(x); once the coefficient (α3) of the shear
lag warping function in the top lateral cantilever flange is
determined, the inverse process, equation (32), can be
employed, and the initial shear deformation contribution
can be separated.

2.5. Derivation of the Transverse Distribution Function of
LongitudinalWarpingDisplacement ψij(y). According to the

aforementioned conditions of the transverse distribution
function ψij(y) given by equations (3a), (3b), and (10), the
transverse distribution function ψij(y) can be assumed to be

ψij(y) � 1, x, x
2

􏽨 􏽩

c1

c2

c3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (35)

where the constants c1, c2, and c3 can be determined from the
substitution of the above equation into equations (3a), (3b),
and (10).

)e expression for the transverse distribution function
ψij(y) can be given by

ψij(y) � 1 −
y2

b2ij
, (36)

where bij (i� 1, . . .2, j� 1, . . ., ζ, and i� 3) denotes the shear
lag width of the flanges, as illustrated in Figure 1.

Also, it can be written in the form of a cosine function:

ψij(y) � cos
πy

2bij

􏼠 􏼡. (37)

)e transverse distribution function given in equation
(36) is consistent with that reported in the companion
papers [1, 2, 12–15] and can also be expressed in the form of
equation (37), similar as [3–5, 20].

Now, given the transverse distribution function at the
web-flange junction (y� b3) is zero from equation (3b), the
normal stress σx and the shearing stress τxy acting on a small
element dxdy should satisfy the equilibrium condition of
stresses in the direction of x-axis, which gives the following
differential equation [24]:

zσx

zx
+

zτxy

zy
� 0. (38)

According to assumption 4, the substitution of equations
(23a) and (29) into equation (38) yields

E
z2u3(x, y, z)

zx2 + G
z2ψ3(y)

zy2 U3(x) � 0, (39)

where E is Young’s modulus.
As for equation (39) is identically equal to zero, equation

(39) can be divided into two parts:

z2ψ3(y)

zy2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�b3

� 0, (40a)

z2u3(x, y, z)

zx2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌y�b3

� 0, (40b)

where equations (40a) and (40b) should be fulfilled
simultaneously.

Compared with equation (36), only equation (37) can
satisfy equation (40a) strictly, and finally, equation (37) is the
most appropriate functional expression for describing the
transverse distribution of the shear lag warping displace-
ment function.

b3

α 30
U

 (x
)

(α
3 –

 α
30

) U
 (x

)

α 3U
 (x

)

γ03Web-flange junction

Free end

Figure 3: Initial shear deformation in the top lateral cantilever
flange.
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3. Formulation and Solution

)e total potential energy of the thin-walled single-box
multicell box girder can be obtained by the summation of the
strain energy of the flanges and webs and the external po-
tential energy and also can be expressed as follows:

􏽙 � 􏽘
ij

Up,ij + Up,w + Vp, (41)

where
)e strain energy of flanges 􏽐ijUp,ij (i� 1, . . .2, j� 1, . . .,

ζ, and i� 3):

􏽘
ij

Up,ij � 􏽘
ij

􏽚
L

0
B
Aij

1
2

σijεij + τijcij􏼐 􏼑dA
⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠dx. (42a)

)e strain energy of webs Up,w:

Up,w � 􏽚
L

0
B
Aw

1
2

σwεw + τwcw( 􏼁dA
⎛⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎠dx. (42b)

)e external potential energy Vp [3]:

Vp � − 􏽚
L

0
q(x)w(x)dx � 􏽚

L

0
M(x)w″(x)dx − M(x)β(x)

􏼌􏼌􏼌􏼌
x2
x1

,

(42c)

where 􏽑 is the total potential energy, M(x) is the bending
moment, and w″(x)is the second derivative of the deflection
of the girder with respect to x.

