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On 8 August 2017, Jiuzhaigou earthquake, magnitude 7.0, hit northern Sichuan, China. As the earthquake-stricken area is located
in the mountainous region with forest and low residential density, the main damage is to vegetation and roads by earthquake-
triggered landslides. In this study, the core area of Jiuzhaigou natural reserve, one of the highest seismic intensity zones, is selected.
The landslides are extracted by examining vegetation changes from the preearthquake and postearthquake images using the
Normalized Difference Vegetation Index (NDVI) and are verified by slope. As most road damage in the mountainous region could
be attributed to the landslides nearby, the impacts of landslide on road are studied based on spatial analysis and are used to infer
occluded road damage. Then, a knowledge-based method for postearthquake road detection and road capacity assessment from
preearthquake road data and postearthquake high-resolution remote sensing imagery is proposed, as well as the quantitative road
capacity assessment indicators to classify the road grades. This method is evaluated using the Beijing-2 (BJ-2) satellite images over
the study area acquired on 28 April and 9 August. Compared with visual interpretation results, the extraction accuracy reached
90% for landslides and 85% for postearthquake roads, indicating that the approaches are effective and promising for quick

response to devastating earthquake in similar circumstances.

1. Introduction

On 8 August 2017, an earthquake (magnitude 7.0) hit
Jiuzhaigou County, Sichuan Province, China. The epicenter
was located in Bimang village, 5 km west of the core area of
Jiuzhaigou natural reserve. As the earthquake-stricken areas
are mountainous and alpine with comparatively low pop-
ulation density, the number of casualties and collapsed
buildings is not as huge as expected. However, the earth-
quake triggered numerous landslides, leading to great
damage to roads, because of the geological structure as well
as the impacts of the Wenchuan earthquake (MS 8.0, 2008)

and Lushan earthquake (7.0 Ms 7.0, 2013) in Sichuan [1-12].
Quickly identifying the spatial distribution of landslides and
estimating road capacity can be of great importance for the
access of rescue teams and subsequent quake-relief efforts.

The assessment of postearthquake landslides and road
capacity relies on field surveys and remote sensing. Field
surveys can obtain the on-site detailed information of
landslides and road damage, but they are limited when the
sites are inaccessible because of geological hazards or
transportation restrictions, regardless of the high cost and
regional communication outage [13, 14]. With sensors
mounted on satellites or planes, remote sensing can overcome
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these limitations. High-resolution imageries have been ex-
tensively used in postearthquake damage assessment [15, 16].
In terms of earthquake-triggered landslides’ detection, pre-
and postevent remote sensing images covering the same area
have been used to compare the land cover changes [17-19].
Integrated with a digital elevation model and GIS data, single
postevent images can also capture the distribution of land-
slides by using density slicing or spectral enhancement
techniques [20, 21]. For road extraction, most of the methods
comprise one or more algorithms. The backpropagation (BP)
neural algorithm was proposed in the late 1980s [22] and has
been improved by many researchers [23, 24]. A multiclass
SVM method including image segmentation and classifica-
tion algorithms was proposed [25] which performs well for
multispectral data. These are supervised classification
methods demanding better and more training samples for
higher accuracy. Unsupervised classification methods do not
need training samples. For example, mean-shift algorithm can
use kernel density to estimate roads’ factors without pa-
rameters [26]. However, none of the abovementioned
methods can be well applied on mountainous areas covered
with forests. For road damage detection, preearthquake road
vector map can be overlaid on postearthquake imagery to
discover the roads from the imagery as well as their damage
[27,28]. Road center line extraction method can be used to get
roads from postearthquake imagery without aid of road
vector data [29]. However, few of them mentioned such case
that road damage is occluded by trees and the relationship
between road damage and the surrounding geological haz-
ards, such as landslides.

To overcome the abovementioned problems, this paper
locates the landslides triggered by the Jiuzhaigou earthquake
and presents a knowledge-based method for postearthquake
road detection and road capacity assessment with consid-
eration of the impact of landslide using high-resolution
remote sensing images.

