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,e soft computing models used for predicting land surface temperature (LST) changes are very useful to evaluate and
forecast the rapidly changing climate of the world. In this study, four soft computing techniques, namely, multivariate
adaptive regression splines (MARS), wavelet neural network (WNN), adaptive neurofuzzy inference system (ANFIS), and
dynamic evolving neurofuzzy inference system (DENFIS), are applied and compared to find the best model that can be used
to predict the LST changes of Beijing area. ,e topographic change is considered in this study to accurately predict LST;
furthermore, Landsat 4/5 TM and Landsat 8OLI_TIRS images for four years (1995, 2004, 2010, and 2015) are used to study
the LSTchanges of the research area.,e four models are assessed using statistical analysis, coefficient of determination (R2),
root mean square error (RMSE), and mean absolute error (MAE) in the training and testing stages, and MARS is used to
estimate the important variables that should be considered in the design models. ,e results show that the LST for the
studied area increases by 0.28°C/year due to the urban changes in the study area. In addition, the topographic changes and
previously recorded temperature changes have a significant influence on the LSTprediction of the study area. Moreover, the
results of the models show that the MARS, ANFIS, and DENFIS models can be used to predict the LSTof the study area. ,e
ANFIS model showed the highest performances in the training (R2 � 0.99, RMSE � 0.78°C, MAE � 0.55°C) and testing
(R2 � 0.99, RMSE � 0.36°C, MAE � 0.16°C) stages; therefore, the ANFIS model can be used to predict the LST changes in the
Beijing area.,e predicted LSTshows that the change in climate and urban area will affect the LSTchanges of the Beijing area
in the future.

1. Introduction

Climate change is one of the most critical challenges that the
world faces. Previous studies have reported that climate
change has a significant effect on the land surface temper-
ature and its other parameters [1, 2]. ,e expansion of urban
areas is considered a significant factor for the change in land
use and land surface temperature [3, 4]. Previous studies

show that, in China, urban growth and climate change
including temperature change are serious problems resulting
from economic and social development [5, 6].,erefore, it is
vital to investigate ways to predict change in land surface
temperature (LST) change.

LST is defined as the temperature felt when there is an
exchange of long-wave radiation and turbulent heat fluxes
within the surface-atmosphere interface [7–9]. ,e LST is
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being increasingly utilized to evaluate the climate changes in
urban zones. Satellite images are used as sources of infor-
mation for surface temperature trends and variability. Li
et al. [8] summarized the basics and theoretical background
for the models deployed for LSTdetermination from satellite
images. Avdan and Jovanovska (2016) presented some
methods for calculating LST from Landsat images, and they
concluded that the methods used were successful in re-
trieving the LST. Zhang et al. [10] evaluated the changes in
LST of the Ebinur lake between 1998 and 2011 by applying
Landsat image processing and found that Landsat image
processing is a good tool to estimate the relationship be-
tween LST and land cover factors. Vlassova et al. [11]
assessed three different techniques for Landsat image pro-
cessing. ,ey applied radiative transfer equation (RTE)
inversion using the atmospheric correction parameters
calculator (ACPC) tool and two algorithms based on the
approximations of RTE, namely, the single-channel (SC)
method and the mono-window (MW) method, and found
that the three methods can be utilized for the estimation of
LST from Landsat thermal images.

Recently, soft computing techniques are widely used for
studying environmental changes. Valipou [12] examined
neural network (NN)methods for detecting drought and wet
years, and he found that NN methods are suitable for es-
timating the environmental changes. Tran et al. [13] applied
a regression model to estimate the LST patterns in Hanoi
city, Vietnam, and found that this method can be used in
other cities that possess a similar urban growth. Ahmed et al.
[14] used an NN model to simulate land cover changes
between 2019 and 2029 in Dhaka, Bangladesh, and their
results showed that the change in temperature would be
greater than or equal to 30°C. Ranjan et al. [15] utilized NN
in conjunction with geoinformatics technology to estimate
LST, and they found that this model could precisely predict
LST. Lee and Jung (2014) used an NN to approximate the
LST in Korea and found that it can be applied to predict LST
changes with high accuracy. Kestens et al. [16] utilized a
general linear model based on Landsat images to model the
LST change at Quebec, Canada, and found that the data
estimated from satellite images were useful for detecting the
LST changes. Yang et al. [17] applied four interpolation
methods to predict the LST changes in England, namely,
inverse distance weighting (IDW), spline, kriging, and
cokriging, and recommended using kriging method when
approximating LST from image processing. Li et al. [18]
studied the effectiveness of image clearance on LST esti-
mation and observed that the resolution of the Landsat
images is important for accurately estimating the LST
changes.

