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Based on the Mohr–Coulomb criterion, a new analytical solution of a circular opening under nonuniform pressure was presented,
which considered rock dilatancy effect and elastic-brittle-plastic failure characteristics. In the plastic zone, the attenuation of
Young’s modulus was considered using a radius-dependent model (RDM), and solution of the radius and radial displacement of
plastic zone was obtained. (e results show that many factors have important impact on the response of the surrounding rock,
including lateral pressure coefficient, dilation coefficient, buried depth, and Young’s modulus attenuation. Under nonuniform
pressure condition, the distribution of plastic zone and deformation around the opening show obvious nonuniform characteristic:
with the increasing of lateral pressure coefficient, the range of plastic zone and deformation decrease gradually at side, while they
increase at roof and floor, and the location of the maximum value of support and surrounding rock response curve transfers from
side to roof. Based on the analytical results and engineering practice, an optimization method of support design was proposed for
the circular opening under nonuniform pressure.

1. Introduction

It is important to predict the distribution of stress and
deformation accurately for a deep circular opening, which is
the basis for evaluating the stability of surrounding rock and
reliability of support design in deep mining and other un-
derground engineering. Many efforts have been paid on this
topic, based on the linear Mohr–Coulomb (M-C) criterion
or nonlinear Hoek–Brown (H-B) criterion, considering ideal
elastic-plastic model (EPM), elastic-brittle-plastic model
(EBM), or strain-softening model [1–11]. In the previous
researches, the stress was usually assumed to be uniform,
and the influence of lateral pressure coefficient on the stress-
state distribution of surrounding rock was ignored. How-
ever, many engineering practices indicate that the gravity
stress of the overlying strata and the tectonic stress usually
lead to the nonuniform stress distribution in the sur-
rounding rock [12–16]. Some theoretical analysis and

numerical simulation results indicate that the lateral pres-
sure coefficient has a remarkable influence on the stress state
of surrounding rock [17–19]. (erefore, the research results
without considering the effect of lateral pressure coefficient
are inconsistent with the engineering conditions. In the
present research, a mechanical model for circular opening
with nonuniform confining pressure is first proposed. (en,
the impacts of the lateral pressure coefficient on the dis-
tribution of plastic zone in the surrounding rock and the
response curve of the support system were analyzed.

When the surrounding rock undergoes plastic defor-
mation, the mechanical properties of the rock mass may
change due to rock damage, such as the attenuations of in-
ternal friction angle, cohesion, Young’s modulus, and Pois-
son’s ratio. As for Young’s modulus, at present, there are two
methods to define the attenuation process for the postpeak
rock. In the first method, Young’s modulus of the postpeak
rock is determined by confining pressure and minimum
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principal stress, which is named the pressure-dependent
Young’s modulus model (PDM) [20–22]. In the other method,
Young’s modulus decreases with some function relationship
along the radius direction of the surrounding rock, which is
called the radius-dependent Young’s modulus model (RDM)
[23–26]. (e RDM is regarded as the extension of PDM. It is
thought that the close relationship between Young’s modulus
attenuation and rock fracture can explain efficiently the large
deformation problems of surrounding rock in the deep un-
derground engineering [27]. In the present work, the RDM is
adopted to account for the effect of Young’s modulus atten-
uation. In addition, some scholars regard the surrounding rock
as viscoelastic model [28–33] and deduce a series of simplified
formulas for lining pressure and tunnel convergence, which
provides an effective method for predicting the time-varying
displacement and stress field of surrounding rock of deep-
buried circular tunnel. Wu and Shao [34–36] proposed using
flexible layer to deal with large deformation of tunnel in vis-
coelastic rock mass. (eory and engineering practice shows
that flexible layer has a good absorption effect on rock rheo-
logical deformation.

Based on the proposed mechanical model, the closed-
form solutions of stress, deformation, and radius of plastic
zone of the surrounding rock in circle opening with non-
uniform confining pressure was obtained. (e influence of
the lateral pressure coefficient, dilation coefficient, and
Young’ modulus attenuation on the response of the sur-
rounding rock was studied. (en, according to the engi-
neering practices in different geological conditions, a
support design method was proposed considering non-
uniform stress state.

