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Single-degree-of-freedom (SDOF) models are known to represent a valid tool in support of design. Key assumptions of these
models, on the other hand, can strongly affect the expected predictions, hence resulting in possible overconservative or misleading
estimates for the response of real structural systems under extreme actions. Among others, the description of the input loads can
be responsible for major design issues, thus requiring the use of more refined approaches. In this paper, a SDOF model is
developed for thin elastic plates under large displacements. Based on the energy approach, careful attention is given for the
derivation of the governing linear and nonlinear parameters, under different boundary conditions of technical interest. In doing
so, the efforts are dedicated to the description of the incoming blast waves. In place of simplified sinusoidal pressures, the input
impulsive loads are described with the support of infinite trigonometric series that are more accurate. 'e so-developed SDOF
model is therefore validated, based on selected literature results, by analyzing the large displacement response of thin elastic plates,
under several boundary conditions and real blast pressures. Major advantage for the validation of the proposed SDOF model is
obtained from experimental finite element (FE) and finite difference (FD) models of literature, giving evidence of a rather good
correlation and confirming the validity of the presented formulation.

1. Introduction

Based on continuous advances in material science and
nanotechnology, modern lightweight design and engineer-
ing applications take often benefit of thin structures and
load-bearing elements. Often, these structures can take the
form of thin panels belonging to partitions and barriers (i.e.,
facades) that are subjected to severe dynamic operational
conditions, such as blast loads, or extreme natural hazards.
As far as these systems are characterized by a global size that
is considerably large in comparison with their thickness,
under blast they need to withstand high strain pressures and
undergo large amplitudes of deformations. For these rea-
sons, the response of thin plates is substantially different
from classical bending and vibration formulations of linear
theory [1], given that the out-of-plane deformations are no
longer compatible with the small-deflection theory.

Due to the intrinsic simplicity of application of single-
degree-of-freedom (SDOF) models, several formulations
have been proposed in the literature for the analysis of
structures under blast (see for example [2–36]). Actually,
SDOF models can represent a practical tool for engineers
and structural consultants. In several cases, SDOF models
have been specifically developed for thin elastic plates in the
nonlinear regime. Solutions have been proposed to carry out
simple SDOF analysis on various structural systems under
blast pressure, such as windows [2–4], composite panels
[5–12], doors or walls [13–18], and so on.

With the advances in numerical analysis and compu-
tational technology, several numerical methods can be
employed to obtain viable solutions (i.e., finite element (FE)
or finite difference (FD) methods, etc.). However, these
methods are notoriously computationally expensive and
often demand high simulation expertise, both for their
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formulation and for the interpretation of results [19].
Consequently, the development of efficient and accurate
SDOFmodels in support of first-hand investigations for thin
plates (and structures in general) under large vibrations,
without going into detailed numerical analysis, attracts
continuous research studies. Moreover, it is worth of interest
that for plates under blast loading, the Unified Facilities
Criteria Design Manual [37] recommends the use of SDOF
models for structural assessment purposes. 'e main reason
for such a recommendation is that the SDOF model analysis
can be developed on the basis of relatively few input pa-
rameters, in comparison with other refined but expensive
calculation methods.

In the past, a number of researchers investigated the
structural response of plates using various SDOF formula-
tions. Several studies have been presented for thin plates
under large amplitude vibrations (see [1, 20–34]). Different
solving techniques have been generally adopted, and the
response of thin elastic plates has been mostly investigated
under a specific set of boundary conditions. As a further
common feature of the earlier studies, the input load has
been generally assumed as a sinusoidal function, thus
yielding (as also shown in this paper) approximate results for
blast-loaded structures.

Another key aspect is that real blast waves have a typical
short duration and exponentially decaying trend, which
includes both positive phase and negative (or suction)
phase [10]. Blast pressures, in this regard, are commonly
associated to random impulsive loads, whose description
would require the use of infinite trigonometric series.
Compared to simplified sinusoidal functions, the latter
leads to more accurate solutions for blast-loaded structural
systems in general and especially for thin structures. Ac-
cordingly, infinite trigonometric series are considered in
the SDOF formulation presented herein, due the fact that it
fully satisfies (differing from other approaches) a multitude
of various boundary conditions. Furthermore, it is im-
portant to notice that the response of thin plates is generally
more complex than other structural members. 'is de-
pends on their relatively large deflections under blast and
therefore the development of both membrane and bending
stresses that should be properly investigated.

Li and Jones investigated the dynamic response of
clamped circular plates subjected to blast loading, using the
Johansen yield criterion which includes the effect of bending
moments along with transverse shear [35]. Based on liter-
ature review [2–18, 20–35], it is important to mention that
most of the available SDOF models for thin elastic plates are
based on bending theory only, wherein membrane effects
were considered through a bending resistance function and
therefore indirectly accounted in the form of an equivalent
bending stiffness only. Earlier researchers, in some other
cases, employed separately the membrane effect (as a
nonlinear term of the equation of motion) and explored the
SDOF response of thin elastic plates under blast loading [33].

A final consideration must be spent, in conclusion, on
the reliability of elastic SDOF analysis for systems under
blast. Generally, structures under blast loads are primarily
required to absorb part of the imposed energy in plastic

regions so as to ensure acceptable and feasible design per-
formances. 'erefore, a detailed damage analysis is often
required. On the other hand, the same issue also requires
first-hand elastic analysis, which is the starting point of more
complex elastic-plastic studies. In some cases (i.e., when
brittle elastic materials are used, like for example glass),
elastic analysis represents the reference calculation approach
in support of design, to avoid fracture.

In this paper, past literature efforts are further extended,
and an enhanced SDOF model is developed based on energy
principles, by employing infinite trigonometric series for the
blast loading description. 'e proposed method is validated
towards analytical, experimental, and numerical data of
literature, for both static calculations (i.e., stiffness param-
eters) and dynamic loading configurations (i.e., field blast
experiments of literature). 'e enhanced SDOF model is
assessed for SS (simply supported) or CC (clamped) plates,
with respect to available literature results. As shown, a rather
good agreement is generally found for all of them, thus
conforming the accuracy of the proposed method. More-
over, with suitable modification, the same SDOF procedure
can be further adapted to predict the response of thin elastic
plates under pulse loading, thus further enforcing the po-
tential of the approach.

2. Problem Definition

It is well known that a SDOF system requires the definition
of only one coordinate to describe its position at any instant
of time, t. Moreover, if the basic components of the vibratory
system behave linearly (i.e., spring stiffness, mass, and
damping (if any)), the resulting behavior is known to be
linear (Figure 1(a)). In this case, the differential equation that
governs the mechanical response can be solved by means of
the principle of superposition.

However, if any of the basic components behave non-
linearly, the overall behavior of the SDOF system is obvi-
ously nonlinear, and appropriate calculation tools are
required (Figure 1(b)). Further, while considering the
bending stiffness only, the system is still known as a linear
system, wherein the system along with membrane effect is an
example of a nonlinear system in this study.

'e present paper focuses on thin rectangular, isotropic
elastic plates with dimensions a× b and thickness h
(Figure 2(a)), under various boundary conditions
(Figure 2(b)). 'e input blast wave is described in the form
of a distributed, time-varying pressure q(x, y, t), with x, y
being the Cartesian coordinates and t being the time
parameter.