More recently, integrated soft computing models were
found to be better to detect different environmental changes
[19, 20]. Advanced regression and integrated NN models
have shown good performance as prediction models for
nonlinear performances changes of LST, water level changes,
monthly temperature changes, and evaporation
[11, 19–21].For instance, the wavelet neural network (WNN)
was developed to forecast water level changes, while adaptive
neurofuzzy inference system (ANFIS) is used to forecast

both water level changes and LST changes [21, 22].,e
ANFIS provides better performances for the dynamic be-
haviors [23, 24]. Kisi et al. [19] investigated different cases
with the ANFIS model to predict temperature changes in
Turkey. ,ey established that the ANFIS with grid partition
is the optimal model for change prediction. In addition, Kisi
et al. [20] developed a dynamic evolving neurofuzzy in-
ference system (DENFIS), which is a fuzzy integrated model,
to predict the evaporation of water surface and found that
the performance of DENFIS is superior to that of ANFIS as a
prediction model for water evaporation. Wang et al. [25, 26]
utilized the soft computing to model the solar radiation in
China, and they found that the Multilayer Perceptron (MLP)
and radial basis NN models are more accurate in detecting
solar radiation at different climatic zones in China; fur-
thermore, the ANFIS and M5 model tree are found to be
better in predicting solar radiation at some stations in China.
Meanwhile, the multivariate adaptive regression splines
(MARS) technique is considered to be an effective tool for
prediction and classification of input data for modeling,
especially when the input data is limited [27]. MARS
technique was found to be useful for land cover classification
and prediction of solar radiation [28, 29].

Here, the input variables affect the accuracy of pre-
dictionmodels .,e input variables for the prediction of LST
can be classified into urban changes and uses and land
geometry [14, 15]. ,e correlation between LST and nor-
malized difference vegetation index (NDVI) has been
documented in Weng [30] and Weng et al. [31]. Rinner and
Hussain [32] and Chen et al. [33] showed a correlation
between LST and the normalized difference built-up index
(NDBI). ,e normalized difference water index (NDWI)
and normalized difference bareness index (NDBaI) were
analyzed for delineating the water content in vegetation and
identifying the bareness of soil, respectively [33, 34]. Feng
et al. [35] found a strong correlation between LSTand NDBI
followed by NDWI and NVDI in Suzhou city. Furthermore,
the urban index (UI) was found to have a high correlation
with surface temperature in Harare, Zimbabwe [36]. ,e
intensity of LST is directly related to the rate of urbanization,
land use patterns, and building density [14]. LST is related to
the patterns of land use/cover changes, for example, the
composition of the built-up area, vegetation, and water
bodies [33]. Xiao et al. [37] reported that the impervious
surface is positively correlated with LST in Beijing, China.
,erefore, the digital elevation should be considered in this
study. Other studies utilized geodetic coordinates for de-
signing the LST prediction models. For instance, Ranjan
et al. [15] used real-time LST measurements and geodetic
coordinates to estimate the LST.

In this study, WNN, DENFIS, ANFIS, and MARS
models are applied to accurately calculate the LST from
Landsat images in order to predict the temperature changes
in Beijing city. In addition, the input variables (NDVI,
NDWI, NDBI, UI, and topographic changes) are evaluated
and assessed for LST prediction. Here, it should be men-
tioned that the WNN, DENFIS, and MARS models have not
been used so far to predict the LST changes from satellite
data; in addition, the ANFIS model is limited to the

2 Advances in Civil Engineering



prediction of LST changes [22]. ,erefore, the main aim of
this paper is to investigate LSTmodeling using novel design
of MARS, ANFIS, DENFIS, andWNNmodels for predicting
LST changes from visible Landsat, near-infrared, and TIR
imagery obtained from Landsat. ,e four models are
designed and compared to obtain an optimal model for
detecting nonlinear LST changes of Beijing area.

2. Study Area and Data Resources

2.1. Study Area. ,e study area, Beijing, is the capital of
China and it is one of the biggest cities in the world, covering
16 districts and two counties with a land area of 16,410 km2.
,e administrative region of Beijing is divided into three
parts: the central city, suburbs, and outer suburbs. ,e
central city includes two districts, Xicheng and Dongcheng.
,e suburbs aremade up of four districts, Haidian, Chaoyang,
Fengtai, and Shijingshan, and the outer suburbs comprise
eight districts and two counties, namely, Tongzhou, Shunyi,
Fangshan, Daxing, Changping, Mentougou, Huairou, and
Pinggu districts and Miyun and Yanqing counties, as pre-
sented in Figure 1(a). Beijing has been identified as one of the
rapidly developing cities in China, both economically and in
area. ,e population distribution depends on the elevation of
the land, as presented in Figure 1(b). ,e increasing pop-
ulation requires additional space, which necessitates new
residential areas, thereby encouraging rapid expansion of the
regions urbanized. ,us, the rapid population growth and
expansion of built-up areas present a daunting challenge
while estimating the cultivate land LST.

