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+is paper proposes a modified return mapping algorithm for a series of nonlinear yield criteria. +e algorithm is established in
the principal stress space and ignores the effect of the intermediate principal stress. +ree stress return schemes are derived in this
paper: return to the yield surface, return to the curve, and return to the apex point.+e conditions used for determining the correct
stress return type are also constructed. After the proposed algorithm is programmed in the finite element software, wemerely need
the equivalent Mohr–Coulomb (M-C) strength parameters, the derivatives of their functions, and the tensile strength of these
nonlinear yield criteria. In addition, the Hoek–Brown (H-B) yield criterion is taken as an example to validate the proposed
method. +e results show that the updated stresses and the final principal stresses obtained by the proposed method are in good
agreement with those obtained by other methods. Furthermore, the proposed method is more suitable for the associated plastic-
flow rule.

1. Introduction

+e stress update is a vitally important ingredient to return the
predictor stress to the yield surface in the elastoplastic finite
element computation. In recent decades, numerous stress
update algorithms have been proposed.+ese algorithms can be
mainly classified into three categories: explicit integration al-
gorithms [1–3], return mapping algorithms [4–6], and exact
stress integration algorithms [7, 8]. Traditionally, the return
mapping algorithm, also called the predictor-corrector scheme,
is constructed in the six-dimensional stress space and is usually
cumbersome since it requires that the second derivative of the
plastic potential and nondifferentiable yield surface be
smoothed. However, these disadvantages are well overcome by
constructing return mapping algorithms in the principal stress
space [9–12]. +e geometric features of the yield surfaces in the
principal stress space can be graphically visualized and are easily
and exactly used for determining the return position of updated
stress, thereby avoiding the smoothing of nondifferentiable yield
surfaces, as other methods involve [12–18].

At present, scholars have proposed many return map-
ping algorithms in the principal stress space for different

yield criteria. Clausen et al. [10, 11] proposed a kind of
implicit integration algorithm for the linear yield criteria
with multiple yield planes built upon the works of Pankaj
and Bićanić [19]. Lin and Li [20] presented a return mapping
algorithm for unified strength theory; this algorithm is
suitable not only for the unified strength theory but also for
other criteria (e.g., the Mohr–Coulomb (M-C) yield crite-
rion and the Tresca yield criterion) due to the flexibility of
unified strength theory. Fang et al. [21] proposed an implicit
numerical integration algorithm for the unified yield cri-
terion in the principal stress space; this algorithm is more
useful and convenient than the algorithm proposed by Lin
and Li [20], as linear isotropic hardening and nonassociated
plasticity can be considered. For generalized Hoek–Brown
(H-B) plasticity, Clausen et al. [13] proposed a simple stress-
update algorithm in the principal stress space. Sørensen et al.
[22] developed a model for the nonassociated H-B material,
in which strain hardening can be considered. Moreover,
Karaoulanis [23] proposed a return mapping algorithm for
nonsmooth multisurface plasticity based on a spectral
representation of stresses and strains, and the algorithm can
be used for the M-C and Drucker–Prager yield criteria.
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Many alternative return mapping algorithms can be applied
to stress updating in the finite element computation;
however, there is still a troublesome problem. For any yield
criterion (e.g., the H-B yield criterion [24–26], Christensen
yield criterion [27–31], or the parabolic-type yield criterion
[32, 33]) that is not built-in finite element software, a
corresponding return mapping algorithm is needed when
the yield criterion is adopted in the elastoplastic finite ele-
ment computation.+erefore, we need to code the algorithm
first to implement the yield criterion in the finite element
software when the yield criterion is not built-in, which is
usually a difficult and time-consuming task.