2. Analytical Solution of the Circular Opening

2.1. Fundamental Assumptions

2.1.1. Yield Criterion. As shown in Figure 1, a circular opening
with a radius of r0 is excavated in the uniform, isotropic, and
continuous rockmedia.(e internal support pressure (pin) acts
on the location of r0, and the vertical stress (σ0) and the lateral
pressure (λσ0) act at the outer boundaries, where λ is the lateral
pressure coefficient. (e stress of surrounding rock redis-
tributes after excavation. When the stress reaches the yield
strength of the rock mass, plastic deformation will occur, and
the radius of plastic zone is represented by rj in Figure 1.

In the paper, the linear M-C yield criterion was adopted
as yield condition of surrounding rock, and it is expressed as
[5, 8, 23]

σ1 � ξσ3 + Y, (1)

where σ1 and σ3 are the maximum stress and minimum
principal stress, respectively, Y � 2c cosφ/(1 − sinφ),
ξ � (1 + sinφ)/(1 − sinφ), and c and φ are the cohesion and
internal friction angle of the rock, respectively.

For the plane strain problem of the circular tunnel, the
hoop stress (σθ) and radial stress (σr) are the maximum and
minimum principal stress, respectively [17], which means
that σ1 � σθ and σ3 � σr. (en, equation (1) could be rep-
resented as

σθ � ξσr + Y. (2)

Considering the elastic-brittle characteristic of rock
mass, there is a stress drop after the peak strength [5, 9, 10],
after which the rock mass undergoes postpeak-flow state. In
the postpeak region, the residual rock parameters are used
(residual cohesion cr, residual internal frictional angle φr,
and residual Poisson’s ratio ]r).

2.1.2. Attenuation of Young’s Modulus. (e mechanical
behavior of surrounding rock is closely related with its
damage in the plastic zone. (e higher damage usually leads
to larger deformation ability. (en, the attenuation of
Young’s modulus should be considered in the plastic zone.
In general, the damage of the rock mass can be expressed by
the attenuation of Young’s Modulus. Based on previous
researches [23, 24], a radius-dependent Young’s modulus
attenuation model (RDM) with a power function is adopted
here as follows:

E(r) � Er

r

r0
􏼠 􏼡

α

, (3)

where E and Er are the initial and residual Young’s modulus,
respectively, α� log (E/Er)/log(rj/r0), if α� 0 and E� Er.

Equation (3) shows that the attenuation of Young’s
modulus is not only related to the initial and residual
Young’s modulus but also closely related to the radius of the
plastic zone. Compared with the solution presented by
Zhang and Ewy [23, 24], the solution of this paper is ob-
tained under nonuniform pressure, and the influence of
lateral pressure coefficient on the surrounding rock state is
considered. (erefore, the radius of plastic zone in different
positions around the surrounding rock varies, and the at-
tenuation degree of Young’s modulus is also nonuniform
around the opening.

According to equation (3), at the boundaries of the
plastic zone, Young’s modulus should be
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Figure 1: Mechanical model of a deep circular opening.
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E(r)r�rj
� E,

E(r)r�r0
� Er.

(4)

2.2. Fundamental Equations. (e equilibrium equation in
the elastic zone and the plastic zone is

dσr

dr
+

σr − σθ( 􏼁

r
� 0. (5)

(e strain-displacement relationship is

εr �
du

dr
,

εθ �
u

r
.

(6)

For the plane strain problem, the constitute equation,
i.e., Hooke’s law, is

εr �
1 + ]

E
(1 − ]) σr − σ0( 􏼁 − ] σθ − σ0( 􏼁􏼂 􏼃,

εθ �
1 + ]

E
(1 − ]) σθ − σ0( 􏼁 − ] σr − σ0( 􏼁􏼂 􏼃.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(7)

where ] is Poisson’s ratio.

2.3. Solution of Stress and Deformation in Elastic Zone. To
solve the problems of a circular opening under nonuniform
stress field, the stress conditions at boundaries are divided
into two parts [37], as shown in Figure 2. (e first part
(Figure 2(a)) is uniform compressive stress field with a value
of σu

0 � (1 + λ)σ0/2; and the second one (Figure 2(b)) is the
stress field with horizontal tensile stress and vertical com-
pressive stress, the value is σn

0 � (1 − λ)σ0/2. In addition, R
represents an infinite position that the stress state is equal to
in situ stress.