3.1. Fundamental Governing Differential Equations. )e
governing differential equations can be derived by using the
principle of minimum potential energy [25]:

δ􏽙 � 0. (43)

By substituting equation (41) into equation (43), we
obtain

w″(x) − β′(x) + a1U′(x) +
M(x)

EIy

� 0, (44a)

a2U(x) − a2U″(x) − a2 w‴(x) − β″(x)( 􏼁 � 0, (44b)

and the natural boundary condition:

a3U′(x) + a4 w″(x) − β′(x)􏼒 􏼓 � 0, (44c)

where

a1 �
collect zF/zw″, U′( 􏼁

collect zF/zw″, w″( 􏼁
, (45a)

a2 � collect
zF

zU
, U􏼠 􏼡, (45b)

a3 � collect −
z

zx

zF

zU′
􏼠 􏼡, U″􏼠 􏼡, (45c)

a4 � collect −
z

zx

zF

zU′
􏼠 􏼡, w‴􏼠 􏼡. (45d)

According to equations (44a) and (44b), the two un-
known generalized displacements w(x) and U(x) are
coupled; hence, the two variables need to be decoupled and
analyzed as differential equations independently.

To this end, the differential equation for the normalized
shear lag warping function U(x) can now be determined by
differentiating equation (44a) with respect to x and
substituting into equation (44b). By eliminating the term
w‴(x) − β″(x) from equation (44b), the following differ-
ential equation is obtained:

U(x)″ − k
2
U(x) � n

M′(x)

EIy

, (46)

where

k
2

�
a2

a3 − a1a4
, (47a)

n �
a4

a3 − a1a4
. (47b)

From equation (46), we can arrive at the conclusion that
the shear deformation considered in webs will not affect the
function U(x).

Once the normalized shear lag warping function U(x) is
determined, the differential equation for the deflection of the
girder w(x) can be written in the form

w″(x) � β′(x) − a1U′(x) −
M(x)

EIy

, (48)

where Iy is the geometric moment of inertia with respect to
the y-axis.

Finally, equations (46) and (48) can be solved with the
associated load and boundary conditions as follows:

For a fixed end: U � 0, w � 0, w′ − β � 0
For a simply supported end: U′ � 0, w � 0

3.2. Designed Procedure of the Coefficient of Shear Lag
Warping Function α3. Although the initial shear deforma-
tion (c03) plays an important role in the shear lag effect in the
top lateral cantilever flange, there is a lack of an appropriate
method to solve it directly. However, the proposition de-
scribed in equation (40b) is a powerful approach for solving
the coefficient of shear lag warping function (α3) and can be
performed by a computer program, as outlined by the
flowchart in Figure 4.

In this flowchart, it should be noted that themodification
on the continuity of shear lag warping displacement func-
tion is not taken into account as the boundary condition for
top lateral cantilever flanges should not be affected by the
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parameterm1,m2,m3, andm4. Hence, the correction factors
(ξk) are given as zero.

3.3. Modification of Normal Stress Distribution through Top
LateralCantileverFlanges. Since the value of the coefficient
of shear lag warping function (α3) can be derived from the
designed procedure, as illustrated in Figure 4, the final
normal stress distribution can be obtained accordingly.
However, because the initial shear deformation contri-
bution from the longitudinal warping displacement is
assumed to be a cosine function, the normal stress dis-
tribution calculated in the top lateral cantilever flanges
will be less than the actual stress. )erefore, the influence
of the initial shear deformation contribution on
the normal stress distribution should be analyzed
independently.

On the basis of assumption 4, the normal stress
difference in the top lateral cantilever flanges can be given
by

Δσ3 � α3EU(x)′. (49)

In a similar manner, the following additional normal
stress difference function is obtained due to the initial shear
deformation contribution:

Δσ3a � α3 − α30( 􏼁α21EU′(x). (50)

)e additional normal stress difference, Δσ3a, can be
determined by substituting equation (49) into equation (50);
eliminating the term EU′(x) from equation (50), then
equation (50) can be reduced to

Δσ3a � α3 − α30( 􏼁α21
Δσ3a

α3
. (51)

And the normal stress difference due to shear lag con-
tribution can be reduced to

Δσ30 �
α30
α3
Δσ3. (52)

As a result, the normal stress distribution on the top
lateral cantilever flanges can be rewritten as