In this paper, a modified return mapping algorithm is
proposed for a series of nonlinear yield criteria.+is algorithm is
established in the principal stress space, and the effect of the
intermediate principal stress has not been taken into account. In
the derivation of the algorithm, isotropic linear elasticity and
perfect plasticity are assumed, and the equivalent strength
parameters are adopted. Essentially, the equivalent strength
parameters are scalar functions of the principal stresses [34].
Once the principal stresses are determined, there should be an
intersection line or point defined by the primary yield surface of
theM-C yield criterion and that of the nonlinear yield criteria in
the principal stress space. Figures 1 and 2 show an example of
the H-B yield criterion. If the predictor stress is returned to the
line or the point, the updated stress obtained by different al-
gorithms should be identical. When the modified return
mapping algorithm code has been programmed in the finite
element software, we merely need the equivalent M-C strength
parameters, the derivatives of their functions, and the tensile
strength of these nonlinear yield criteria, and then, these criteria
can be quickly implemented. In addition, theH-B yield criterion
is taken as an example to validate the proposed method.

2. Equivalent Mohr–Coulomb
Strength Parameters

+eM-C yield criterion in the principal space is expressed as
follows:

f � kσ1 − σ3 − n � 0, (1)

where k � 1 − sinϕ/1 + sinϕ, n � 2c cos ϕ/1 + sinϕ, σ1, σ2,
and σ3 denote the major principal stress, the intermediate
principal stress, and the minor principal stress, respectively,
and σ1 ≥ σ2 ≥ σ3. Note that compressive stresses are con-
sidered to be positive. +e plastic potential is chosen as
follows:

g � mσ1 − σ3 − p � 0, (2)

where m � 1 − sinψ/1 + sinψ and p � 2κ cosψ/1 + sinψ.
+e plastic potential resembles the shape of the yield surface.
ψ and κ are set to be identical to φ and c, respectively, for
associated material behaviour and otherwise for nonasso-
ciated material behaviour.

A general methodology to determine the equivalent M-C
strength parameters was proposed by Balmer [34]. +e
equivalent parameters can be given by

ϕi � sin− 1 zσ1/zσ3 − 1
zσ1/zσ3 + 1

 , (3)

ci � σ1 − σ3( 

���
zσ1
zσ3



− σ3 +
σ1 − σ3
zσ1/zσ3

 tanϕi. (4)

Analogously, the equivalent parameters of plastic po-
tentials can be obtained by the approach proposed by
Balmer.

3. ReturnMapping in the Principal Stress Space

In the previous sections, the approach for obtaining the
equivalent M-C strength parameters and the equivalent
parameters of the plastic potentials has been presented. In
this section, the return mapping algorithm is established
based on the principal stress space. As all manipulations of
the algorithm are carried out in the principal stress space
[10, 11], the components of the vectors are expressed here via
the principal stress, and unless otherwise stated, the last
three components of these vectors are equal to zero and are
omitted.

When the predictor stress, σB � σB
1 σB

2 σB
3 

T, is lo-
cated outside of the yield surface of M-C yield criterion, it
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Figure 1: +e envelope of the H-B yield criterion in the Mohr
diagram and the parameters.

Predictor stress
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Figure 2:+e yield surface of H-B andM-C yield criterion obeying
σ1 ≥ σ2 ≥ σ3 in the principal stress space.
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must be brought back to the yield surface. Essentially, there
are three types of stress returns [10, 11, 20]:

(1) Return to the yield surface
(2) Return to the curve
(3) Return to the apex

3.1. Return to the Yield Surface. +e crucial procedure to
bring σB back to the yield surface is to evaluate the plastic

corrector, Δσp.Δσp was derived by Crisfield [35] and is
written in the principal stress space as follows:

Δσp
� f σB

 
Db
aTDb

� f σB
 rp with rp

�
Db
aTDb

, (5)

where rp is the direction of the plastic corrector, f(σB)

represents the magnitude of the plastic corrector, a and b are
the gradients of the yield surface and the plastic potential,
respectively, andD is a matrix of elastic constants for linearly
elastic isotropic materials. a, b, and D are given by

a �
zF

zσ
�

zk ϕi, ci( 

zσ1
σ1 + k ϕi, ci(  −

zn ϕi, ci( 

zσ1
0

zk ϕi, ci( 

zσ3
σ1 − 1 −

zn ϕi, ci( 

zσ3
 

T

,

b �
zG

zσ
�

zm ψi, κi( 

zσ1
σ1 + m ψi, κi(  −

zp ψi, κi( 

zσ1
0

zm ψi, κi( 

zσ3
σ1 − 1 −

zp ψi, κi( 

zσ3
 

T

,

D �
E

((1 + μ)(1 − 2μ))