'e nonlinear elastic dynamic behavior of a represen-
tative plate (see Figure 2(a)) can be efficiently expressed by
von Karman’s equations:
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zσαβ
zxβ

􏼠 􏼡 � 0, (2)

where E is Young’s modulus, ] is Poisson’s ratio, and ρ is the
mass density for the material in use. Moreover, w is the out-
of-plane deflection (middle plane of the plate) under the
external normal force per unit area q, while σαβ is Cauchy’s
stress tensor (with α, β being the subscripts that take the
value of 1 or 2). 'e bending stiffness D of the plate is given
by

D �
Eh

3

12 1 − ]2􏼐 􏼑
⎛⎝ ⎞⎠. (3)

Finally, the two-dimensional biharmonic operator in
equation (1) is defined as
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Equation (4) can be derived from kinematic assumptions
and constitutive relations for the plate and assumes that the
out-of-plane stresses (σ33, σ13, and σ23) are zero. Together
with equations (1) and (2), it is able to express the conser-
vation of linear momentum in two dimensions. Further, the
three Föppl–von Karman equations [1, 21, 26] can be reduced
to two, by introducing Airy’s stress function F(x, y, t), as
defined by
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Figure 1: Governing differential equations for (a) linear and (b) nonlinear SDOF models.
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Figure 2: (a) Reference thin elastic plate under uniform pressure (q), with evidence of (b) the selected edge boundary conditions.
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where σxx, σxy, and σyy are membrane stresses induced in
the plate. Accordingly, the above equations can be rewritten
as
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Further, the corresponding membrane forces in the plate
can be expressed as
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where Airy’s stress function represents the membrane action
in the plate that is induced by large displacements only.

As also schematized in Figure 2(b), the boundary con-
ditions of technical interest considered in the present in-
vestigation are defined in equations (8)–(20). For all the
examined edge restraints, the coordinate system in
Figure 2(a) is taken into account.

For out-of-plane displacement of the plate, the following
boundary configurations are defined (see also Figure 2(b)):

(i) Simply supported (SS) edge condition: all the edges
are linearly simply supported.
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(ii) Clamped (CC) edge condition: all the edges are
linearly clamped.
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As far as the membrane stresses are also taken into
account, the reference boundary conditions are
defined as follows (see also Figure 2(b)):

(iii) Immovable edge condition: all the edges are as-
sumed to be immovable, according to equations (12)
and (13). It is important to notice that this edge
condition incorporates membrane stresses.
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(iv) Membrane stress-free edge condition: all the edges
are assumed free from membrane stresses, and this
condition is defined by equations (14) and (15).
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(v) Movable edge condition: all the edges are assumed
movable, as defined by equations (16)–(19). Further,
it is to be noted that the movable edges are the edges
which are kept straight by a distribution of normal
stresses, whose resultant is zero.
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where Px and Py are the resultant forces in the x and y
directions, respectively.

Further, at the time t� 0 (i.e., the time instant at which
the plate is at rest), the out-of-plane deflections, w of the
middle plane, of the plate are defined as
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(20)

'erefore, the investigation of thin elastic plates under
large deflections can be generally solved using two nonlinear
differential equations (i.e., equations (1) and (2)) with
various edge boundaries and membrane stress configura-
tions of technical interest (i.e., equations (8)–(19)), along
with their initial condition (as given by equation (20)).

3. Blast Load Description

Among the available SDOF formulations for thin elastic
plates under impulsive loads, various formulations and
assumptions can be found in the literature. Besides, it is
generally recognized that the analytical solution of the
complex governing equations, as well as their numerical
solution, involves considerable computational difficulties.

Within the multitude of existing SDOF formulations, a
critical examination highlights that most of them are
developed on the basis of a sinusoidal load function (see,
for example, [25–27, 33]). Minimum variations can be
found in the reference Cartesian system. As far as the

reference x, y axes are located at the central point of the
midplane of the plate in Figure 2(a), for example, the out-
of-plane deflections, w, are commonly expressed as
[25–27, 33]

w(x, y, t) � w0(t) 􏽚
a

0
􏽚

b

0
sin

πx

a
􏼒 􏼓sin

πy

b
􏼒 􏼓dx dy. (21)

Conversely, when the external load is described con-
sidering reference coordinate system from Bayles et al. [26],
the resulting displacement of the plate is given by (i.e.,
[1, 33])

w(x, y, t) � w0(t) 􏽚
(a/2)

−(a/2)
􏽚

(b/2)

− (b/2)
cos

πx

a
􏼒 􏼓cos

πy

b
􏼒 􏼓dx dy.

(22)

As such, all the above SDOF formulations are equivalent.
Moreover, they are able to provide solutions for plates under
sinusoidal loads only.

'e latter assumption represents one of the major issues
for most of the SDOF formulations of literature, given that
the assumed functions, even for sinusoidal loads only,
typically result in rather approximate predictions. 'e
reason for this weakness (as also discussed in this paper)
derives from the lack of convergence of finite trigonometric
series that take the form of a sinusoidal function whenm� 1
and n� 1. Otherwise, the convergence is always ensured by
infinite trigonometric series. Such a concept is also in
contrast with blast-related issues, given that blast pressures
are recognized to act as random impulsive loads, thus
recommending the use of infinite trigonometric series for
enhanced solutions.
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Accordingly, the present research study focuses on the
derivation of linear and nonlinear governing parameters for
SDOF systems subjected to blast loading, based on energy
concepts and infinite trigonometric series.

To this aim, the adopted functions for SS and CC plates
are expressed by equations (23) and (24), respectively.
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a
􏼒 􏼓sin2

nπy

b
􏼒 􏼓. (24)

Using this function, the blast response of thin elastic
plates is expected to vary in time, but the governing pa-
rameters will remain constant. Moreover, the advantage of
equations (23) and (24) is that the chosen function is able to
satisfy all the boundary conditions in Figure 2(b), for both SS
and CC plates (for any value of m and n). Further, the
components of the three-dimensional Green–Lagrangian
strain tensor are defined similar to [33].

4. Nonlinear SDOF Model

In the present investigation, it is assumed that the out-of-
plane, transverse deflection, w, for the plate in Figure 2(a)
can be described as

w(x, y, t) � Y(t)φ(x, y), (25)

where Y(t) is a function of time only, which needs to be
determined, and φ(x, y) is the deflection shape function, as
defined by equations (23) and (24) for the SS and CC
conditions, respectively. 'e deflection shape functions are
assumed in terms of sine function (whereas, Feldgun et al.
assumed in [33] a cosine function). As such, the following
ordinary nonlinear differential equation is obtained to de-
scribe the behavior of the reference SDOF:

m €Y (t) + K1Y(t) + K3Y
3
(t) � P(t). (26)

4.1. Simply Supported (SS) Plate. Assume a deflection shape
function for a thin elastic rectangular plate under blast
loading as per equation (23).'emassm is therefore defined
as
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Integrating equation (28), it is found that
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By applying the above limits, equation (29) reduces to

m �
ρabh

4
􏼠 􏼡. (30)

'erefore, equation (30) expresses the mass of a thin,
rectangular, and elastic isotropic plate with dimensions
a× b, thickness h, and density ρ under a given SS edge
condition. Further, a given external normal force per unit
area of the plate, P, can be expressed as

P(t) � 􏽚
a

0
􏽚

b

0
q(x, y, t)φ(x, y)dxdy. (31)

In this study, it is assumed that the distributed pressure
q(x, y, t) may be described as

q(x, y, t) � Q(x, y)P(t), (32)

where in case of uniform lateral pressure, it is Q (x, y)� 1,
and therefore:
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b
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where P1(t) represents an exponentially decaying real blast
function agreeing with [10]. Integrating the above equation
and applying the reference limits, it is therefore found that

P(t) �
4ab

(π)
2􏼠 􏼡 􏽘

m�1,3,5,...