2. Study Area

The study area is located in Jiuzhaigou County, north of
Sichuan Province, China, covering the major earthquake-
stricken area of Jiuzhaigou nature reserve, a UNESCO World
Natural Heritage site [30]. Jiuzhaigou County is located in the
northeastern margin of Qinghai-Tibetan Plateau. The altitude
difference is up to 2000 meters from west to east. The county
land area is about 5290 square kilometers and its coordinates’
range is 32°53'N-33°43'N, 103°27'E-104"26'E. As shown in
Figure 1, the study area (marked in red rectangle) is the place
for experimental purposes.

A magnitude 7.0 earthquake struck Jiuzhaigou on 8
August 2017 at the depth of 20 kilometers [31]. The epicenter
was located at 33°12" N, 103°49'E, 5 kilometers west away
from the Y-shaped valley, the core area of Jiuzhaigou nature
reserve. It is the third major tectonic earthquake having
struck mountainous areas of Sichuan in the past decade after
the Wenchuan earthquake in 2008 (about 200 km south of
Jiuzhaigou) and the Lushan earthquake in 2013 (about
360 km south of Jiuzhaigou). 25 people died and more than
500 people were injured by this earthquake. Extensive
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damage was done to roads in Jiuzhaigou natural reserve as a
result of landslides and falling rocks. From the comparison
of remote sensing pre- and postearthquake images in
Figures 2(a) and 2(b), it can be found that there are many
landslides along the roads, and the roads on the images
preearthquake were obvious and continuous; the roads were
interrupted due to the influence of landslides after the
earthquake. Figures 2(c) and 2(d) show the field survey
figures of landslide and road damage in the study area.

3. Data

Since launched in 2015, BJ-2 satellite image has been widely
used in many land monitoring applications in China as it
provides the practical and successful combination of spatial
resolution and time resolution. BJ-2 image is a constellation
with three Earth observation satellites acquiring data in 4
bands (red, green, blue, and infrared). The red, green, and
blue bands are imaged at 0.8 m resolution and the infrared
band is imaged at 3.2m resolution. The constellation can
view the entire Earth’s surface every day. The image catalog
can be accessed from the gateway of BJ-2 satellite constel-
lation service system. The images are pushed to the au-
thorized users on demand via private service networks when
the receiving server and the sending server are well con-
nected. Once a disaster occurs, the three satellites’ orbits can
be adjusted by programming to capture the latest images of
the specific regions. On 9 August 2017, the postearthquake
images of Jiuzhaigou had been acquired. Meanwhile, the
preearthquake BJ-2 satellite images with the least cloud
influence acquired on 28 April 2017 were used to provide the
land cover types before the earthquake event.

Road data covering the study area from China’s first
national geographic census results were used to provide the
essential road information, such as accurate road centerlines,
widths, and surface materials. The first national geographic
census was initiated by the Chinese government and had
been successfully completed in 2016. During the census
process, high-resolution remote sensing images were used
for automatic interpretation and manual editing. Then, the
results were refined by field surveying before finally issued.
The final results are accurate with wide coverage for physical
geography features and human geography features. There-
fore, the road data used here is more reliable and more
efficient than that being extracted only by remote sensing
images, which is very important for quick disaster response.

In addition, the digital elevation model (DEM) data of
Jiuzhaigou County from the Sichuan Bureau of Surveying,
Mapping, and Geoinformation (SCBSM) was used to pro-
vide the information of terrain. The DEM data produced by
SCBSM covers most of Sichuan Province with a spatial
resolution of 5 meters, which facilitates the landslide ex-
traction with detailed slope information. The data sources
are shown in Table 1.

4. Methods

This study estimates landslides triggered by the Jiuzhaigou
earthquake and postearthquake road capacity. First of all,



Advances in Civil Engineering 3

80°0'0"E 100°0'0"E  120°0'0"E 140°0'0"E

104°0'0"E
z : z
o0 N E
&1 ¢ =)
S A ot
Z
s T
4 : : L )
z < Sichuan . <3 L §
s / Jiuzhaigou
e g -
? ey g ' | e
\ LEpicenter.'D \
Z P.aa — Study area .
=] [ IS}
& : B
el it L 1)
=Z 0459 18 2738 Gy s
km =] o K ilometers ) =
- — — IS |
0 275550 1,100 1,650 2,200 cg 104°0'0"E

100°0'0"E 120°0'0"E

FiGure 1: The location of the study area.