1 − μ μ μ

μ 1 − μ μ

μ μ 1 − μ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(6)

where E is Young’s modulus and μ is Poisson’s ratio.
Once Δσp is derived, the updated stress,

σC � σ1C σ2C σ3C 
T, can be given by the following

formula:

σC � σB − Δσp. (7)

As equation (7) is a nonlinear equation, an iterative
method must be utilized to find σC. Because the slope of a
line that connects σC with σB and the slope of the direction of
rp must be identical [9], the following equation can be
obtained:

h σC  �
σB3 − σC3
σB1 − σC1

−
μ zm ψi, κi( /zσ1σ1 + m ψi, κi(  − zp ψi, κi( /zσ1(  +(1 − μ) zm ψi, κi( /zσ3σ1 − 1 − zp ψi, κi( /zσ3( 

(1 − μ) zm ψi, κi( /zσ1σ1 + m ψi, κi(  − zp ψi, κi( /zσ1(  + μ zm ψi, κi( /zσ3σ1 − 1 − zp ψi, κi( /zσ3( 
� 0.

(8)

Incorporating equation (1), an iterative scheme can
be constructed on the basis of the Newton–Raphson
method:

σC
i+1 � σC

i − H′ σC
i  

−1
H σC

i , (9)

where σC can be rewritten as σC � σC1 σC3 
T
because the

updated intermediate principal stress need not be consid-
ered; H � h f 

T, where H′ is the Jacobian matrix, σCi is
the current value at the iteration step, i, and σCi+1, which is
calculated by equation (9) in the next value at the iteration
step, i+1. Iterations are performed until

‖H‖< ε, (10)

where ε is the tolerance. If a σC satisfying equation (10) is
found, then the updated intermediate principal stress, σC2 ,
can be found by inserting σC1 and σC3 into equation (7).

+e iterative procedure of equation (9) must start with
an initial value, σC0 . Usually, a simple method can generate a
suitable initial value, i.e., σC0 � σB − Δ, where ∆ is a very small
positive number to ensure that the σB1 − σC1 term in equation
(8) does not vanish. In addition, it should be noted that the
σCi in the iteration process should be greater than σB. In the
case in which the algorithm does not converge, a new
corrected σCi+1 can be estimated by

σC
i+1 � σB

−
σC

i − σB

2
. (11)

3.2. Return to theCurve. If σC is located on the curve defined
by the intersection between two yield planes, then the line
connecting the updated stress with the predictor stress is
perpendicular to the vertical direction of the plane defined
by the direction of the plastic corrector of two adjacent yield
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surfaces. +erefore, if the predictor stress is returned to the
curve (satisfying σ1 � σ2), defined by the intersection of the
primary yield plane and the adjacent yield surface satisfying
σ2 ≥ σ1 ≥ σ3 in the principal stress space, the following
equation can be obtained:

ℓ � rp × rp1( 
T σC − σB  � 0, (12)

where ‘‘×’’represents the cross product between rP and rp1
and rp1 is the plastic corrector of the adjacent yield surface.
Note that the gradient and the plastic potential of the ad-
jacent yield surface can be easily obtained by interchanging
the components of a and b in equation (6). Since σC is
located on both yield surfaces, it must also satisfy the fol-
lowing equations:

f σC  � 0,

f1 σC  � 0,
(13)

where f1 is the adjacent yield surface. Obviously, σC cannot
be immediately determined by simultaneous solution of
equations (12) and (13) because these equations are non-
linear. To find σC, which is analogous to equation (9), the
following iterative scheme can be established:

σCi+1 � σCi − M′ σCi  
− 1

M σCi , (14)

where M � ℓ f 
T and M′ is the Jacobian matrix. Itera-

tions are performed until ‖M‖< ε, and then, σC2 can be found
by σC2 � σC1 .