σ3(x, y) �σ3
􏼌􏼌􏼌􏼌y�b3

− ψΔσ30 − 1 −
y

b3
􏼒 􏼓Δσ3a. (53)

4. The Finite Element Method

)e currently available data regarding shear lag analysis in
thin-walled single-box multicell box girders are very limited,
while the finite element method (FEM) can be quite useful in
providing additional data for comparison with the results
with those obtained analytically from the proposed method.
In order to further verify the designed procedure and the
proposed method, single-box two-cell (1B2C) and single-
box three-cell (1B3C) box girders under uniformly dis-
tributed load were performed by applying the FEM to
provide more additional information, as illustrated in
Figure 5.

)e finite element analysis in this study was carried out
using a computer program, ABAQUS, which can provide
rich element types [26]. It should bementioned that the solid
part was modeled with the incompatible mode solid element
(C3D8I), as shown in Figure 5, which can overcome the
problem of shear locking in a fully integrated first-order
element (C3D8) and can reach a high degree of accuracy as
fully integrated second-order element (C3D20); more im-
portantly, less elements are needed.

)e beam’s uniformly distributed load per unit length is
modeled by applying pressure acting on the surface of the
flange-web junction elements uniformly through the beam
length, and the modulus of elasticity and Poisson ratio are
3,000MPa and 0.385, respectively.

Figure 6 shows the boundary conditions and load
conditions that are used in the numerical models.

Calc. bij, αij, α30

Assume. j = 0, maxval = 0, α3 = α30 – 0.01 

Calc. D

Input given data
cross-sectional value,
material properties,

loading conditions, etc.

Calc. a1, a2, a3, a4, k2, n

Select. uij (x, y, z) 

Calc. U, w

Select. u3 (x, y, z)

Calc. σ3,max [j] = abs(subs(y = b3, diff(u3, x)))

maxval > σ3,max [j] maxval = σ3,max [j]N

Y

j = j + 1, α3 = α3 + 0.01 

End

Start

Output. α3 – 0.01

Figure 4: Flowchart of the coefficient of shear lag warping function α3.
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5. Numerical Examples

In order to illustrate the validity and efficiency of the
proposed method on the analysis of the shear lag effect in the
thin-walled single-box multicell box girder, four examples
are provided in this section: for examples 1 and 2, the type of
single-box two-cell (1B2C) box girders (simply supported
and fixed end, as shown in Figure 6) are considered, and for
examples 3 and 4, the type of single-box three-cell (1B3C)
box girders (simply supported and fixed end, as shown in
Figure 6) are considered.

)e proposed methods, SL-THY1 (short for shear lag
effect analysis without considering the influence of initial
shear deformation in top lateral cantilever flanges, where
α3 � α30) and SL-THY2 (short for shear lag effect analysis
considering the influence of initial shear deformation in
top lateral cantilever flanges, where α3 ≠ α30), are applied
to the simple structural scheme of the simply supported
beam and of the fixed-end beam under the uniformly
distributed load, with the aim of underlying the impor-
tance of the designed procedure and the proposed
method, and the comparison to the results with those
obtained from the aforementioned computer program,
ABAQUS, is conducted.

5.1. Example 1. In this example, a thin-walled single-box
two-cell box girder (simply supported) as shown in
Figure 6(a), with a span length of 900mm subjected to a
uniformly distributed load q � 9N/mm along the span
length, is being examined. )e dimensions of the cross
section of the single-box two-cell box girder are shown in
Figure 7. )e material properties used in the theoretical
analysis are the same as those used in finite element
models.

Figure 5(a) shows an example of the finite element model
of a single-box two-cell box girder. Finite element models
are made in Abaqus/Standard and used in a sensitivity study
to investigate the influence of element size on the predictions
of the shear lag effect. Based on the sensitivity study, several
simulations of example 1 are performed using a randomly
generated mesh of hexahedral solid element (C3D8I), and
the results of which show that the normal stresses derived at
the designated measure points (M1∼M7), as illustrated in
Figure 7, have no obvious changes with the increase of the
number of elements; according to Figure 8, and furthermore,
the mesh insensitivity of the number of elements on the
shear lag effect can be demonstrated. Hence, the flanges are
meshed uniformly by 3× 3× 3mm hexahedral solid element
(C3D8I), and the webs are meshed uniformly by
4× 3× 3mm hexahedral solid element (C3D8I), and finally,
24.78×104 solid elements are used in the finite element
analysis.