(d)

FiGUure 2: The situation before and after the earthquake in the study area. (a) The BJ-2 satellite image on April 28, 2017, before the
earthquake. (b) The BJ-2 satellite image on August 9, 2017, after the earthquake. (c) Field survey figure of the landslide. (d) Field survey figure
of road damage.

TaBLE 1: Data sources.

Data sources Acquisition time Spatial resolution

BJ-2 images 2017-04-28 (before earthquake) 0.8 m (panchromatic band)/3.2 m (multispectral images)
8 2017-08-09 (after earthquake) 0.8 m (panchromatic band)/3.2 m (multispectral images)

Road data 2016 —

DEM 2017 5m




with the support of ENVI 5.3 software, radiometric cali-
bration, atmospheric correction, and geometric correction
have been carried out. There are three crucial procedures in
this study: landslide detection, postearthquake road detec-
tion, and road capacity assessment. Landslides are extracted
from high-resolution remote sensing images firstly and are
used to assist the detection of the postearthquake roads. The
postearthquake roads are extracted based on preearthquake
road data from China’s first national geographic census
results and postearthquake high-resolution remote sensing
images using the knowledge-based model. Potential post-
earthquake roads are further deduced by performing spatial
analysis of roads and their adjacent landslides. The road
capacity assessment is conducted on the basis of the as-
sessment model. The detailed procedures are illustrated in
Figure 3.

4.1. Landslide Extraction

4.1.1. Land Cover Change Detection. The natural land cover
of the study area was acquired by remote sensing image
interpretation and field investigation, as shown in Table 2. In
this mountainous area, the major natural coverage type is
vegetation; other vegetated areas are dominated by the al-
pine and subalpine shrubs and meadows. In this region, the
lands are prohibited to be exploited for commercial or
agricultural purpose, where only some sparse settlements are
located. When the earthquake erupted on 8 August 2017,
these plants were almost at the peak of growth. Therefore,
the land cover change caused by a landslide during the
earthquake would result in an explicit distinction of vege-
tation in this area.

The Normalized Difference Vegetation Index (NDVI)
and the Enhanced Vegetation Index (EVI) are two vegeta-
tion indices extensively used for vegetation canopy moni-
toring in remote sensing [32-34]. EVI was developed to
improve NDVI production in some cases, which minimizes
canopy-soil variations and improves sensitivity over dense
vegetation conditions. But EVI is not suitable for medium
and small regions. Therefore, NDVT is adopted in this paper
to detect vegetation coverage change induced by landslides.
The NDVI is calculated as

NIR — RED
NDVI = —————— (D
NIR + RED

where NIR and RED are the infrared and red reflectance,
respectively, from BJ-2. The NDVI value ranges from minus
one to plus one ([-1, 1]). Then, the rate of change (ROC)
between NDVI before and after the earthquake was derived
by

NDVI .. - NDVIL .
ROCypyr = - =, (2)
NDVI,,

where NDVI,.. and NDVI, are the NDVI before and after
the event, respectively. The smaller the absolute ROCypy;
(IROCypy1l) is, the less the change of vegetation coverage
occurred.
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The variation of ROCypy; during several months in the
mountainous area may be caused by vegetation growth and
agricultural or forestry activities. As shown in Table 1, there
is less farmland in the study area and it is prohibited to cut
woods in a natural reserve, which excludes the possibility of
sharp ROCypy; plunge induced by harvest and tree cutting.
Moreover, when ROCypy; is negative, it indicates that the
plants have grown for seasonal change. Otherwise, when
ROCypy; is positive, the mean value of the regional
ROCypy; was calculated and analyzed. Then, a threshold
was determined to discriminate the vegetation coverage
change caused by landslides.