2.2. Data Resources. In this research, Landsat data is used as
the main source of data. Landsat satellite images taken
during the dry seasons of 1995, 2004, 2010, and 2015 were
obtained from the US Geological Survey (USGS) website
(Table 1). ,e years were considered as an indicator for the
time that the images were taken. Path 123 and row 32 cover
the entire research area. ,e map projection of the collected
satellite images is Universal Transverse Mercator (UTM),
and the images are of type Zone 50 N-Datum World
Geodetic System (WGS) 84 with pixel size of 30m. A total of
32 ground truth points were directly observed using a high-
resolution handheld GPS (Garmin GPSMAP 62s) in field
survey conducted during 1995–2015 to make the accuracy
assessment highly accurate. ,e ancillary data used in this
research include land surface parameters derived from the
90m grid spacing DEM data of the Shuttle Radar Topo-
graphic Mission (SRTM) (Figure 1(b)).

3. Methodology

,is section describes the general procedures such as image
processing, LSTestimation, and prediction of LST, which are
described in the flowchart shown in Figure 2.

3.1. Land Use/Land Cover Maps. ,e acquired satellite im-
ages (1995, 2004, and 2015) were classified into seven land
use and land cover (LULC) classes within a five-classification

scheme: urban (high and low residential areas), vegetation
(high-density vegetation and low-density vegetation),
bareland, waterbodies, and forestland. A supervised image
classification with the support vector machine (SVM)
classification method was applied to classify the LULC
classes [38]. In this method, prior knowledge of the study
region is used to select the training sites and the spectral
information contained in individual pixels is utilized to
generate the LULC classes. Finally, the summed up image is
renamed to create the final form of land cover maps for
various years (Figure 3). Satisfactory results were obtained
with regard to classification accuracy and Kappa coefficients.
,e lowest accuracy was obtained for the built-up areas in
1995, which reached 88.1%; this is expected because built-up
areas have mixed pixels with trees, home gardens, and actual
buildings. ,e overall accuracies were 95.15% for 1995,
90.93% for 2004, and 94.28% for 2015 (Table 2).

3.2. Retrieval of Land SurfaceTemperature fromLandsat-5TM
and Landsat-8

3.2.1. Retrieval of Satellite Brightness Temperature (BT)

(1) Retrieval of Satellite Brightness Temperature (BT) from the
Landsat-5TM Images. Based on Chen et al. [39], a two-step
process was applied to obtain the brightness temperature
from the Landsat-5TM images in this research. In the first
step, the digital numbers (DNs) of band 6 were transformed
into radiation luminance (RTM6) using the following
formula:

RTM6 �
V

255
Rmax − Rmin( 􏼁 + Rmin, (1)

where V represents the DN of band 6, and

Rmax � 1.896 mW∗ cm− 2∗ sr− 1
􏼐 􏼑, (2)

Rmin � 0.1534 mW∗ cm− 2∗ sr− 1
􏼐 􏼑. (3)

In the second step, the radiation luminance was trans-
formed into at-satellite brightness temperature (BT) in
Celsius (°C), using the following equation:

BT �
K1

ln K2/ RTM6/b( 􏼁 + 1( 􏼁( 􏼁
− 273.15, (4)

where K1� 1260.56 K and K2� 607.66 (mW∗ cm−2∗
sr−1 μm−1), which are prelaunch calibration constants under
an assumption of unity emissivity; and b represents the
effective spectral range when the sensor’s response is con-
siderably higher than 50%, b� 1.239 (μm) [29].

(2) Retrieval of Satellite Brightness Temperature (BT) from
the Landsat-8 Images. ,e first step is to transform the DN of
the thermal infrared band into spectral radiance (Lλ) by
using the following equation obtained from the Landsat
user’s handbook [40]:

Lλ � MLQcal + AL, (5)
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where Lλ is the TOA spectral radiation in watts/
(m2∗ ster∗ μm), ML is the band specific multiplicative
rescaling factor from the metadata, AL is the band specific
additive rescaling factor, and Qcal represents the symbolized
values of quantized and calibrated standard product pixels
(D).

,e second step is to convert the band radiance into BT
in Celsius using the following conversion formula:

BT �
K2

ln K1/Lλ + 1( 􏼁
− 273.15, (6)

where BT is the satellite brightness temperature in Celsius,
and K1 and K2 represent thermal conversion from the
metadata.

3.2.2. Surface Emissivity (ε) Retrieval. ,e land surface
emissivity (ε) values are obtained using equation (7) [41].

ε � m · PV + n. (7)

In this study, we used m� 0.004 and n� 0.986. PV is the
proportion of vegetation extracted from equation (9).

PV �
NDVI − NDVImin

NDVImax − NDVImin
􏼢 􏼣

2

, (8)

NDVI �
NIR − RED
NIR + RED

􏼔 􏼕, (9)

where NDVI is the normalized difference vegetation in-
dex. NDVImin and NDVImax are the minimum and
maximum values of the NDVI, respectively. ,e emis-
sivity-corrected LST values were then retrieved using
equation (10).

Brightness temperatures assume that the Earth is a
blackbody, which it is not, and this can lead to errors in
surface temperature. In order to minimize these errors,
emissivity correction is important and is done to retrieve the
LST from Tb using equation (9) [42].