)e parameters, including the shear lag widths of flanges
bij (i� 1, . . ., 2, j� 1, . . ., 2, and i� 3), the coefficients of shear
lag warping functions αij (i� 1, . . ., 2, j� 1, . . ., 2, and i� 3),
shear factor α, and the correction factors ζk (k� 1, . . ., 4), for
shear lag effect analysis in the thin-walled single-box two-cell
box girder are listed in Table 1.

Figure 9 shows the comparison of the shear lag coeffi-
cients predicted by the proposed method (SL-THY1 and SL-
THY2) and FEM analysis at the midspan and 1/3-span cross
section of a simply supported box girder (1B2C). From the
diagram, it is observed that the shear lag coefficient distri-
butions predicted by the SL-THY2 analysis are preferred to
those predicted by the SL-THY1 analysis, comparing with
the FEM calculation. )ese results suggest that the initial
shear deformation (c03) in the top lateral cantilever flanges,
indeed, exists and play an important role in affecting the
shear lag coefficient distribution in the flanges. In the

(a) (b)

Figure 5: Schemes for the FE models: (a) meshing of the model of 1B2C; (b) meshing of the model of 1B3C.
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Figure 6: (a) Simply supported box girder subjected to uniformly distributed load. (b) Fixed-end box girder subjected to uniformly
distributed load.
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meantime, the influence of initial shear deformation can be
well predicted by the designed procedure, as illustrated in
Figure 4.

Besides, the most telling features of the charts are the
dominance of accurate prediction of shear lag coefficient
distribution in top and bottom central flanges by the SL-
THY2 analysis, which may serve to explain the shear lag
widths of flanges based on the bending shear flow distri-
bution and the transverse distribution of shear lag warping
displacement based on the function of cosine which are
reasonable to those from FEM calculation.

Figure 10 shows the comparison of the vertical deflec-
tions predicted by the proposed methods (SL-THY1 and SL-
THY2), Euler–Bernoulli beam theory (EBT), Timoshenko
beam theory (TBT), and FEM calculation for a simply

supported girder (1B2C). It is observed that the results of the
proposed methods (SL-THY1 and SL-THY2) are in good
agreement with those obtained by FEM calculation.

Table 2 lists the midspan and 1/3-span deflections of a
simply supported box girder (1B2C) predicted by the pro-
posed methods (SL-THY1 and SL-THY2), EBT, TBT, and
FEM calculations. It can be seen that the maximum error of
vertical deflection between EBTand FEM analysis may reach
−28.10%, and minus indicates that the vertical deflection
obtained from EBT is lower than FEM analysis. However, by
considering the influence of shear lag effect and shear de-
formation on webs, the error of vertical deflection between
SL-THY2 and FEM analysis can be reduced to 1.67%. Hence,
the contribution of shear lag effect and shear deformation to
webs on the deflection of the box girder is remarkable on the
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Figure 8: Sensitive analysis of the number of finite elements. (a) Measure points in top flanges of midspan cross section. (b) Measure points
in bottom flanges of midspan cross section.

Table 1: Parameters for shear lag effect analysis in the thin-walled single-box two-cell box girder.

b11 (mm) b12 (mm) b21 (mm) b22 (mm) b3 (mm) α11 α12 α21 α22 α30 α3 α ξ1 ξ2 ξ3 ξ4
1B2C 77 123 113 87 100 0.60 1.56 1.00 0.58 0.78 1.26 1.19 0.622 0.378 0.616 0.384

b21b22

b12 b11

100100b3 100

6
6

10
8

12
0

y

z

M1 M2 M3 M4

M5 M6 M7

8 8 8

6

3N/mm 3N/mm 3N/mm

Figure 7: Cross section of the single-box two-cell box girder (unit: mm).
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whole and should be taken into account in engineering
practice.