4.1.2. Landslides Identification. More criteria need to be
integrated to eliminate the misclassified objects after
ROCypy; process. In the study area, with the consideration
of image acquisition time span from late April to August, the
positive ROCypy; value may result from four situations, that
is, (a) size increase of water body, (b) size reduction of rocky
area, (c) variation of settlements, and (d) variation of
landslide area. The water body and settlements are always
distributed on the relatively plain places in the mountainous
area with a gentle slope, while the regions of landslides are
with a moderate or steep slope [35, 36]. Therefore, the slope
can be used to distinguish (b) and (d) from the other two
situations of positive ROCypy; variation. Research shows
that the mean slope of water body (such as lake) above
1000 m is less than 5° and that of the settlements is less than
12° [37]. The threshold slope values were adopted and
slightly adjusted experimentally. On the other hand, the
starting region of landslide is as bright as bare rock but it is
usually brighter than the following accumulation region of
landslide which comprises more debris, woods, and dust.
Therefore, the bare lands with brightness variation within an
empirical limit range can be detected as a landslide area.
Since the spatial resolution of RGB bands and infrared band
of BJ-2 satellite image is 1 m and 4 m, respectively, and that
of DEM data is 5 m, more landslide details can be noticed.
Moreover, for the study area, of approximately 1000 km?, the
landslides can be identified in about one hour using a
computer with Core i7 CPU 3.4 GHz, RAM 16 GB.

4.2. Road Damage Detection

4.2.1. Postearthquake Road Extraction. Road centerline is
crucial for road extraction and damage assessment. In the
mountainous area where the land is covered with vegetation
and terrain varies frequently, the road may be no longer with
regular and continuous boundaries in remote sensing im-
ages. The road centerline may also be occluded by tree shade
or upper rocks in preearthquake remote sensing images. For
postearthquake images, the road centerline may be inter-
rupted by shock and landslide for a certain length. Therefore,
the existing methods for road centerline extraction are hard
to be applied to practical operation in this study. As a result,
the road data from China’s national geographic census re-
sults are adopted. The data includes the existing surfaced
roads with their centerlines and widths in this region which
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FiGure 3: Flowchart of quick estimation of landslides and postearthquake road capacity.

TaBLE 2: Main natural land cover of Jiuzhaigou.

Land cover type Area
percentage
Alpine shrub 2.24
Sabina saltuaria forest 0.12
Alpine meadow 0.78
Deciduous broad-leaved forest 4.44
Abies ernestii forest 12.90
Salix shrub 0.31
Bare rock 19.10
Subalpine deciduous broad-leaved shrub 22.10
Water 0.51
Evergreen coniferous and broad-leaved mixed 6.4
forest 31.1

were updated in 2016 and had been refined by field
surveying.

After the earthquake, the characteristics of roads varied
in terms of geometry and composition when they were
damaged. It is difficult to extract postearthquake roads
exactly and efficiently from the whole size of the image. In
this study, an integrated method was proposed to discern
postearthquake roads, which refers to GIS analysis and
knowledge-based road recognition. The method consists of
four major steps. Firstly, a buffer was generated for each road
centerline with a distance larger than width/2 to ensure the
coverage of both road boundaries. Only the image part
overlaid by the buffer areas was selected for following road
detection. Then, typical parameters based on road knowl-
edge and spectral characteristics were chosen to build the
model for road extraction. Subsequently, potential road
segments were extracted by this model after multiscale
segmentation of the buffer-constrained area. Finally, these
potential road segments were processed by a mathematical
morphological operation to get the final results.

In the mountainous area, winding roads are common
where the buffer zones may be overlapped with each other.
To overcome this problem, the buffer boundaries are dis-
solved when they intersect, as shown in Figure 4.

The objects become more distinct within the buffer area
where roads can be extracted more efficiently, as shown in
Figure 5. While developing a model based on road
knowledge for extraction, texture or geometry is required to
eliminate other misclassified objects, such as bare land and
parking lot adjacent to road. Therefore, the brightness,

FiGure 4: Winding road buffer with intact and dissolved
boundaries.

standard deviation of RGB band, and rectangular fit are
selected as quantitative parameters to further verify the
postearthquake road segments. The expression of the model
is as follows:

R,=Bn SDN RE, Be (b, b,), SD € (sdy,sd,),
RF € (rfy, 7f5),

where R, is the postearthquake road segments and B, SD,
and RF are brightness, standard deviation, and rectangular
fit of postearthquake road which should be within specific
threshold ranges (n;, n,), (sd;,sd,), and (rf,, rf,), re-
spectively. These thresholds are predefined experimentally.
Actually, trees along the road are still included in R,. In
order to remove them, R, is verified by using NDVI. The
expression is as follows:

R, =R, N NDVI;, NDVI, ¢ (ndvij, ndvi,),  (4)

(3)

where R, denotes the final results of postearthquake road
and NDVI,; is NDVI value of road segment. The values of
ndvi; and ndvi, are predefined as a threshold for the NDVI
value of the road segment.