􏽘
n�1,3,5,...

1
mn

􏼒 􏼓P1(t)dt, (34)

where equation (34) represents the external normal force per
unit area of the plate in trigonometric series.

Accordingly, the plate bending stiffness K1 can be
expressed as
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dxdy. (35)

Applying the assumed deflection function (equation
(23)) and solving equation (34), K1 for SS plates is finally
expressed as

K1 �
π4

Da b

4
􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1

m

a
􏼒 􏼓

2
+

n

b
􏼒 􏼓

2
􏼢 􏼣

2⎧⎨

⎩

⎫⎬

⎭. (36)

In order to obtain the membrane stiffness function, a
suitable stress function for large deflections of SS plates
needs first to be considered. 'e substitution of deflection
(i.e., equations (23) and (25) for the SS condition) into
equation (2) yields

z
4
F

zx
4􏼠 􏼡 + 2

z
4
F

zx
2
zy

2􏼠 􏼡 +
z
4
F

zy
4􏼠 􏼡􏼢 􏼣

� E
z2w

zx zy
􏼨 􏼩

2

−
z
2
w

zx
2􏼠 􏼡

z
2
w

zy
2􏼠 􏼡⎡⎣ ⎤⎦.

(37)

Herein:

z
2
w(x, y)

zx
2􏼠 􏼡 � − 􏽘

∞

m�1
􏽘

∞

n�1

mπ
a

􏼒 􏼓
2
sin

mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓,

(38)

z
2
w(x, y)

zy
2􏼠 􏼡 � − 􏽘

∞

m�1
􏽘

∞

n�1

nπ
b

􏼒 􏼓
2
sin

mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓,

(39)

z
2
w(x, y)

zx zy
􏼠 􏼡 � 􏽘

∞

m�1
􏽘

∞

n�1

mπ
a

􏼒 􏼓
nπ
b

􏼒 􏼓cos
mπx

a
􏼒 􏼓cos

nπy

b
􏼒 􏼓.

(40)

Combining equation (38) through equation (40), finally,
the general equation for SS plates without any edge con-
dition can be written as

∇4F � −
Eh

2π4m2
n
2

2a
2
b
2􏼠 􏼡 􏽘

∞

m�1
cos

2mπx

a
􏼒 􏼓 + 􏽘

∞

n�1
cos

2nπy

b
􏼒 􏼓

⎧⎨

⎩

⎫⎬

⎭.

(41)

Equation (41) is a general solution which is the sum of
complimentary function (CF) and particular integral (PI).
Now, the PI in equation (41) is expressed as

F1 � Eh
2 η1 􏽘

∞

m�1
cos

2mπx

a
􏼒 􏼓 + η2 􏽘

∞

n�1
cos

2nπy

b
􏼒 􏼓

⎧⎨

⎩

⎫⎬

⎭,

(42)

wherein η1 and η2 are unknown constants and are deter-
mined by comparing equations (41) and (42), thus leading to

η1 � −
a
2

32b
2􏼠 􏼡,

η2 � −
b
2

32a
2􏼠 􏼡.

(43)

'e PI of equation (41) is therefore further expressed as

F1 � −
Eh

2

32
􏼠 􏼡

a
2

b
2􏼠 􏼡 􏽘

∞

m�1
cos

2mπx

a
􏼒 􏼓 +

b
2

a
2􏼠 􏼡 􏽘

∞

n�1
cos

2nπy

b
􏼒 􏼓⎛⎝ ⎞⎠. (44)

Moreover, the CF in equation (41) is given by
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F0 �

1
2
Pxy

2
+
1
2
Pyx

2

+Eh
2

􏽘

∞

r�1

Ar

r
2
(sin h/rπβ cos h/rπβ + /rπβ)

sin h
rπ
β

+
rπ
β
cos h

rπ
β

􏼠 􏼡cos h
2rπ
a

y −
2rπ
a

y sin h
rπ
β
sin h

2rπ
a

y􏼢 􏼣

cos h
2rπ
a

x

+
Br

β2r2(sin hrπβ cos hrπβ + rπβ)

(sin hrπβ + rπβ cos hrπβ)cos h
2rπ
b

x −
2rπ

b
y sin hrπβ sin h

2rπ
b

y􏼔 􏼕

cos h
2rπ

b
y

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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. (45)

'erefore, in conclusion, the solution to equation (41) is
expressed as

F � F0 + F1. (46)

It is important to notice that Px and Py denote tensile
loads on the sides of a given thin rectangular plate of general
size, varying from 0 to a (in the x direction) and from 0 to b
(in the y direction), respectively. To derive the final ex-
pression for Px and Py, it is assumed that all the edges of the
plate remain straight after deformation.

'is condition implies that the elongation of the plate
along the x direction is independent of y, and hence

δx � 􏽚
a

0

zu
zx

􏼠 􏼡dx

� 􏽚
a

0

1
E

z
2F

zy2
􏼠 􏼡 − ν

z
2F

zx2
􏼠 􏼡􏼠 􏼡 −

1
2

􏼒 􏼓
zw
zx

􏼠 􏼡

2

dx,

(47)

δx � 􏽚
a

0

1
E

􏼒 􏼓
z
2F

zy2
􏼠 􏼡 − ν􏽚

a

a

1
E

􏼒 􏼓
z
2F

zx2
􏼠 􏼡 − 􏽚

a

0

1
2

􏼒 􏼓
zw
zx

􏼠 􏼡

2

.

(48)

Herein,

􏽚
a

0

1
E

z
2
F

zy
2􏼠 􏼡 �

1
Eh

2􏼠 􏼡 􏽚
a

0
Px −

nπ
b

􏼒 􏼓
2

􏽘

∞

m�1
sin

mπx

a
􏼒 􏼓 􏽘

∞

n�1
sin

nπy

b
􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠dx,

􏽚
a

0

1
E

z
2
F

zy
2􏼠 􏼡 �

1
E

Pxx −
nπ
b

􏼒 􏼓
2 a

mπ
􏼒 􏼓 􏽘

∞

n�1
cos

mπx

a
􏼒 􏼓 􏽘

∞

n�1
sin

nπy

b
􏼒 􏼓⎛⎝ ⎞⎠⎛⎝ ⎞⎠

a

0

.