5.2. Example 2. In this example, a thin-walled single-box
two-cell box girder (fixed end, as shown in Figure 6(b)), with
a span length of 1,500mm subjected to a uniformly dis-
tributed load q� 9N/mm along the span length, is being
analyzed. )e dimensions of the cross section of the single-
box two-cell box girder, material properties, and the

parameters for shear lag effect analysis in the example are the
same as those used in example 1.

Figure 11 compares the shear lag coefficient distribution
predicted by the proposed method (SL-THY1 and SL-
THY2) with that obtained using FEM analysis at the mid-
span and 2/5-span cross section of the fixed-end box girder
(1B2C). )e comparison shows that the shear lag coefficient
distributions predicted by SL-THY2 correspond to the
calculations obtained on the basis of the FEM calculation
than those predicted by SL-THY1.
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Figure 9: Shear lag coefficients of the simply supported box girder. (a) Top flanges of midspan cross section (x� 450mm). (b) Bottom
flanges of midspan cross section (x� 450mm). (c) Top flanges of 1/3-span cross section (x� 300mm). (d) Bottom flanges of 1/3-span cross
section (x� 300mm).
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Figure 12 compares the vertical deflections predicted
by the proposed methods (SL-THY1 and SL-THY2), EBT,
TBT, and FEM calculation for the fixed-end girder (1B2C).
)e comparison shows good agreement between the
proposed method (SL-THY1 and SL-THY2) and FEM
calculations.

Table 3 presents the comparison of the proposed
methods (SL-THY1 and SL-THY2), EBT, TBT, and FEM
calculations for the vertical deflections of the fixed-end box
girder, and the midspan and 2/5-span cross sections are
selected for error analysis. From the table, it can be seen that
considerable improvement can be achieved in the prediction
accuracy when using SL-THY2, and the maximum error of
vertical deflection between EBT and FEM can be reduced
from −41.21% to 1.8%, which proves the high precision of
SL-THY2 in predicting vertical deflections.

5.3. Example 3. In this example, a thin-walled single-box
three-cell box girder (simply supported) as shown in
Figure 6(a), with a span length of 1,200mm subjected to a
uniformly distributed load q� 12N/mm along the span
length, is being analyzed.)e dimensions of the cross section
of the single-box three-cell box girder are shown in Fig-
ure 13. )e material properties used in the theoretical
analysis are the same as those used in the finite element

model. Figure 5(b) shows an example of the finite element
model of a single-box three-cell box girder, and 94.72×104
solid elements are used in the finite element analysis.

)e parameters, including the shear lag widths of flanges
bij (i� 1, . . ., 2, j� 1, . . ., 3, and i� 3), the coefficients of shear
lag warping functions αij (i� 1, 2, j� 1, . . ., 3, and i� 3), shear
factor α, and the correction factors ζk(k� 1, . . ., 4), for shear
lag effect analysis in the thin-walled single-box three-cell box
girder are listed in Table 4.

Figure 14 shows the comparison of the shear lag coef-
ficients predicted by the proposed method (SL-THY1 and
SL-THY2) and FEM analysis at the midspan and 3/8-span
cross section of a simply supported box girder (1B3C). It can
be seen that the shear lag coefficient distributions predicted
by SL-THY2 agree quite well with those calculated by FEM,
which not only prove the existence of the initial shear de-
formation in top lateral cantilever flanges but also dem-
onstrate that the proposed method (SL-THY2) can well
improve the prediction accuracy of shear lag coefficient
distribution.

Figure 15 shows the comparison of the vertical deflec-
tions predicted by the proposed methods (SL-THY1 and SL-
THY2), EBT, TBT, and FEM calculation for a simply sup-
ported girder (1B3C). It is observed that the results derived
from the proposed methods (SL-THY1 and SL-THY2) co-
incide with those from FEM calculation.
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Figure 10: Comparison of vertical deflections predicted by the proposed methods (SL-THY1 and SL-THY2), EBT, TBT, and FEM analysis
for the simply supported box girder (example 1).