The procedure using the foregoing model to extract
postearthquake road segments is as follows:

(1) Multiscale segmentation is carried out by defining
scale parameter, shape factor, and compactness.
Pixels with a similar homogeneous pattern are
grouped into the same image object. Spectral, shape,
and level characteristics vary among different image
objects.

(2) Each road vector data is buffered with a distance of
larger than half-width. The road data and its buffer
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(b)

FIGURE 5: Classification results comparison. (a) Original classification result. (b) Buffer-constrained classification result.

area are overlapped on the postearthquake remote
sensing image registered with the same spatial
reference.

(3) Equation (3) is applied to the image part within the
buffered area to extract road segments. Then, the
results are further refined by equation (4).

(4) The extracted road segments of the same section with
the consistent width are processed by the closing
operation of mathematical morphology to remove
the impact of small objects in image, such as vehicles.
A 2 x 2 square is chosen as the structuring element so
as not to affect the road segments.

4.2.2. Road Damage Analysis. In this paper, road damage
analysis includes damage detection for observable roads in
image and damage possibility inference for occluded roads.
Firstly, the centerline buffered with the distance of width/2 is
regarded as the preearthquake road. For observable road, the
road surface is visible in image without occlusion, where the
preearthquake roads consist of postearthquake undamaged
roads and damaged roads. The relationship of them is de-
fined as follows:

Roadg,peee = Road,,,. — Road,,oq (5)

where Road,,., Road,.y, and Roadgyg denote pre-
earthquake road, postearthquake road, and damaged road,
respectively. For occluded road, the road surface is partially
visible in image, while the other parts are occluded by trees.
In this case, the relationship is as follows:

Roadgypmge = Road,,,. — Road,,, + A, (6)

pos

where A denotes occluded roads in image. In this case, road
centerline is buffered with a different distance specified as
follows:

D = 0.5 x width + 60, (7)

where D denotes the buffer distance and width denotes the
width of road derived from the road vector data attribute.

Besides, a constant of 60 meters is determined to add to the
buffer distance experimentally, which is used to infer the
adjacent landslide impacts on roads.

In this study, it is agreed that road with landslide 60
meters or less away from its either boundary is prone to be
damaged even if the damage is occluded by tree shade in
image, because the occluded road may be damaged by
secondary disasters induced by landslide from the upland,
such as debris and fallen rocks. Otherwise, the occluded road
is regarded as intact.

The spatial relationships between buffered area with
distance calculated by equation (7) and landslides are in-
tersection, touch, and none. By applying the INTERSECT
operation, the common geometric portion of the buffer area
and landslide is computed. If the common geometry is a
polygon or point, it means that the occluded road is probably
affected by the landslides and will be classified as a damaged
road. § in equation (6) is added to Road,. If not, the occluded
road is classified as preearthquake road and § is appended to
Road,.

4.2.3. Road Capacity Grading Scheme Building. Road ca-
pacity grading plays an important role in postearthquake
relief actions which can facilitate the rescue decision-making
and help to provide timely assistance to victims. In many
cases, it is reflected by road damage grades. Study of road
damage reports due to earthquake from 1989 to 2012 gives
five grades for damaged roads: extensively damaged roads
(RDS-5), highly damaged roads (RDS-4), moderately
damaged roads (RDS-3), low damaged roads (RDS-2), and
slightly damaged roads (RDS-1) [38]. In China-related
national standards, the road damage is graded by road
section and five grades are defined as well based on the ratio
of road structure damage.