(49)

After applying the above limits and solving equation
(48), it is found that

δx �
Pxa
Eh2

− ν
Pya

Eh2
􏼠 􏼡 − 􏽘

∞

m�1

m2π2

8a
. (50)

Similarly, it is found that

δy �
Pyb

Eh2
− ν

Pxb
Eh2

􏼠 􏼡 − 􏽘
∞

n�1

n2π2

8b
. (51)

Accordingly, to obtain the final solution, a final set of in-
plane force boundary conditions is used (i.e., all the edges are
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immovably constrained). Such an assumption implies that
the elongation along x and y directions is zero, and thus

Px �
π2

Eh
2

8a
2

􏽐
∞
m�1 m

2
+ ]2β2 􏽐

∞
n�1 n

2

1 − ]2
􏼢 􏼣,

Py �
π2

Eh
2

8a
2

􏽐
∞
n�1 n

2β2 + ]􏽐
∞
m�1 m

2

1 − ]2
􏼢 􏼣.

(52)

In conclusion, the stress function for SS plates with
immovable edge conditions is defined as

F � −
Eh

2

32
􏼠 􏼡

2π2

1 − ]2
􏼠 􏼡

1
a
2 􏽘

∞

m�1
m

2
+ ]β2 􏽘

∞

n�1
n
2⎛⎝ ⎞⎠y

2
+ ] 􏽘

∞

m�1
m

2
+ β2 􏽘

∞

n�1
n
2⎛⎝ ⎞⎠x

2⎧⎨

⎩

⎫⎬

⎭

+ β2 􏽘

∞

m�1
cos

2mπx

a
+

1
β2

􏽘

∞

n�1
cos

2nπy

b
⎛⎝ ⎞⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (53)

Now, assume that the function F0 for stress-free edge
condition is expressed as given in [21]:

φpq �

4β

π p
2

+ β2q2􏼐 􏼑
2

×
p(− 1)

qεq sin h
2
(pπ/β)

sin h(pπ/β)cos h(pπ/β) +(pπ/β)
Ap +

q(− 1)
pεp sin h

2
(qπβ)

sin h(qπβ)cos h(qπβ) +(qπβ)
Bq

⎡⎣ ⎤⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

εp �

0.5, p � 0,

1.0, p> 0,

⎧⎪⎪⎨

⎪⎪⎩

εq �

0.5, q � 0,

1.0, q> 0.

⎧⎪⎪⎨

⎪⎪⎩

(54)

'e coefficients Ap(p � 0, 1) and Bq(q � 0, 1) are the
solutions of the linear systems.
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It is to be noted that the function F0 for SS plates and
movable edges is equal to zero.

For easy understanding, equation (1) is now expressed as
I(w, F). 'e solutions for the membrane stiffness of the plate
are detected as

􏽚
a

0
􏽚

b

0
I(w, F)sin

mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓dxdy

� 􏽚
a

0
􏽚

b

0

ρh
z
2
w

zt
2􏼠 􏼡 +

Eh
3

12 1 − υ2􏼐 􏼑
⎛⎝ ⎞⎠∇2w

− h(
z
2
F

zy
2􏼠 􏼡

z
2
w

zx
2􏼠 􏼡 +

z
2
F

zx
2􏼠 􏼡

z
2
w

zy
2􏼠 􏼡 )−

2
z
2
F

zx zy
􏼠 􏼡

z
2
w

zx zy
􏼠 􏼡 − q(x, y, t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

sin
mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dxdy � 0.

(55)

Employing first the Ritz–Galerkin method for the so-
lution of equation (58), in particular, the bending stiffnessK1
is determined as

K1 �
π4Da b

4
􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1

m

a
􏼒 􏼓

2
+

n

b
􏼒 􏼓

2
􏼢 􏼣

2

. (56)

Moreover, the membrane stiffness K3 (having a funda-
mental role for the nonlinear behavior of the examined
plates) is defined as

K3 � − h
z
2
F

zy
2􏼠 􏼡

z
2
w

zx
2􏼠 􏼡 +

z
2
F

zx
2􏼠 􏼡

z
2
w

zy
2􏼠 􏼡 − 2

z
2
F

zx zy
􏼠 􏼡

z
2
w

zx zy
􏼠 􏼡􏼠 􏼡sin

mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓. (57)

Solving equation (57), K3 can be therefore expressed for
a SS plate with immovably constrained edge as

K3 �
ab

4
􏼠 􏼡

π4
Eh

3

8a
4􏼠 􏼡

􏽘

∞

n�1
n
4β4 + 2]β2 􏽘

∞

m�1
􏽘

∞

n�1
m

2
n
2

+ 􏽘
∞

m�1
m

4

+
1
2

1 +
a
4

b
4􏼠 􏼡􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1
m

2
n
2
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(58)

Similarly, for the membrane stress-free edge condition,
K3 is defined as

K3 �
ab

4
􏼠 􏼡

2π4Eh
3

a
2
b
2􏼠 􏼡

φ01 + φ10 −
1
32

􏼒 􏼓
a
2

b
2􏼠 􏼡 +

b
2

a
2􏼠 􏼡􏼠 􏼡􏼢 􏼣f

3
.

(59)

For the movable edge condition, finally, the membrane
stiffness K3 is defined as

K3 �
ab

4
􏼠 􏼡

π4Eh
3

16a
4􏼠 􏼡 1 +

a
4

b
4􏼠 􏼡􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1
m

2
n
2
. (60)

Now, for the force P(t), it is assumed that

P(t) �
4ab

(π)
2􏼠 􏼡 􏽘

m�1,3,5,...

􏽘
n�1,3,5,...

1
mn

􏼒 􏼓 P1(t)dt. (61)

Further, the bending strains in the x and y directions are
defined as

εxx �
1
E

z
2F

zy2
− ν

z
2F

zx2
􏼢 􏼣,

εyy �
1
E

z
2F

zx2
− ν

z
2F

zy2
􏼢 􏼣.

(62)

'e shear strains in the x-y direction are zero, due to
assumed function, and such an assumption is in close
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correlation with various literature researchers (see, for ex-
ample, [21, 26]). 'is means that

cxy � −
2(1 + ])

E
􏼠 􏼡

z
2
F

zx zy
􏼠 􏼡 � 0. (63)

Finally, the strains in x direction are therefore defined as

εxx �
h
2

32
􏼠 􏼡

4π2

a
2􏼠 􏼡 􏽘

∞

m�1
m

2⎛⎝ ⎞⎠ + 􏽘
∞

n�1
n
2 cos

2nπy

b
􏼒 􏼓⎡⎢⎢⎣ ⎤⎥⎥⎦ − ]β2 􏽘

∞

m�1
m

2 cos
2mπx

a
􏼒 􏼓⎡⎣ ⎤⎦⎡⎢⎢⎣ ⎤⎥⎥⎦. (64)

Assuming that m� 1 and n� 1, the latter results in

εxx �
h
2π2

8a
2􏼠 􏼡 1 + cos

2πy

b
􏼒 􏼓 − ]β2 cos

2πx

a
􏼒 􏼓􏼔 􏼕. (65)

For a square plate (a/b� 1), it is therefore found that

εxx �
h
2π2

8a
2􏼠 􏼡 1 + cos

2πy

a
􏼒 􏼓 − ] cos

2πx

a
􏼒 􏼓􏼔 􏼕. (66)

It is noteworthy that the above equation as herein de-
rived by using infinite trigonometric series equals the strain
equation given by Bauer [25] for square plates.