Table 2: Vertical deflections of midspan and 1/3-span of a simply supported box girder (1B2C).

x FEM EBT TBT SL-THY1 SL-THY2

L/2 (450mm) w (mm) 1.613 1.169 1.536 1.647 1.643
Error (%) — −27.54 −4.77 2.09 1.84

L/3 (300mm) w (mm) 1.413 1.016 1.343 1.440 1.437
Error (%) — −28.10 −4.99 1.92 1.67
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Table 5 shows the comparison of vertical deflections
predicted by the proposed methods (SL-THY1 and SL-
THY2), EBT, TBT, and FEM calculations for the simply
supported box girder, and the midspan and 3/8-span
cross sections are selected for error analysis. From the
table, it is obvious that the maximum error of vertical
deflection between EBT and FEM may reach −21.08%.
However, by considering the shear lag effect and shear
deformation in webs, the error of vertical deflection
between SL-THY2 and FEM can be reduced to 0.67%,
which shows the high precision of SL-THY2 in predicting
vertical deflection.

5.4. Example 4. In this example, a thin-walled single-box
three-cell box girder (fixed end, as shown in Figure 6(b)),
with a span length of 1,800mm subjected to a uniformly
distributed load q� 12N/mm along the span length, is being
analyzed. )e dimensions of the cross section of the single-
box three-cell box girder, material properties, and the pa-
rameters for shear lag effect analysis in the example are the
same as those used in example 3.

Figure 16 compares the shear lag coefficient distribution
predicted by the proposed methods (SL-THY1 and SL-
THY2) with that obtained using FEM analysis at the mid-
span and 5/12-span cross section of the fixed-end box girder
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Figure 11: Shear lag coefficients of the fixed-end box girder. (a) Top flanges of midspan cross section (x� 750mm). (b) Bottom flanges of
midspan cross section (x� 750mm). (c) Top flanges of 2/5-span cross section (x� 600mm). (d) Bottom flanges of 2/5-span cross section
(x� 600mm).
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(1B3C). From the figures, it can be clearly seen that the shear
lag coefficient distributions predicted by the SL-THY2
analysis are preferred to those predicted by the SL-THY1
analysis, comparing with the FEM calculation. Although
there exists some discrepancy for SL-THY2 in predicting the

shear lag coefficient distribution, the results obtained by SL-
THY2 are in good agreement with the FEM calculations on
the whole.

Figure 17 compares the vertical deflections predicted by
the proposed methods (SL-THY1 and SL-THY2), EBT, TBT,
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Figure 12: Comparison of vertical deflections predicted by the proposed methods (SL-THY1 and SL-THY2), EBT, TBT, and FEM analysis
for the fixed-end box girder (example 2).

Table 3: Vertical deflections of midspan and 2/5-span of a simply supported box girder (1B2C).

x FEM EBT TBT SL-THY1 SL-THY2

L/2 (750mm) w (mm) 3.029 1.804 2.825 3.084 3.074
Error (%) — −40.44 −6.76 1.79 1.48

2L/5 (600mm) w (mm) 2.828 1.663 2.642 2.888 2.879
Error (%) — −41.21 −6.57 2.12 1.80
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Figure 13: Cross section of the single-box three-cell box girder (unit: mm).

Table 4: Parameters for shear lag effect analysis in the thin-walled single-box three-cell box girder.

b11
(mm)

b12
(mm)

b13
(mm)

b21
(mm)

b22
(mm)

b23
(mm)

b3
(mm) α11 α12 α13 α21 α22 α23 α30 α3 ξ1 ξ2 ξ3 ξ4 —

1B3C 100 67 133 100 120 80 100 1.21 0.54 2.15 1.00 1.44 0.64 1.00 1.56 0.450 0.550 0.445 0.555 —
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and FEM calculations for the fixed-end girder (1B3C). )e
results derived from the proposed methods (SL-THY1 and
SL-THY2) match exactly to those obtained from FEM
calculations.