In the study area, the road components vary with dif-
ferent road sections as the road direction and terrain change
along the road. Furthermore, whether a postearthquake road
section is passable for rescue vehicles is mainly determined
by its width. In view of the above reasons, as well as relative
study and the current national standards, this study proposes
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a postearthquake road capacity grading scheme based on
postearthquake road width ratio (p). The computation is as
follows:

p=—r= (8)

where W, and W, denote the post- and preearthquake
road width, respectively. The grading scheme of post-
earthquake road capacity is built in Table 3.

5. Results and Discussion

5.1. Landslide Extraction. In this paper, the landslides are
extracted using pre- and postearthquake high-resolution
remote sensing images and DEM data. As the study area in
valley with lower elevation ranging from 2000 m to 3000 m
compared with other nearby mountains, the snow dis-
appeared in the preearthquake image which enables the use
of NDVT to detect the land cover change. The whole process
consists of land cover change rate detection based on NDVI
and landslide extraction based on slope and brightness.

In order to detect the land cover change, the multiscale
segmentation is used for image segmentation. The scale
parameter is crucial because it determines the outlines of
landslide objects as well as the boundaries of road objects. By
analyzing the characteristics of images, the scale parameter is
set to 50, 100, 150, 200, and 250. As the shapes of landslides
vary and the widths of original roads range from 5.5m to
7m, it is hard to define a scale value fitting for all these
objects. After several trials and adjustments, the segmen-
tation scale of 260 performs best on the landslide class and
road class integrity.

After the calculation of NDVT for each object in different
images, the results are exported to vector layers, respectively.
Feature to raster was applied to these layers converting them
to raster layers with the same cell size. The raster layers are
then calculated to generate ROC map (Figure 6(a)). The
steep decrease of NDVI change rate was found along the
valley between the ranges of mountains. Using slope and
brightness, the landslides are further extracted as shown in
Figure 6(b). The result indicates that these landslides mainly
distributed in the areas of valley banks which are also the
areas with a steep slope. In these places, instable rocks are
more vulnerable to ground shock.

5.2. Postearthquake Road Extraction. The postearthquake
roads are extracted based on the buffer constrain and the
knowledge-based model. Then, the results are improved by
closing operation of mathematical morphology. Lastly, the
road damage analysis model is applied to refine the results by
inferring the potential undamaged parts. The final results are
shown in Figure 7(a) where the visible segments of post-
earthquake road are identified and the occluded potential
passible road segments are marked as well. In the above
process, the buffer distance is set to one road width so as to
guarantee the integrity of road boundaries.

The postearthquake image was acquired one day after the
earthquake, so a few clouds’ influence exists which is

common for satellite images of the high-altitude region.
However, the majority of this image can be seen clearly,
especially for roads. On the bottom left of the image, the
landslides are concentrated as shown in Figure 6(b) and
roads in this region are severely destroyed. As a result, only a
few scattered short road segments can be identified. On the
middle top of the image, many interruptions along the road
can be found, which is consistent with the fact that the
landslides are dense in the nearby regions seen in
Figure 6(b).

5.3. Road Capacity Evaluation. In order to evaluate the
safety of roads for vehicles, the road capacity is calculated
using equation (8) based on postearthquake roads’ extrac-
tion result and preearthquake road vector data. Subse-
quently, the road capacity is graded based on the criteria
scheme in Table 2. The result is shown in Figure 7(b) where
green, orange, yellow, and red road segments map one-to-
one to four grades in Table 2.

It can be seen from Figure 7(b) that most road segments
are accessible for vehicles. The orange road segments of
grade II alternate with green road segments of grade I in the
middle and upper image, which means that the rescue ve-
hicles can pass through without any needs of road repair
work despite some rocks or cracks may exist in the pave-
ment, as shown in Figure 8(a). The red road segments of
grade IV with a few yellow ones of grade III concentrate in
the bottom-left image where Five Flower Lake lies. This is
one of the hardest-hit areas in Jiuzhaigou natural reserve
according to field investigation by the Institute of Crustal
Dynamics, China Earthquake Administration [39-41]. The
road pavements in this region are severely damaged as
shown in Figure 8(b). It is impossible to rebuild the structure
in short term to enable vehicles accessibility.

5.4. Accuracy Assessment. The landslides and road capacity
in the study area are manually interpreted and delineated as
well. The area of landslides and the length of postearthquake
roads were computed to evaluate the accuracy of the fore-
going automatic detection process. The results are listed in
Table 4, where UA and PA denote user accuracy and pro-
ducer accuracy, respectively.