LST �
BT

1 + (λ(BT)∗ ln(ε)/ρ)
, (10)

where LST is Celsius, BT is the at-sensor brightness tem-
perature in Celsius, λ (11.5 μm) is the wavelength of the
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Figure 1: Beijing city’s (a) location and (b) digital elevation model (DEM).

Table 1: Image information will be used in the study.

Sl.
no. Sensor Date of

acquisition
Path/
row

Resolution
(m)

1 Landsat4/5TM April. 1995 123/32 30m
2 Landsat4/5TM April. 2004 123/32 30m
3 Landsat4/5TM April. 2010 123/32 30m
4 Landsat8OLI_TIR April. 2015 123/32 30m
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emitted radiance: ρ � h∗ c/σ � 1.438∗ 10− 2 mK, σ is the
Stefan–Boltzmann constant, h is Planck’s constant, c is the
velocity of light, and ε is the land surface emissivity (LSE).

,e calculation of LST for the month of April is presented
in Figure 4 and Table 3 for the years 1995, 2004, 2010, and
2015.
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surface
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Figure 2: Flowchart of the downscaling algorithms used in this study.
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Figure 3: Land use pattern by year in Beijing. (a) 1995, (b) 2004, and (c) 2015.
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3.3. Design and Evaluation of Prediction Models. In this
section, four methods are applied and compared for pre-
dicting temperature changes. ,e regression and integrated
NN models are used to detect the LST. ,e MARS, WNN,
ANFIS, and DENFIS models are applied and investigated.
,e summary of the four methods is presented below. In this
study, the LST for 2010 and 2015 are utilized to design and
evaluate the models. To predict the LST for 2010 and 2015,
the data for the past two years and topographic changes for
the estimated image nodes are used.

3.3.1. Multivariate Adaptive Regression Splines (MARS)
Algorithm. ,e MARS model is a nonlinear and nonpara-
metric regression model that can be used for predicting
nonlinear LST measurements [28, 29]. A spline is a utility
defined piecewise by polynomials, and it is applied to a class
of functions used in input-output data interpolation [28]. A
common spline function is the cubic spline or knote [43].
,e knote numbers and placement are fixed for regression
splines. ,e forward and backward processes are applied to
establish the knote. Basic functions (BFs) are used to search
for knotes. A linear combination of BFs for theMARSmodel
is developed as a set of functions representing the rela-
tionship between the prediction (y) and target variables for
the LST as follows:

y � β0 + 􏽘

M

m�1
βmBFm, (11)

whereβm, m� 0, 1, . . .,M, are unknown coefficients that can
be estimated by the least square method andBFm are m-th
basis functions that denote reflected pairs [28]. ,ese are
linear BFs of the forms (x− t)+ and (t− x)−, with t being the
knote [28].

,erefore, theMARS process is performed in three steps.
First, the forward algorithm chooses all possible funda-
mental functions and their related knots. Second, the
backward algorithm gets rid of all basic functions in order to
produce the best combinations of existing knots, and, finally,
the smoothing operation is performed to obtain continuous
partition borders [43].

Quirós et al. [29] summarized the classification methods
by MARS. ,e first one relates to pairwise classification, in
which the output can be coded as 0 or 1, thereby treating the
classification as a regression. ,e second possibility involves
more than two classes, with the classification serving as a
hybrid of MARS called Poly MARS [29]. ,is study adopts
the first technique.

3.3.2. Wavelet Neural Network (WNN) Algorithm. ,e
WNN was introduced by Zhang and Benveniste [44]. ,e
algorithm of WNN connects the NN and wavelet decom-
position with a highly nonlinear wavelet function [21]. ,e
LST prediction (yk) based on WNN can be obtained as
follows:

yk � 􏽘
m

i�1
Ck−iψ ai xk−i − bi( 􏼁( 􏼁 + w, (12)

where Ck−i are coefficient variables, ai are dilation variables,
bi are translation variables, andψ is a wavelet function.

,e WNN contains three layers, namely, input wavelet
or hidden, as well as output, respectively. In this study, we
use five input parameters, 25 hidden layers withMexican hat
wavelet function, and a single output layer for predicting
LSTvalues.,e choice of the wavelet function is based on the
application, and many wavelet functions can be applied in
the WNN prediction models. In this study, the Mexican hat
wavelet function is used to perform nonlinear LST
measurements.

3.3.3. Adaptive Neurofuzzy Interference System (ANFIS)
Algorithm. In the ANFIS, the FIS parameters are calculated
using NN back-propagation algorithms.,e system depends
on FIS and has fuzzy IF-THEN rules. ,e ANFIS model
introduced by Jang [45] is capable of approximating any real
continuous function on a compact set to any level of pre-
cision. In other words, ANFIS is defined as a system that uses
fuzzy rules and the associated fuzzy inference method for
learning and rule optimization purposes [46]. In this study,
we apply the combined learning rule, which uses conven-
tional back-propagation and least square methods to esti-
mate the parameters of the model accurately [47].,emodel
is made up of five layers. ,e process of each layer is pre-
sented in [20]. Kisis et al. [19] summarized that the input and
output neurons can be fuzzified by a fuzzy quantization
approach.