+e approach for obtaining an initial value in equation
(14) is the same as that of the return to the yield surface case.
In addition, σCi in the iteration process should also be greater
than σB. Otherwise, the new σCi+1 is estimated by equation
(11).

If σB should be brought back into the curve (satisfying
σ2 � σ3), defined by the intersection of the primary yield
plane and the adjacent yield plane satisfying σ1 ≥ σ3 ≥ σ2, the
method of finding σC is completely analogous to the return
of the predictor stress to the curve (satisfying σ1 � σ2).
+erefore, it is not necessary to describe the method again
here.

3.3. Return to the Apex. If σB returns to the apex point, its
spatial position can be directly determined because the point
can be determined by the intersection of two or more curves,
and a calculation is not needed [9, 10]. σC is given by

σC � σt, (15)

where σt � σt σt σt 
T.+e tensile strength σt can easily be

obtained by setting σ1 � σ3 � σt in the criterion and re-
solving the equation.

4. Determination of the Correct Stress Return

+e stress areas are separated by boundary planes, P1 � 0 and
P2 � 0, at the apex point:

P1(σ) � rp × rp1( 
T σ − σt(  � 0,

P2(σ) � rp2 × rp( 
T σ − σt(  � 0,

(16)

where rp2 is the plastic corrector of the adjacent yield plane
satisfying σ1 ≥ σ3 ≥ σ2. Here, rp1 and rp2 are evaluated at the
apex point. If σB is located outside the yield plane (i.e.,
f(σB)> 0), an apex return is valid when

P1 σB
 ≥ 0,

P2 σB
 ≥ 0.

(17)

In the case of some associated plasticity, ψ equals 90° and
κ reaches infinity at the apex point, such that rp1 and rp2
calculated at the apex tend towards infinity. In this case, the
vectors rp1 and rp2 can be evaluated as follows:

rp � 1 − μ μ μ 
T
,

rp1 � μ 1 − μ μ 
T
,

rp2 � 1 − μ μ μ 
T
.

(18)

If σB should not be returned to the apex point (i.e., the
conditions in equation (17) are not satisfied), a surface return
first is executed as outlined in Section 3.1. +e return is
suitable if the components of σC satisfy the following:

(1) If σ1C ≥ σ2C ≥ σ3C, σB returns to the surface
(2) If σ2C ≥ σ1C, σB returns to the curve (satisfying

σ1 � σ2) through the procedure outlined in Section
3.2

(3) If σ2C ≤ σ3C, σB returns to the curve (satisfying
σ2 � σ3) through the procedure outlined in Section
3.2

With the stress return schemes and the conditions for
choosing the proper return schemes at hand, it is necessary
to determine a consistent matrix. +e general method for
calculating the consistent matrix in the principal stress space
has been derived by Clausen et al. [9, 10]. +e details,
therefore, need not be given here.

5. Application Example

In the following, the proposed method is applied to the H-B
yield criterion as an application example. Considering that
the proposed method needs σt and the equivalent M-C
strength parameters of the H-B yield criterion, the equiv-
alent M-C strength parameters can be obtained by inserting
the H-B yield criterion [26] into equations (3) and (4). +e
equivalent parameters are given by

ϕi � arcsin
αmb s + mbσ3/σci( 

α− 1

2 + αmb s + mbσ3/σci( 
α−1

⎛⎝ ⎞⎠,

ci �
s + mbσ3/σci( 

α− 1 σci s + mbσ3/σci(  − αmbσ3( 

2
����������������������

1 + αmb s + mbσ3/σci( ( 
α−1

 ,

(19)
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where σci is the uniaxial compressive strength and s,mb, and
α are strength parameters of the H–B yield criterion. σt can
easily be obtained by setting σ1 � σ3 � σt in the H-B yield
criterion [26]:

σt � −s
σci
mb

. (20)

To assess the accuracy and validity of the proposed
method, three stress points are selected to implement the
analysis of stress return. Points A (1119504.4, 30000, and
10000), B (1119504.4, 1119504.4, and 10000), and C
(1119504.4, 10000, and 10000) are located on the yield surface,
on the yield curve satisfying σ1 � σ2 and on the yield curve
satisfying σ2 � σ3, respectively. +e magnitude of the elastic
trial stress increment is given as 30000, 20000, and 10000.
Notably, this increment ensures an elastic trial stress outside
of the yield surface. +e adopted parameters of the H-B yield
criterion are σci � 2MPa, s� 0.3, mb� 1.55, and α� 0.5. In
addition, the deformation parameters E� 50×109 Pa and
μ� 0.2 are adopted. +e different parameters mb

g� 0 and
αg� 1 are utilized for the nonassociated case. For comparison
purposes, the approach proposed by Clausen and Damkilde
[9] is applied to the analysis. +e relative error of the updated
stress obtained by the two methods is given by

relative error �
σ∗ − σ
σ∗




× 100%, (21)

where σ∗ is the principal stress obtained by Clausen’s method
and σ is the principal stress obtained by the proposedmethod.
+e return values calculated by the two methods are listed in
Tables 1 and 2. As shown in these tables, the results obtained
by the two methods are in good agreement. +e very small
errors are mainly caused by the round-off errors in the nu-
merical calculation, which are usually unavoidable.

Moreover, to further validate the proposed method, the
elastoplastic finite element analysis of a practical problem is

carried out based on the H-B criterion. +e excavation of a
circular tunnel under a plane strain assumption is taken as
an example.+e dimensions and the boundary conditions of
the tunnel and the adopted finite element meshes are shown
in Figures 3 and 4, respectively. To obtain the initial stress
field, the outer boundary is subjected to a hydrostatic
pressure of q� 100MPa. +e material is assumed to be
weightless.+e elements used by the test are four-node plane
bilinear quadrilateral elements, and a total of 2,025 elements
are used, as shown in Figure 4. +e displacements per-
pendicular to the left and lower boundaries are restricted. In
the H-B criterion, σci is set to 200MPa, and the other pa-
rameters are identical to those mentioned above. First, the
initial stress is generated; then, the excavation is carried out.

Figure 5 shows the relative errors of the principal stresses
obtained by Clausen’s method and the proposed method. As
shown in this figure, the results obtained by the proposed
method are consistent with those obtained by Clausen’s
method. Moreover, the relative errors indicate that there is
little difference between the cases of associated plasticity and
nonassociated plasticity. In view of these results, the pro-
posed method is more suitable for the associated plasticity
than the nonassociated plasticity.

6. Discussion

In this paper, a return mapping algorithm suitable for a series
of nonlinear yield criteria ignoring the effect of the inter-
mediate principal stress is proposed. When the proposed al-
gorithm coded in the finite element software is utilized to a
yield criterion ignoring the effect of the intermediate principal
stress, it merely requires the equivalent strength parameters of
these criteria, the derivatives of their functions, and the tensile
strength because the equivalent strength parameters are
combined during algorithm derivation. +e application ex-
ample also demonstrates its capability of exactly executing
stress updates. Compared with other return mapping

Table 1: +e values of the updated stress obtained by the proposed method and Clausen’s method and the relative errors (associated case).

+e predictor stress +e proposed method Clausen’s method Relative error (%)Updated stress

Point A

1149504.4 1149049.5 1149049.5 0
50000 50385.3 50385.3 0
20000 22381.2 22381.2 0

1179504.4 1178556.1 1178556.1 0
70000 70781.4 70781.4 0
30000 34855.3 34855.3 0

Point B

1149504.4 1150206.1 1150206.1 0
1139504.4 1150206.1 1150206.1 0
20000 22868.1 22868.1 0

1179504.4 1180902.6 1180902.6 0
1159504.4 1180902.6 1180902.6 0
30000 35851.9 35851.9 0

Point C

1149504.4 1159399.7 1159399.7 0
30000 26744.5 26744.5 0
20000 26744.5 26744.5 0

1179504.4 1199245.2 1199245.2 0
50000 43665.7 43665.7 0
30000 43665.7 43665.7 0
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algorithms in the principal stress space, a yield criterion can be
more easily implemented in a numerical simulation with the
finite element method when the algorithm is utilized to a yield
criterion due to the merit of the proposed algorithm.