It can be seen from the above table that the detection
method is trustworthy. The PA can reach about 90% for
landslide and 85% for postearthquake road. The detection
result of landslide is more accurate than that of road because
the landslides in image are comparatively distinct without
shade occlusion. As most of the roads are located in valley
with steep banks on both sides, the deduction method using
landslide to estimate occluded road damage is feasible and
effective. Otherwise, when the slope is gentle, the result may
be different. Furthermore, the deviation inevitably exists in
image registration process; as a result, the road centerlines
cannot totally match with the postearthquake images. A few
of them may drift slightly away from the places where they
are supposed to be in images. In this case, although the
number of drifted centerlines is small and the deviations are
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TaBLE 3: Postearthquake road capacity scheme.

Grade Road capacity Road width ratio: p Criterion

I Almost normal road 80% < p < 100% The road surface is almost normal. Vehicles can pass through in succession.
I Damaged but accessible road  50% < p < 80%

III

The road surface is partially damaged. Vehicles can pass through.
Damaged and interrupted road 20% < p < 50% The road surface is severely damaged. Vehicles cannot pass through.
Ruined road 0<p <20% The road surface is ruined.
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FIGURE 6: Results are exported to vector layers. (a) Rate of change (ROC) for NDVTI between pre- and postearthquake images. (b) Detected
landslides against slope in the study area.
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FIGURE 7: Extraction result. (a) Result of postearthquake road extraction. Yellow regions are the postearthquake roads. (b) Road capacity
grade result.
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(®)

FIGURE 8: Road pavement damage cases. (a) Partially destroyed pavement with rocks caused by adjacent landslide. (b) Totally destroyed

pavement buried by landslide.

TaBLE 4: Accuracy assessment of landslide and postearthquake road.

Classification Indicator ~ Manual interpreted value Detected value Correctly detected value UA (%) PA (%)
Landslide Area 3.62 km’ 3.84 km’ 3.27 km? 85.16 90.33
Postearthquake road Length 26.16 km 27.84 km 22.03 km 79.13 84.21

(a) (b)

FIGURE 9: Road data deviation in the images. (a) Road data matches its position in image; (b) road data drifts from its position in image.

acceptable as shown in Figure 9, some errors may be
generated.

The quantitative evaluation model of road capacity
needs to introduce more quantitative values for analysis
[42]. Limited by the research data, this paper lacks higher
precision DEM data before and after earthquake to cal-
culate the Earth volume accumulated on the road surface.
Such three-dimensional information is needed to make a
more accurate judgment on the road capacity. In addition,
the quantitative assessment method of road capacity
proposed in this paper is only aimed at the impact of the

damaged object on the traffic condition of the road section.
Other factors, such as road connectivity, topological
structure, and road network relationship, are not taken into
account. Therefore, the universality of the method should
be strengthened in the follow-up study.

6. Conclusions

Landslides and postearthquake road capacity are the main
factors after earthquake in the mountainous region that
affect rescue work efficiency and quake-relief decision-
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making. It is extremely necessary to quantitatively estimate
and map the landslides and postearthquake road capacity
promptly and efficiently so as to carry out a quick response
to the disaster and rescue more lives. To reduce the influence
of cloud cover and meet the need for regional quick ob-
servation and feature extraction after the earthquake, this
study proposes one landslide and postearthquake road de-
tection method based on the vector data, high-resolution
images, and DEM.

The main novelty of this approach is analyzing the
connection between landslides and postearthquake road to
estimate the occluded road damage. When earthquake oc-
curs in mountainous area where cloud cover is common in
remote sensing images, the existing data have to be fully
utilized to generate fairly accurate interpretation results.
NDVI variation and terrain slope are used to detect the
landslides. Next, the observable postearthquake roads are
extracted from the image. The occluded roads without
landslide distributing in 60m are also perceived as
undamaged.

Experiments show good results for the proposed method
to estimate the landslides and postearthquake road capacity.
It is of great value for quick and efficient response to
devastating earthquake in mountainous areas where the land
is covered with vegetation.
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