3.3.4. Dynamic Evolving Neurofuzzy Inference System
(DENFIS) Algorithm. ,e DENFIS model is also an inte-
grated model like the ANFIS model [19, 48]. In DANFIS,
the FIS parameters are calculated using NN back-prop-
agation algorithms by applying evolving fuzzy neural
networks (EFuNN) in the model [20].,erefore, the major
difference between ANFIS and DENFIS is the application
of EFuNN [20]. ,e EFuNN employs Mamdani-type fuzzy

Table 2: Accuracy of multitemporal LULC classifications maps.

Land cover
1995 2004 2015

User (%) Producer (%) User (%) Producer (%) User (%) Producer (%)
Urban 90.1 88.1 89.1 90.1 91.1 90.1
Vegetation 93.3 93.2 91.5 91.2 94.3 93.6
Barren land 93.3 90.5 92.3 93.5 94.2 94.1
Waterbodies 98.1 91.1 91.1 96.9 96.1 95.2
Forest 95.2 94.5 93.4 90.5 91.2 93.2
Overall 95.15 90.93 94.28
Kappa 0.93 0.89 0.92
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Figure 4: LST 1995 (a), 2004 (b) 2010 (c), and 2015 (d) distributions.

Table 3: Statistical analysis for the extraction LST (°C).

Year Mean Max Min STD
1995 15.887 24.564 3.118 ±4.215
2004 15.968 24.980 3.631 ±4.298
2010 19.702 30.569 0.457 ±4.659
2015 21.190 27.855 8.778 ±4.053
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rules [48].,erefore, the input variables are directly
assigned to rules through fuzzy membership functions
without weights layer [48]. In addition, the evolving
connectionist system is a distance-based, fast, one-pass
algorithm that performs dynamic approximation of the
number of clusters in dataset and allocates the position of
cluster centers in the input data space [20]. In this
clustering method, the maximum distance between the
cluster center and data point must be less than a user-
defined threshold value. In this model, the described
model architecture is carried out in an evolving approach
based on cross-linking to Takagi-Sugeno fuzzy systems
[19, 20].

3.3.5. Input Variables and Performance Evaluation of the
Models. In this study, the NDVI, NDWI, NDBI, UI, and
topographic changes of the selected points are used and
assessed. ,e MARS method is used to classify the input
variables for predicting the LST of Beijing city.

,e performance analysis of the four applied models is
conducted based on three statistical analyses methods,
namely, coefficient of determination (R2), root mean square
error (RMSE), and mean absolute error (MAE), given by
equations (13)–(15).

R
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� 1 −
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N
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where y and f are the actual and predicted LST values, re-
spectively, y is the mean value of the actual values, and N is
the number of measurements.

4. Results and Discussions

4.1. Observed LULC and Transitions from 1995 to 2015.
,e spatial patterns of LULC in the study area for 1995, 2004,
and 2015 are illustrated in Figure 3. ,e forestlands and
vegetation lands dominated the entire area; however, they
diminished with the continuous increment of urban areas.
In 1995, urban region, vegetation, barren land, and forest
were the predominant land-use types, with rates of 14.35%,
15.14%, 13.18%, and 56.08%, respectively. It was found that
there were dense built-up surfaces in the urban area, which
were surrounded by farmlands andmountains. In 2004, high
residential area, vegetation, barren land, and forests were the
predominant land-use types, with rates of 18.13%, 13.74%,
15.79%, and 51.37%, respectively. In 2015, built-up surface
regions were the dominant land-use type with a percentage
of 23.02%, followed by barren land and vegetation (14.30%
and 10.07%, respectively). ,e statistical postclassification
comparison results are presented in Tables 4–6. ,is

comparison shows a noteworthy increment in the region of
built-up surfaces; there was a significant change between
1995 and 2004, and dense vegetation zones changed into
urban regions or bareland. On analyzing the changes in land
use and land cover between 1995 and 2015, it was observed
that there was an increase in the built-up region by 8.68%
and a decrease in vegetation by 5.07%. Here, the funda-
mental change is that the vegetation zones and barelands
changed into developed areas.

4.2. LST in 1995, 2004, 2010, and 2015. ,e LST, which are
presented in Figure 5, were extracted using ArcGIS10.3.
According to Figures 1(b) and 4, the geometry of the city
affects the LST, and the results cited in Xiao et al. [37]
confirm this fact. Mushore et al. [36] evaluated the signif-
icance of the predicted changes in temperature over a study
area using selection points. Herein, we tested 250 random
distribution points, which were chosen to accurately reflect
the distribution of the LSTof the study area, as presented in
Figures 4 and 6. ,e geodetic coordinates (latitude, longi-
tude, and height) and LST of the research area for each year
are extracted and presented in Figures 5 and 6. ,e existing
urban areas are selected from points one to 180; the water
surface and areas near water are selected from points 180 to
200; and the forest and farm lands, which are suitable for
urban activities, are selected from points 200 to 250.