Usually, the equivalent M-C strength parameters of a
nonlinear yield criterion can be obtained by the Balmermethod
[34]. In fact, the Balmer method is suitable for nonlinear
criteria whose expression can be written as σ1 � f(σ3). In this
case, an explicit expression of the equivalent parameters can be
given. For other yield criteria that are not written as
σ1 � f(σ3); however, there is not an explicit expression of the
equivalent parameters, causing the application of the proposed

algorithm to these criteria to be very inconvenient.Moreover, it
should be noted that some yield criteria have such a com-
plicated expression of the equivalent parameters that the de-
rivatives of the functions of these equivalent parameters will
become more complicated. To solve this problem, some
commercial mathematical software programs (e.g., Mathe-
matica and MATLAB) can be used to calculate the equivalent
parameters and the derivatives of their functions.

+e equivalent M-C strength parameter is essentially a
function of the principal stress, which gives us a hint. Under the
framework of the proposed algorithm, we need to obtain only
the functions of the strength parameters concerning the prin-
cipal stress through the test, and we do not need to know which

Table 2: +e values of the updated stress obtained by the proposed method and Clausen’s method and the relative errors (nonassociated
case).

+e predictor stress +e proposed method Clausen’s method Relative error (%)Updated stress

Point A

1149504.4 1147693.8 1147693.8 0
50000 50000.0 50000.0 0
20000 21810.6 21810.6 0

1179504.4 1175813.2 1175813.2 0
70000 70000.0 70000.0 0
30000 33691.2 33691.2 0

Point B

1149504.4 1152139.6 1152139.6 0
1139504.4 1152139.6 1152139.6 0
20000 23682.4 23682.4 0

1179504.4 1184630.8 1184630.8 0
1159504.4 1184630.8 1184630.8 0
30000 37436.8 37436.8 0

Point C

1149504.4 1156701.5 1156701.5 0
30000 25605.7 25605.7 0
20000 25605.7 25605.7 0

1179504.4 1193827.6 1193827.6 0
50000 41353.6 41353.6 0
30000 41353.6 41353.6 0

q

r = 1 m

r B
=

10
 m

rB = 10 m

Figure 3: Geometry and boundary conditions for the circular
tunnel excavation example.

Figure 4: Example of the element mesh with 2,025 elements.
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soil or rockmassmaterial obeys which yield criterion, which will
sufficiently improve the flexibility, and which is convenient to
numerically analyse a special engineering problem.

Finally, it is important to note that because this algo-
rithm is based on the implicit return mapping algorithm in
the principal stress space for the M-C yield criterion; the
proposed algorithm is suitable for nonlinear yield criteria
that ignore the effect of the intermediate principal stress.

7. Conclusions

(1) Combining the equivalent M-C strength parameters,
three stress return schemes (return to the yield
surface, return to the curve, and return to the apex
point) are derived. +e conditions for choosing the
proper stress return scheme are constructed, and a
modified return mapping algorithm is thus estab-
lished for the nonlinear yield criteria that ignore the
intermediate principal stress.

(2) +e stress return results based on the H-B criterion
show that the updated stresses obtained by the
proposed algorithm are in good agreement with
those obtained by Clausen’s method.

(3) +e results of the numerical simulation of the ex-
cavation of a circular tunnel illustrate that the final
principal stresses obtained by the proposed method
are also in good agreement with those obtained by
Clausen’s method. +e comparison between the
associated and the nonassociated plasticity cases
shows that the proposed algorithm is more suitable
for the associated plastic-flow rule.
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