Table 6 lists the comparison of the proposed methods
(SL-THY1 and SL-THY2), EBT, TBT, and FEM calculation
for the vertical deflections of the fixed-end box girder, and

the midspan and 5/12-span cross sections are selected for
error analysis. From the table, it can be seen that consid-
erable improvement can be achieved in the prediction ac-
curacy when using SL-THY2, and the maximum error of
vertical deflection between EBT and FEM can be reduced
from −37.31% to 0.31%, which shows the high precision of
SL-THY2 in predicting vertical deflections.
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Figure 14: Shear lag coefficients of the simply supported box girder. (a) Top flanges of midspan cross section (x� 600mm). (b) Bottom
flanges of midspan cross section (x� 600mm). (c) Top flanges of 3/8-span cross section (x� 450mm). (d) Bottom flanges of 3/8-span cross
section (x� 450mm).
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Table 5: Vertical deflections of midspan and 3/8-span of a simply supported box girder (1B3C).

x FEM EB TB SL-THY1 SL-THY2

L/2 (600mm) w (mm) 3.127 2.476 3.018 3.154 3.151
Error (%) — −20.81 −3.48 0.85 0.75

3L/8 (450mm) w (mm) 2.905 2.292 2.801 2.927 2.924
Error (%) — −21.08 −3.59 0.77 0.67
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Figure 16: Continued.
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Figure 15: Comparison of vertical deflections predicted by the proposed methods (SL-THY1 and SL-THY2), EBT, TBT, and FEM analysis
for the simply supported box girder (example 3).
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6. Summary and Conclusions

In this paper, an improved theoretical analysis method for
predicting the shear lag effect in the thin-walled single-box
multicell box girder is developed. )e longitudinal warping
displacement of each wall of the cross section is fully in-
vestigated and defined as the sum of the constant contribution
from bending (TBT), the shear lag contribution, initial shear
deformation contribution, and the internal force balance
contribution. According to the bending shear flow distri-
bution, the shear lag width (bij) of flanges and the coefficients
(αij) of shear lag warping functions are proposed. To satisfy
the deformation compatibility conditions in flanges, the
correction factors (ξk) are introduced in building the warping
displacement. In addition, the initial shear deformation (c03)
in the top lateral cantilever flange is innovatively introduced
in the multicell box girder for shear lag analysis and the value
of which is obtained by the designed procedure. With the
given conditions, the transverse distribution function of shear
lag warping displacement is deduced and proved to be
expressed in the form of the cosine function.

Based on the principle of minimum potential energy, the
two generalized displacements, normalized shear lag
warping function and vertical displacement, can be derived
by solving the governing differential equations with the
associated load and boundary conditions. )e solid FEM
analysis is proved to be feasible through the sensitivity
analysis of mesh size, and the proposed methods (SL-THY1
and SL-THY2) are validated with the solid FEM analyses
conducted on four different multicell (two- and three-cell)
box girders. )e comparisons indicate that the proposed
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Figure 16: Shear lag coefficients of the fixed-end box girder. (a) Top flanges of midspan cross section (x� 900mm). (b) Bottom flanges of
midspan cross section (x� 900mm). (c) Top flanges of 5/12-span cross section (x� 750mm). (d) Bottom flanges of 5/12-span cross section
(x� 750mm).
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Figure 17: Comparison of vertical deflections predicted by the
proposed methods (SL-THY1 and SL-THY2), EBT, TBT, and FEM
analysis for the fixed-end box girder (example 4).

Table 6: Vertical deflections of midspan and 5/12-span of the fixed-
end box girder (1B3C).

x FEM EB TB SL-
THY1

SL-
THY2

L/2
(900mm)

w (mm) 3.966 2.507 3.727 3.978 3.972
Error (%) — −36.78 −6.03 0.30 0.15

5L/12
(750mm)

w (mm) 3.780 2.370 3.556 3.797 3.792
Error (%) — −37.31 −5.94 0.45 0.31
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method can accurately predict the shear lag effect in the thin-
walled single-box multicell box girder, and a considerable
improvement can be achieved in the prediction accuracy
when using SL-THY2 analysis.

It should also be noted that the proposed method is only
valid in this context of the stated assumptions.
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