Table 3 lists the statistical parameters (mean, maximum,
minimum, and standard deviation (STD)) of the LST for the
four years of study. From Table 3, it is observed that there
were LST changes from 1995 to 2015 in the Beijing area. In
addition, it is shown that the standard deviations for all cases
are close and the difference is small. Moreover, the tem-
perature changes for the years 1995, 2004, 2010, and 2015
were 21.45, 21.35, 30.11, and 19.01°C, respectively. ,e re-
sults show that there was significant temperature change in
the research area and that the topography of the study area
has a considerable effect on the forecast of temperature
changes. In addition, the measurement values show that the
LST increased rapidly with a slope of change of 0.28°C/year
based on the changes in mean value from 1995 to 2015.
Meanwhile, from Figure 1, it can be observed that the to-
pographic change is high. ,erefore, the geodetic coordi-
nates (latitude (Lat.), longitude (Long.), and orthometric
height (H)) are used as input factors in this study.

4.3. Predictionof LandSurfaceTemperature. Firstly, the input
variables should be evaluated and assessed. ,e MARS is a
best classification algorithm for the prediction models
[27, 29]. According to the previous studies, the NDVI, NDWI,
NDBI, UI, and topographic changes are the main factors that
affect the LSTchanges. From the literature, it can be seen that
the influence of these variables depends on the case under
consideration. Xiao et al. [37] showed a high correlation
between LSTand the change in land geometry of Beijing city.
Here, NDVI, NDWI, NDBI, UI, topographic changes, and
previous temperatures records are evaluated and assessed
using MARS classification. ,us, the NDVI, NDWI, NDBI,
and UI of the study area for 2010 are calculated and used to
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model the LST for 2010. In addition, the LST for 1995 and
2005 and the geodetic coordinates are used for the selection
points. ,e important factor (IF) is calculated from 0 to 100
for each variable. Figure 7 shows the IF of the variables. From
Figure 7, it can be seen that the impact of topographic changes
is high, and this confirms the conclusion made by Xiao et al.
[37] for Beijing area. In addition, the influence of previous
temperature records is greater than 70% with regard to the
prediction of LST. It means that the previous LSTrecords can

be used to estimate the future LST. Table 7 presents the
coefficient of determination values of different input variables
used to predict the LSTfor 2010 using theMARSmodel. From
Table 7, it can be seen that model 4 is suitable to use in our
case. Secondly, the selected input parameters are used to
design the models as presented below.

4.3.1. Training and Design Stage. In this study, the selected
data are utilized to study the performance of MARS, WNN,
ANFIS, and DENFIS in LST prediction; here, the models
are built using Matlab software. ,e temperature at the
areas in the vicinity of Beijing increased during the period
from 1995 to 2015, as shown in Figure 4 and Table 3.
Moreover, from Figure 4, it can be observed that the urban
area increased by approximately 20% during the period
from 1995 to 2015. ,e distribution of LST changes
depending on land use and geography. In addition, the
temperatures of the urban areas are higher than those of
other land-use types. ,erefore, the prediction models can
be used for detecting future LSTchanges. ,e novel models
designed in this research are applied to estimate the
temperature change. ,e models are obtained using the
geodetic coordinates of several selected points and previous
LSTchanges.,e data for 2010 is deployed as the target LST
for the training stage, and the LST for 2015 is utilized as the
target for the testing stage.

(1) MARS Model. To design the MARS model, five parameters
are used as input: latitude, longitude, orthometric height, the

Table 4: A real change of LULC categories in different time spans between 1995 and 2004.

1995 (sq. km) 2004 (sq. km) ∆ (sq. km) 1995 (%) 2004 (%) ∆ (%)
Urban 2349.8 2970.1 620.3 14.35 18.13 3.79
Vegetation 2479.8 2250.9 −228.9 15.14 13.74 −1.40
Barren land 2163.6 2586.2 422.5 13.18 15.79 2.58
Water 199.7 157.8 −41.9 1.22 0.96 −0.26
Forest 9185.3 8413.1 −772.1 56.08 51.37 −4.71

Table 5: A real change of LULC categories in different time spans between 2004 and 2015.

2004 (sq. km) 2015 (sq. km) ∆ (sq. km) 2004 (%) 2015 (%) ∆ (%)
Urban 2970.1 3770.8 800.7 18.13 23.02 4.89
Vegetation 2250.9 1649.5 −601.4 13.74 10.07 −3.67
Barren land 2586.2 2342.6 −243.5 15.79 14.30 −1.49
Water 157.8 201.2 43.4 0.96 1.23 0.26
Forest 8413.1 8414.0 0.9 51.37 51.37 0.01

Table 6: A real change of LULC categories in different time spans between 1995 and 2015.