Similarly, the strain along the y direction is defined as

εyy �
1
E

􏼒 􏼓
Eh

2

32
􏼠 􏼡

2π2

1 − ]2
􏼠 􏼡

1
a
2 ] 􏽘

∞

m�1
m

2
+ β2 􏽘

∞

n�1
n
2⎛⎝ ⎞⎠ × 2

+ β2
2mπ

a
􏼒 􏼓

2
􏽘

∞

m�1
cos

2mπx

a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− ]

2π2

1 − ]2
􏼠 􏼡

1
a
2 􏽘

∞

m�1
m

2
+ ]β2 􏽘

∞

n�1
n
2⎛⎝ ⎞⎠

×2 +
1
β2

2nπ
b

􏼒 􏼓
2

􏽘

∞

n�1
cos

2nπy

b
􏼒 􏼓

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (67)

Again, assuming m� 1 and n� 1, it is found that

εyy �
h
2π2

8b
2􏼠 􏼡 1 + cos

2πx

a
􏼒 􏼓 −

]
β2

􏼠 􏼡cos
2πy

b
􏼒 􏼓􏼢 􏼣. (68)

'erefore, for a square plate,

εyy �
h
2π2

8a
2􏼠 􏼡 1 + cos

2πx

a
􏼒 􏼓 − ] cos

2πy

a
􏼒 􏼓􏼔 􏼕, (69)

or

εyy �
h
2π2

8b
2􏼠 􏼡 1 + cos

2πx

b
􏼒 􏼓 − ] cos

2πy

b
􏼒 􏼓􏼔 􏼕, (70)

and equation (70) coincides with the strain equation given
by Bauer [25] for square plates.

Now, merging all the so-obtained expressions in equa-
tion (55), it is found that
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􏽚
a

0
􏽚

b

0
I(w, F)sin

mπx

a
􏼒 􏼓sin

nπy

b
􏼒 􏼓dxdy �

ρh
2€f + 􏽘

∞

m�1
􏽘

∞

n�1

mπ
a

􏼒 􏼓
4

+
nπ
b

􏼒 􏼓
4

+ 2
mπ
a

􏼒 􏼓
2 nπ

b
􏼒 􏼓

2
􏼨 􏼩Dh f−

4
π2􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1

1 − cos(mπ) − cos(nπ) + cos(mπ)cos(nπ)

mn

+
π4

Eh
4

8a
4

􏽐
∞
n�1 n

4β4 + 2]β2 􏽐
∞
m�1 􏽐

∞
n�1 m

2
n
2

+ 􏽐
∞
m�1 m

4

1 − ]2
+

1
2

􏼒 􏼓 1 +
a
4

b
4􏼠 􏼡􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1
m

2
n
2⎡⎣ ⎤⎦f

3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(71)

Substituting m� 1 and n� 1 in equation (71), the so-
lution is therefore obtained for various boundary conditions.

'e solution for a SS plate with immovably constrained
edges, in particular, is given by

ρh
2€f + Dh

π
a

􏼒 􏼓
4

+
π
b

􏼒 􏼓
4

+ 2
π
a

􏼒 􏼓
2 π

b
􏼒 􏼓

2
􏼨 􏼩f+

π4Eh
4

8a
4

1 + 2] a
2/b2􏼐 􏼑 + a

4/b4􏼐 􏼑

1 − ]2
+
1
2

1 +
a
4

b
4􏼠 􏼡􏼠 􏼡⎡⎣ ⎤⎦f

3

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�
16
π2. (72)

For a SS plate with movable edges, it is

ρh
2€f + 􏽘

∞

m�1
􏽘

∞

n�1

mπ
a

􏼒 􏼓
4

+
nπ
b

􏼒 􏼓
4

+ 2
mπ
a

􏼒 􏼓
2 nπ

b
􏼒 􏼓

2
􏼨 􏼩Dh f−

4
π2

􏽘

∞

m�1
􏽘

∞

n�1

1 − cos(mπ) − cos(nπ) + cos(mπ)cos(nπ)

mn

+
π4

Eh
4

8a
4

1
2

1 +
a
4

b
4􏼠 􏼡􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1
m

2
n
2⎡⎣ ⎤⎦f

3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� 0. (73)

'e solution for a SS plate with movable constrained
edges is

ρh
2€f + Dh

π
a

􏼒 􏼓
4

+
π
b

􏼒 􏼓
4

+ 2
π
a

􏼒 􏼓
2 π

b
􏼒 􏼓

2
􏼨 􏼩f

−
π4

Eh
4

8a
4

1
2

1 +
a
4

b
4􏼠 􏼡􏼠 􏼡􏼢 􏼣f

3

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�
16
π2.

(74)

Finally, the solution for the SS plate with stress-free edges
is given by

ρh
2€f + Dh

π
a

􏼒 􏼓
4

+
π
b

􏼒 􏼓
4

+ 2
π
a

􏼒 􏼓
2 π

b
􏼒 􏼓

2
􏼨 􏼩f −

2π4Eh
4

a
2
b
2􏼠 􏼡

φ01′ + φ10′ −
1
32

a
2

b
2 +

b
2

a
2􏼠 􏼡􏼢 􏼣f

3

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

�
16
π2.

(75)
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4.2. Clamped (CC) Plate. Assuming the deflection shape
function for a thin elastic plate under blast loading as per
equation (24), the reference function satisfies all the

boundary conditions. Here, the mass m is defined by
equation (27) and can be further expressed as

m �
ρabh

16ab
􏽚

a

0
􏽚

b

0
1 − 2 cos

2mπx

a
􏼒 􏼓 +

1
2

1 + cos
4mπx

a
􏼒 􏼓􏼒 􏼓􏼒 × 1 − 2 cos

2nπy

b
+
1
2

1 + cos
4nπy

b
􏼒 􏼓􏼒 􏼓dx dy. (76)

Integrating the above equation, it reduces to

m �
ρabh

16ab

(x − 2)
sin(2mπx/a)

(2mπ/a)
+
1
2

x +
sin(4mπx/a)

(4mπ/a)
􏼠 􏼡􏼠 􏼡

y − 2
sin(2nπy/b)

(2nπ/b)
+
1
2

y +
sin(4nπy/b)

(4nπ/b)
􏼠 􏼡􏼠 􏼡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

a

0

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

b

0

. (77)

Applying the limits, it is found that

m �
9ρabh

64
􏼠 􏼡, (78)

where the latter is suitable for a rectangular, elastic isotropic
plate with dimensions a× b, thickness h, and density ρ,
under a CC condition. Further, the external normal force per
unit area of the plate, P, is expressed by equation (30). As

mentioned earlier for the SS plate, in the case of uniform
lateral pressure, it is Q (x, y)� 1; therefore,

P(t) � 􏽚
a

0
􏽚

b

0
􏽘

∞

m�1
􏽘

∞

n�1
sin2

mπx

a
􏼒 􏼓sin2

nπy

b
􏼒 􏼓dxdyP1(t)dt,

(79)

or

P(t) �
1
4

􏽚
a

0
􏽚

b

0
􏽘

∞

m�1
􏽘

∞

n�1
1 − cos

2mπx

a
􏼒 􏼓 1 − cos

2nπy

b
􏼒 􏼓dxdyP1(t)dt. (80)