1995 (sq. km) 2015 (sq. km) ∆ (sq. km) 1995 (%) 2015 (%) ∆ (%)
Urban 2349.8 3770.8 1421.0 14.35 23.02 8.68
Vegetation 2479.8 1649.5 −830.3 15.14 10.07 −5.07
Barren land 2163.6 2342.6 179.0 13.21 14.30 1.09
Water 199.7 201.2 1.5 1.22 1.23 0.01
Forest 9185.3 8414.0 −771.3 56.08 51.37 −4.71
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Figure 5: LST for the month of April at the specified four years.
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LST for the period from 1995 to 2004, and the LST for 2010
(which is used as the target value). ,e number of BFs can be
calculated using generalized cross-validation (GCV) [28].
Figure 8(a) shows the GCV for 199 BFs. From this figure, it is
observed that the minimum GCV is observed at 151 BFs.
However, the model designed in this instance used a constant
parameter 0.7414 and 151 BFs. ,e performance of the

designedmodel is demonstrated in Figure 8(b). In addition, the
statistical analysis for the prediction model is carried out, and
R2 for the model is found to be 0.97, while the RMSE andMAE
are 0.78 and 0.55°C, respectively. From the statistical analysis, it
is found that the correlation between LSTmeasurements and
predictions is high, and the model error is small. ,erefore, the
model can be used for detecting LST changes over the selected
points of the study area.

(2) WNN Model. For the WNN design, many wavelet net-
work models have tried to optimize the structure of the
wavelet network for the training stage. It was found that the
optimummodel that can be applied in this study is presented
in [21]. ,is structure enables the use of statistical analysis.
R2, RMSE, and MAE for WNN are 0.67, 2.57°C, and 1.86°C,
respectively.,erefore, the input year has five values selected
for the geodetic coordinates and previous observations of
LST; in addition, the hidden layer of 25 wavelet neurons is
employed to forecast the future values of the LST mea-
surements. Figure 9 illustrates the measurements and pre-
dicted LST for year 2010. From Figure 9 and the statistical
analysis, it observed that the performance of the WNN
model is lower than that of the MARS model in the training
stage.
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(3) ANFIS Model. For the ANFIS model, the number and
type of membership functions (MFs) for the model are the
main factors that determine the accuracy of the model. Eight
different MFs can be applied in the ANFIS model. ,e eight
MFs are evaluated with two MFs and ten epochs to reduce
the CPU time; the RMSE for eight MFs are also calculated.
,e RMSE for the Gaussian, trapezoidal, triangular, d sig-
moid, p sigmoid, pi-shaped, two Gaussian, and generalized

bell are 1.71, 1.64, 2.38, 1.65, 1.52, 1.61, 1.45, and 1.62°C,
respectively. However, the two-Gaussian function is
deployed to predict the LST. In addition, two and three MFs
are assessed to limit CPU and memory usage. ,e RMSE for
two and three MFs are 1.45 and 1.42°C, respectively. In this
work, three MFs are selected to predict the LST. Finally, the
ANFIS model based on three MFs and two Gaussian
functions with 50 epochs was applied in this study. ,e
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Figure 8: MARS model performance. (a) GCM; (b) measurement and prediction of LST-2010.
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Figure 9: Measurements and WNN prediction for training stage of LST.

Table 7: MARS models evaluation for different inputs.

Model Variables R2

1 Lat., Long., H, NDVI, NDWI, NDBI, UI, LST_95, LST_2004 0.61
2 Lat., Long., H, NDVI, NDWI, LST_95, LST_2004 0.74
3 Lat., Long., H, NDVI, LST_95, LST_2004 0.79
4 Lat., Long., H, LST_95, LST_2004 0.97
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designed model is shown in Figure 10(a). ,e performance
of the ANFIS model is evaluated using equations (13) to (15).
R2, RMSE, andMAE for the designed model are 0.99, 0.46°C,
and 0.26°C, respectively. Figure 10(b) shows the measure-
ments and prediction values for the training data of LST.
From Figure 10(b), it is seen that there is no loses of in-
formation during the LST measurements. Also, the corre-
lation between the measurements and the predicted LST is
high, and minimum RMSE and MAE are observed. From
these results, it can be concluded that the ANFIS model is
better than MARS and WNN for predicting the LST from
training data and can therefore be used to predict the Beijing
LST.

(4) DENFISModel. In the training stage, the major difference
between ANFIS and DENFIS is the application of EFuNN, as

mentioned previously. Moreover, the maximum distance
between the cluster center and data point must be less than a
user-defined threshold value [20]. In this study, the distance
threshold is 0.1. ,erefore, the EFuNN is applied to estimate
the next epochs. Figure 11(a) illustrates the mean square
error (MSE) for the training epochs of EFuNN. From this
figure, it can be observed that 16 epochs are required to
obtain the best performance for the DENFIS model. Oth-
erwise, the same parameters that were used for the MFs of
the ANFIS model are used in DENFIS model, that is, three
MFS and a Gaussian function. ,e performance of the
designed DENFIS design model is shown in Figure 11(b).
,e statistical evaluation of the model error was conducted,
and the values of R2, RMSE, and MAE were found to be 0.91,
1.42°C, and 0.90°C, respectively. Furthermore, Akaike’s in-
formation criterion (AIC) [49] of the models was calculated
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Figure 10: ANFIS model design and results. (a) ANFIS model diagram; (b) LST measurements and ANFIS prediction results.
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Figure 11: (a) ,e epochs model performance and (b) DENFIS model performance for the training data.
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and found to be −11.72 and 4.23 for ANFIS and WNN
models, respectively. ,e results for the training stage show
that the ANFIS model is the optimal model for predicting
the LST values, while the WNN is the worst model.

4.3.2. Testing and Comparison Stage. ,e performance of
the four models was also evaluated in the testing stage.
Figure 12 and Table 8 show a scatter plot for the observations
and prediction values of LSTand the statistical analysis of the
model errors. ,e linear fitting is also shown in the figure.
From Figure 12 and Table 8, it is can be seen that the
correlation between the observation and prediction is high

for the ANFIS and DENFIS models. Moreover, the worst
model during the testing stage is the WNN model. ,e
minimum model error is observed with the ANFIS model,
and its RMSE and MAE are 0.36 and 0.16°C, respectively.
,e slope of linear fitting is found to be 0.98, 0.93, 0.87, and
0.70 for the ANFIS, DENFIS, MARS, and WNN models,
respectively. It means that the ANFIS model optimally
detects the LST in the testing stage.

Based on the performances in the training and testing
stages, it is safe to argue that the ANFIS model is the optimal
model to predict the LST for the Beijing area. ,e ANFIS
model is applied to detect the LST for the years 2025 and
2035, and the results are presented in Figure 13(a). In

Table 8: Testing stage performance analysis.

Models MARS WNN ANFIS DENFIS
R 2 0.87 0.53 0.99 0.93
RMSE (°C) 1.43 2.78 0.36 1.05
MAE (°C) 1.11 1.96 0.16 0.69

28

26

24

22

20

18

16

14

12

10

8
282624222018161412108

Pr
ed

ic
te

d 
LS

T 
(°

C)

Measured LST (°C)

y = 0.87∗x + 2.7

(a)

28

26

24

22

20

18

16

14

12

10

8

Pr
ed

ic
te

d 
LS

T 
(°

C)

282624222018161412108
Measured LST (°C)

y = 0.7∗x + 6

(b)

28

26

24

22

20

18

16

14

12

10

8
282624222018161412108

Pr
ed

ic
te

d 
LS

T 
(°

C)

Measured LST (°C)

y = 0.98∗x + 0.44

(c)

28

26

24

22

20

18

16

14

12

10

8

Pr
ed

ic
te

d 
LS

T 
(°

C)

282624222018161412108
Measured LST (°C)

y = 0.93∗x + 1.4

(d)
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addition, the linear fitting is calculated and presented for the
mean values of the observations and prediction years, as
demonstrated in Figure 13(b). ,e prediction values show that
the LSTwill increase rapidly, and the slope of change is 0.33°C/
year. It is also observed that R2 for the linear fitting is 0.94, and
the prediction trend is similar to the LSTmeasurements for the
years 2010 and 2015. In addition, it is seen that the prediction
values for the LSTof water, forest, and farm areas do not show
any significant changes compared to the urban areas. It means
that the changes in climate and urban area will affect the LST
changes of the Beijing area in the future.

5. Conclusions

Although the land surface temperature (LST) is widely
evaluated in global temperature variation as a result of
climate change, the application of integrated soft computing
models is still limited to use for detecting LST. ,is study
aimed to design an integrated soft computing model to
detect the LST of Beijing area. Four models were developed
and compared, namely, MARS,WNN, ANFIS, and DENFIS.
In addition, the MARS method was used to classify the input
variables. Landsat images and different software were uti-
lized to mine the LST changes from April 1995 to 2015. In
addition, a statistical analysis was conducted to assess the
performance of the developed models. From the results, the
following can be concluded.

First, the comparison of temperature values for the
studied periods through image’s analyses shows that there
has been a significant change in temperature in Beijing city;
the temperature is increased by 0.28°C/year. In addition, the
vegetation cover decreased due to the population explosion
and economic activities. In addition, the classification of
NDVI, NDWI, NDBI, UI, and geographic changes of Beijing
and previous temperature records show that the surface and
previous LST changes have a significant impact on the LST
prediction of the study area.

Second, the evaluation of the prediction models shows
that the integrated fuzzy models, ANFIS and DENFIS, are
the optimum models for detecting the LST changes in the
Beijing area. In addition, it is shown that the MARS model
exhibits good performance with limited input parameters.
,e WNN model showed the weakest performance in
predicting the LST changes. ,e performance of the ANFIS
model for the training and testing stages is satisfactory
because it has low minimum errors; the RMSE for the
training and testing stages were 0.46 and 0.36°C, respectively.

Finally, the predicted LST values show that the changes
in climate and urban area will affect the LST changes of the
Beijing area in the future. Moreover, this approach could be
used to evaluate and predict the LST of other areas from
satellite images.
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