Integrating the above equation, it reduces to

P(t) �
1
4

􏼒 􏼓 􏽘

∞

m�1
􏽘

∞

n�1
x −

sin(2mπx/a)

(2mπ/a)
􏼠 􏼡 y −

sin(2nπy/b)

(2nπ/b)
􏼠 􏼡

a

0

⎡⎣ ⎤⎦
b

0

P1(t)dt. (81)

Applying the limits, we get

P(t) �
ab

4
􏼠 􏼡P1(t), (82)

where the latter represents the external normal force per unit
area of the plate, P, in trigonometric series (and is sub-
stantially different from the proposal in [33]).
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Now, the bending stiffness K1 of the plate is expressed as

K1 � D 􏽚
a

0
􏽚

b

0

z2φ(x, y)

zx2 +
z2φ(x, y)

zy2􏼢 􏼣

2

− 2(1 − ])
z
2φ(x, y)

zx
2

z
2φ(x, y)

zy
2 −

z2φ(x, y)

zx zy
􏼢 􏼣

2
⎡⎣ ⎤⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dxdy. (83)

Applying the assumed deflection function and solving
equation (87), K1 for a CC plate is therefore found in

K1 �
Dπ4ab

4
􏼠 􏼡 􏽘

∞

m�1
􏽘

∞

n�1

3m
4

a
4􏼠 􏼡 +

2m
2
n
2

a
2
b
2􏼠 􏼡 +

3n
4

b
4􏼠 􏼡􏼢 􏼣.

(84)

In order to obtain the membrane stiffness function for
large deflections of rectangular CC plates, the substitution of
deflection (i.e., equations (23) and (25) for the CC case) into
equation (2) is first taken into account, so as to achieve a
suitable stress function.

'is yields to

∇4F1 �
π4

m
2
n
2

2a
2
b
2􏼠 􏼡

cos
2mπx

a
􏼒 􏼓 + cos

2nπy

b
􏼒 􏼓+

cos
2nπy

b
􏼒 􏼓cos

4mπx

a
􏼒 􏼓 − cos

4mπx

a
􏼒 􏼓

+cos
4nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓 − cos

4mπx

a
􏼒 􏼓

− 2 cos
2nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓
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. (85)

'e solution of equation (85) takes the form of CF and PI
parts, wherein PI is given by

F1 �
1
32

n
2β2

m
2 cos

2mπx

a
􏼒 􏼓 +

m
2

n
2β2

cos
2nπy

b
􏼒 􏼓+

m
2
n
2β2

4m
2

+ n
2β2􏼐 􏼑

2 cos
2nπy

b
􏼒 􏼓cos

4mπx

a
􏼒 􏼓+

m
2
n
2β2

m
2

+ 4n
2β2􏼐 􏼑

2 cos
4nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓 −

n
2β2

16m
2 cos

4mπx

a
􏼒 􏼓

−
m

2

16n
2β2

cos
4mπx

a
􏼒 􏼓 −

m
2
n
2β2

m
2

+ n
2β2􏼐 􏼑

2 cos
2nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓
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. (86)

'erefore, the general solution is F � F0 + F1, where F0 �
Pxy

2

2
􏼠 􏼡 +

Pyx
2

2
⎛⎝ ⎞⎠, (87)
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and F0 for the stress-free edge condition is expressed as [21]

φpq �
4β

π p
2

+ β2q2􏼐 􏼑
2 ×

p(− 1)
qεq sin h

2
(pπ/β)

sin h(pπ/β)cos h(pπ/β) +(pπ/β)
Ap +

q(− 1)
pεp sin h

2
(qπβ)

sin h(qπβ)cos h(qπβ) +(qπβ)
Bq

⎡⎣ ⎤⎦. (88)

Moreover:

εp �
0.5, p � 0,

1.0, p> 0,
􏼨

εq �
0.5, q � 0,

1.0, q> 0,
􏼨

(89)

while the coefficients Ap and Bq in equation (88) are the
solutions of the linear systems.

To derive the expression for Px and Py, all the edges of
the plate are assumed to remain straight after the defor-
mation. Following the same procedure earlier adopted for
the SS plate, but with the reference CC function and
boundary condition, it is found that

δx �
Pxa
Eh2

− ν
Pya

Eh2
−
3Eh2

32
􏽘

∞

m�1

m2π2

a2
� 0,

δy �
Pyb

Eh2
− ν

Pxb
Eh2

−
3Eh2

32
􏽘

∞

n�1

n2π2

b2
� 0.

(90)

'e final solution is found for the immovably con-
strained edges, given that the elongation along the x and y
directions is zero:

Px �
3π2Eh

2

32a
2

􏽐
∞
n�1 m

2
+ ]􏽐
∞
m�1 n

2β2

1 − ]2
􏼢 􏼣,

Py �
3π2Eh

2

32a
2

􏽐
∞
n�1 n

2β2 + ]􏽐
∞
m�1 m

2

1 − ]2
􏼢 􏼣.

(91)

Finally, the stress function for a CC plate with im-
movable edge conditions is defined as

F �

3π2Eh
2

32a
2

􏽐
∞
n�1 m

2
+ ]􏽐
∞
m�1 n

2β2

1 − ]2
􏼢 􏼣

y
2

2
+

3π2Eh
2

32a
2􏼠 􏼡

􏽐
∞
n�1 n

2β2 + ]􏽐
∞
m�1 m

2

1 − ]2
􏼢 􏼣

x
2

2

+
1
32

n
2β2

m
2􏼠 􏼡cos

2mπx

a
􏼒 􏼓 +

m
2

n
2β2

cos
2nπy

b
􏼒 􏼓+

m
2
n
2β2

4m
2

+ n
2β2􏼐 􏼑

2 cos
2nπy

b
􏼒 􏼓cos

4mπx

a
􏼒 􏼓+

m
2
n
2β2

m
2

+ 4n
2β2􏼐 􏼑

2 cos
4nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓 −

n
2β2

16m
2 cos

4mπx

a
􏼒 􏼓

−
m

2

16n
2β2

cos
4mπx

a
􏼒 􏼓 −

m
2
n
2β2

m
2

+ n
2β2􏼐 􏼑

2 cos
2nπy

b
􏼒 􏼓cos

2mπx

a
􏼒 􏼓
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. (92)

For easy understanding, as in the case of the SS plate,
equation (1) is expressed as I(w, F). 'e solution for the
membrane stiffness of the plate is therefore derived as
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􏽚
a

0
􏽚

b

0
I(w, F)sin2

mπx

a
􏼒 􏼓sin2

nπy

b
􏼒 􏼓dxdy � 􏽚

a

0
􏽚

b

0

ρh
z
2
w

zt
2􏼠 􏼡 +

Eh
3

12 1 − υ2􏼐 􏼑
∇2w

− h
z
2
F

zy
2􏼠 􏼡

z
2
w

zx
2􏼠 􏼡 +

z
2
F

zx
2􏼠 􏼡

z
2

w

zy
2 − 2

z
2
F

zx zy
􏼠 􏼡

z
2
w

zx zy
􏼠 􏼡
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⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

− q(x, y, t)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

×sin2
mπx

a
􏼒 􏼓sin2

nπy

b
􏼒 􏼓

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dxdy � 0.

(93)

By employing the Ritz–Galerkin method to solve
equation (53), the bending stiffness K1 is first calculated as

K1 �
π4

Da b

4
􏽘

∞

m�1
􏽘

∞

n�1

3m
4

a
4􏼠 􏼡 +

2m
2
n
2

a
2
b
2􏼠 􏼡 +

3n
4

b
4􏼠 􏼡􏼢 􏼣,

(94)

where the mass is

m �
9ρabh

64
􏼠 􏼡. (95)

'e membrane stiffness K3 for a CC plate is therefore
obtained by applying the same methodology used for the SS
plate.

For the immovably constrained edge condition, it is
found that

K3 �
abπ4

Eh
3

64

9 􏽐
∞
n�1 n

4β4 + 2]β2 􏽐
∞
m�1 􏽐

∞
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2
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∞
m�1 m

4
􏼐 􏼑

8a
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a
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n
4
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2
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For the stress-free edge condition:
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For the movable edge condition, finally:

K3 �
abπ4

Eh
3

64a
2
b
2

a
4

b
4􏼠 􏼡 +

9
8

􏼒 􏼓 +
2(a/b)

4

1 + a
2/b2􏼐 􏼑􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠ +

a
4

8b
4􏼠 􏼡 +

(a/b)
4

1 + 4 a
2/b2􏼐 􏼑􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠ +

(a/b)
4

4 + a
2/b2􏼐 􏼑􏼐 􏼑

2
⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠, (98)

where the force P(t) is given by
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Here, 􏽒
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ab
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(102)

By substitution of m� 1 and n� 1, the expression for
different CC edge conditions can be therefore finally
obtained.

'e solution for a CC plate with immovable edges is
given by
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'e solution for the CC plate with movable edges is
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while the solution for the CC plate with stress-free edges is
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5. Static Analysis

As a further extension of the proposed SDOF approach,
static loads were also taken into account. Besides, such a
loading condition has no correlation with blast events, and
the same equations ((25) and (26)) with slight modifications
can be in fact efficiently used to predict the static response of
a given elastic plate.

'e governing equation is obtained from equation (25),
by assuming €Y(t) � 0 and replacing Y(t) with the static
maximum deflection Ym. 'erefore, original equations (25)
and (26) take the following form:

w(x, y, t) � Ymφ(x, y, t),

K
st
1 Ym + K

st
3 Y

3
m � P0.

(106)

5.1. Simply Supported (SS) Edges. For general plates with all
simply supported edges, the bending stiffness is defined as

K1 �
π4
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∞
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∞
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, (107)

while the membrane stiffness K3 modifies with the edge
condition.

For the immovably constrained edge condition, in
particular, it is found that
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For the stress-free edge condition:
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For the movable edge condition, it is

K3 �
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where the force P(t) is expressed as

P(t) �
4ab
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2 􏽘

m�1,3,5,...

􏽘
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1
mn

􏼒 􏼓 P1(t). (111)

5.2. Clamped (CC) Edges. 'e bending stiffness K1 is defined
as
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Regarding the membrane stiffness K3, for the immovably
constrained edge condition, it is given by
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For the stress-free edge condition:
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For the movable edge conditions:
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'e force P(t) is given by

P(t) �
ab

4
􏼠 􏼡. (116)

Again, considering equation (26) in a different form:

€Y (t) +
K1

m
􏼒 􏼓Y(t) +

K3

m
􏼒 􏼓Y

3
(t) �

P(t)

m
􏼠 􏼡. (117)

'e latter can be further expressed in a normalized form:

€Y (t) + ω2
Y(t) + ω2 ∈ Y

3
(t) � q0(t). (118)

'e governing parameters calculated from the proposed
SDOF model (equation (118)), for both SS and CC plates
with various edge conditions, are finally reported in Table 1.

6. Validation of the Enhanced SDOF Model

For the validation of the presently developed SDOF model,
the analytical results reported in [33] by Feldgun et al. for
elastic thin plates were first taken into account. Figure 3, in
this regard, shows the calculated stiffness coefficient K1 for
SS and CC plates, along with the past SDOF results from
[33]. For both SS and CC plates and variable a/b values, it
can be observed that the results of the present SDOF ap-
proach are in close agreement with [33], and a mostly perfect

match can be observed for various geometrical
configurations.

Similarly, further validation was carried out for addi-
tional edge restraint conditions, namely, represented by
immovable, movable, and stress-free edges (for both the SS
and CC plates).

'e corresponding results for the K3 membrane stiffness
coefficient are proposed in Figure 4. Also, in this case, a close
match can be perceived from the present SDOF model and
the past calculations presented in [33].

Finally, the current SDOF model estimates were also
validated for additional combinations of edge conditions, as
reported in Figure 5.

7. Accuracy of SDOF Solutions for SS and
CC Plates

In order to check the accuracy of SDOF results, another
derivation was carried out for SS and CC plates. In par-
ticular, it is shown that (for any value ofm and n) the results
from the proposed SDOF approach converge and are exact.
'is is the intrinsic advantage of infinite trigonometric series
function and therefore the major issue of sinusoidal load-
based SDOF formulations of literature.

To this aim, the deflection for SS or CC plates is first
defined by equations (119) and (120), respectively.
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'e above equation can be rewritten in the following
form:
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(121)
where

Table 1: Derivation of the governing parameters for SS or CC square plates, based on the SDOF model herein developed.
Boundary condition Edge condition q0(t) ω2 ∈

Simply supported (SS)

Immovably constrained (16/π2ρh2)p(t) (π4Eh2/3ρ(1 − ]2)a4) (3/8)(3 − ])

(1 + ])
􏼠 􏼡

Stress-free (16/π2ρh2)p(t) (π4Eh2/3ρ(1 − ]2)a4) 0.19476
(1 − ]2)􏼠 􏼡

Movable edges (16/π2ρh2)p(t) (π4Eh2/3ρ(1 − ]2)a4) (3/8)(1 − ]2)

Clamped (CC)

Immovably constrained (16/π2ρh2)p(t) (32π4Eh2/27ρ(1 − ]2)a4) (27/128)(1 + ])+

(8.49/32)(1 − ]2)􏼠 􏼡

Stress-free (16/9ρh2)p(t) (32π4Eh2/27ρ(1 − ]2)a4) 0.22355
((1 − ]2))􏼠 􏼡

Movable edges (16/9ρh2)p(t) (32π4Eh2/27ρ(1 − ]2)a4) 0.2653(1 − ]2)
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Figure 3: Comparison of bending stiffness predictions (K1), as obtained from the current SDOF model and literature [33].
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are the membrane forces. Using von Karman equations and
focusing on the membrane and bending actions, for the SS
plate, it is found that
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. (124)

'erefore, in order to predict the out-of-plane response
of the plate, m and n are chosen in such a way that the
values Nxx and Nyy are minimized for any given value of
Nxx/Nyy.
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Figure 4: Comparison of membrane stiffness predictions (K3), as obtained from the current SDOFmodel and literature [33]. (a) Immovable
edges. (b) Movable edges. (c) Stress-free edges.
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In the limit case of a square plate subjected to a uniform
pressure P(t) on its middle plane, it is a� b and therefore
Nxx �Nyy. Accordingly, equation (124) becomes represen-
tative of a critical value (Nxx)cr that is defined as

Nxx( 􏼁cr �
π2

D

a
2 m

2
+ n

2
􏼐 􏼑min. (125)

For this limit condition only, the minimum (Nxx)cr value
of equation (125) is achieved for m� 1 and n� 1. On the
other hand, in the general case of rectangular plates, neither
Nxx nor Nyy is able to converge at m� 1 and n� 1.

Hence,
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'e comparison of the above equations leads to
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Finally, given that the (Nxx)cr is obtained when n� 1, it
follows that
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or

Nxx( 􏼁cr � π2
D

m
2

+ a
2/b2􏼐 􏼑􏼐 􏼑

2

m
2

+ m
2
a
4/b4􏼐 􏼑􏼐 􏼑

, (129)

SS plate (m = 1, n = 1)

0

1

2

3
St

iff
ne

ss
 co

effi
ci

en
t K

3

2 3 4 51
a/b

Immovable edges
Movable edges

Stress-free edges
From [34]

(a)

0

1

2

3

St
iff

ne
ss

 co
effi

ci
en

t K
3

2 3 4 51
a/b

CC plate (m = 1, n = 1)
Immovable edges
Movable edges

Stress-free edges
From [34]

(b)

Figure 5: Variation of the membrane stiffness coefficient (K3) as a function of a/b, as obtained with m� 1 and n� 1 for (a) SS and (b) CC
plates with different edge conditions.
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Accordingly, the smallest value of Nxx at which the
denominator of one of the terms in equations (128) and (129)
becomes zero represents the critical value (Nxx)cr.

Figure 6(a) shows the variation of Nxx with the a/b ratio
for thin elastic plates. Comparative results are proposed for
m� 1, 2, . . ., 6. From the collected plots, it is possible to
observe that allNxx are converging, but with the exception of
the m� 1 case. It must also be noted that the deflection
expression for SS plates is an odd function. Consequently, it

is necessarily required to choose the minimum converged
odd m value, to achieve the exact solution. For the calcu-
lation examples in Figure 6(a), the minimum critical value
for SS plates is therefore m� 3.

By following a similar procedure, the variation of Nxx
and Nyy with a/b can be found for CC plates. In the latter
case, the maximum values of infinite trigonometric series
function are represented by equations (130) and (131),
respectively:
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'erefore, by comparing each term in the above equa-
tions, it can be seen that they are defined by
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'e critical value (Nxx)cr is obtained by assuming n� 1.
Accordingly, the above equation becomes
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'e so-calculated values are proposed in Figure 6(b).
As in the case of the SS plates, it can be still observed that

the collected Nxx values are not converging for m� 1, but
they are indeed converging for all other cases (m� 2, 3, 4, 5,
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6).'e exact solution for CC plates is given by the minimum
converged value, that is, m� 2 from Figure 6(b).

8. Experimental Validation for Square
Plates under Blast

In order to further assess the reliability of SDOF estimates,
additional comparative calculations were carried out by
taking into account the experimental study reported in [38]
for ship panels subjected to air blast waves.

In [38], in particular, Houlston et al. carried out a series
of field experiments (12 repetitions in total) on square steel
plates with an effective span of 508mm and a thickness of
3.4mm. Young’s modulus of elasticity was E� 207GPa, with
]� 0.3 being Poisson’s ratio and ρ� 7770 kg/m3 being the
mass density. No dynamic increase factor (DIF) has been
taken into account in [38], for the reference material
properties. In this paper, for comparative and validation
purposes, the same input parameters were taken into ac-
count, and any DIF was still disregarded.

'e dynamic response of the reference steel plate has been
explored in [38] under a typical blast pressure-time history
agreeing with Figure 7. 'e measured pressure from the ex-
perimental trial (three transducers) is reported, together with an
average fitting pressure history. 'e typical test setup has been
thus arranged so as to include the steel target plate, with fully
clamped (CC) edges and subjected to uniform pressure. 'e
restraint details have been realized by means of four bolted steel
box beams, clamped to a concrete base seated on the ground.

As far as the fitting pressure history of Figure 7 is taken
into account and uniformly distributed on the plate surface
for the SDOFmodel herein proposed (with both the positive
and negative phases included), major calculation results are
collected in Figure 8, where the out-of-plane displacement at
the center of the plate is shown. More in detail, both the

linear and nonlinear approaches are compared for the CC
boundary configuration. Together with the past experi-
mental estimates from [38], additional comparative data are
proposed for the same steel plate, as obtained from FE
nonlinear dynamic analysis reported in [38], as well as from
the SDOF formulation presented in [33].

In Figure 8, it can be observed that the presently de-
veloped SDOF model is in close agreement with the dis-
placement predictions from earlier researchers. Further, for
both the linear and nonlinear CC plates, the current SDOF
model estimates are in rather good agreement with the
SDOF results given in [33]. As such, it can be concluded that
the present SDOF model predicts the measured time history
very well and provides good estimates both for displacement
amplitudes and periods of vibration.

As far as the SS condition is also assessed for the same
steel plates, as also expected, Figure 9 shows an increased
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Figure 6: Variation of Nxx as a function of a/b: (a) SS plates and (b) CC plates.
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Figure 7: Reference field blast pressure time-history (adapted from
[38] with permission from Elsevier®, Copyright license number:
4853550044917, June 2020).
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scatter of the SDOF calculations from the corresponding
experimental estimates. As such, this further emphasizes the
need of analytical solutions that could be adapted to multiple
restraint conditions of technical interest. On the other hand,
the agreement of the displacement plots with the past SDOF
predictions from [33] is still good.

9. Conclusions

Single-degree-of-freedom (SDOF) methods can offer a ro-
bust support in the analysis of structural systems. On the

other hand, the basic assumptions can often involve ap-
proximations and misleading estimates. 'is can be the case
of thin elastic plates under blast loads, where special care
among other aspects should be given for the load
description.

In this paper, an enhanced SDOF formulation was de-
veloped for the linear and nonlinear analysis of thin elastic
plates under blast waves.'e key governing parameters have
been proposed, more in detail, for different boundary
conditions of technical interest. Based on an energy ap-
proach, both the linear and nonlinear solutions were ex-
plored, by accounting, respectively, for the bending stiffness
only or for both the bending and membrane stiffness
contributions.

Various parameters (such as deflections, membrane
stresses, and bending stresses) have been assessed for blast-
loaded plates with simply supported or clamped restraints,
under different edge conditions (including movable, im-
movable, or membrane stress-free cases), under the effects of
a uniform blast pressure.

Compared to existing SDOF formulation, as shown,
the major advantage was represented by the use of infinite
trigonometric series for the description of incoming blast
pressures. 'e developed SDOF model has been therefore
compared, for validation purposes, in terms of predicted
stiffness coefficients as well as out-of-plane deflections in
time, for a given blast wave. In doing so, major advantage
was taken from available experimental and numerical
solutions of literature. For both static and dynamic
nonlinear solutions reported in the paper, the validity and
accuracy of the proposed SDOF model have therefore
been discussed.

Data Availability

'e research data will be available upon request.
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Figure 8: Out-of-plane displacement for a square steel plate under field blast loads, as obtained from the presently developed SDOF model
and from literature [33, 38]. In evidence, the results are given by the (a) linear and (b) nonlinear solutions for the CC boundary condition.
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