2.3.1. Solution of Uniform Compressive Stress Field.
Computational mechanics model of uniform compressive
stress field is presented in Figure 2(a). Based on elastic
theory, the stress of the elastic zone under uniform pressure
is obtained on the consideration of stress boundary con-
ditions σre � py on elastic-plastic interface r� rj (where py is
the radial stress in elastic-plastic interface):

σU
re �

(1 + λ)σ0
2

1 −
r
2
j

r
2

⎛⎝ ⎞⎠ + py

r
2
j

r
2,

σU
θe �

(1 + λ)σ0
2

1 +
r
2
j

r
2

⎛⎝ ⎞⎠ − py

r
2
j

r
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where the subscript notation e represents the elastic zone.

2.3.2. Solution of Stress Field with Horizontal Tensile Stress
and Vertical Compressive Stress. As shown in Figure 2(b),
for a point in the surrounding rock with the position of r�R,
the stress at the point is original rock stress, and the stress
boundary conditions are σx � − (1 − λ)σ0/2, σy �

(1 − λ)σ0/2, and τxy � 0. So the stress expression in polar the
coordinate is as follows:

σr � −
1
2

(1 − λ)σ0 cos 2θ,

τrθ �
1
2

(1 − λ)σ0 sin 2θ.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(9)

Equation (9) gives the outer boundary conditions at the
position of r�R. And the internal boundary condition under
r� rj is shown as follows:

σr( 􏼁r�rj
� 0,

τrθ( 􏼁r�rj
� 0.

⎧⎪⎨

⎪⎩
(10)

From equations (9) and (10), using the semi-retro-solution
method [37], the stress function in the elastic zone is

F � f(r)cos 2 θ. (11)

Substituting equation (11) into the compatible equation
in the polar coordinate system, i.e., ((z2/zr2) +

(1/r) + (z/zr) + (1/r2) + (z2/zθ2))F � 0, the expression of
stress function is determined as follows:

F � A1r
4

+ A2r
2

+ A3 +
A4

r
2􏼠 􏼡cos 2θ, (12)

where A1, A2, A3, and A4 are all constants.
(e stress component is solved by equation (12), com-

bined with the boundary condition expressions (9) and (10).
(e result is as follows:

σN
re �

1
r

zF

zr
+
1
r
2

z
2
F

zθ2
� −

(1 − λ)σ0
2

1 − 4
r
2
j

r
2 + 3

r
4
j

r
4

⎛⎝ ⎞⎠cos 2θ,

σN
θe �

z
2
F

zr
2 �

(1 − λ)σ0
2

1 + 3
r
4
j

r
4

⎛⎝ ⎞⎠cos 2θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

By superposing the two stress fields mentioned above,
the stress equation of elastic zone of a circular opening under
nonuniform stress field can be obtained:
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σre � σU
re + σN

re �
(1 + λ)σ0

2
1 −

r
2
j

r
2

⎛⎝ ⎞⎠ + py

r
2
j

r
2 −

(1 − λ)σ0
2

1 − 4
r
2
j

r
2 + 3

r
4
j

r
4

⎛⎝ ⎞⎠cos 2θ,

σθe � σU
θe + σN

θe �
(1 + λ)σ0

2
1 +

r
2
j

r
2

⎛⎝ ⎞⎠ − py

r
2
j

r
2 +

(1 − λ)σ0
2

1 + 3
r
4
j

r
4

⎛⎝ ⎞⎠cos 2θ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14a)

When λ� 1, equation (14a) will be transferred into the
stress expression in the elastic zone under uniform pressure,
as given in equation (14b), which is consistent with the
results of other researchers [5]:

σre � σ0 − σ0 − py􏼐 􏼑
r
2
j

r
2,

σθe � σ0 + σ0 − py􏼐 􏼑
r
2
j

r
2.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(14b)

Substituting equations (7) and (14a) into equation (6),
the displacement of the elastic zone on consideration of
stress instantaneous release is

ure �
(1 + ])r

E
α1 + α2

r
2
j

r
2 + α3

r
4
j

r
4

⎛⎝ ⎞⎠, (15)

where α1 � (1 − λ)]σ0, α3 � (3(1 − λ)σ0/2), and
α2 � ((1 + λ)σ0/2) − 2(1 − λ)]σ0 cos 2θ − py.

When r� rj, the radial displacement at elastoplastic in-
terface is

urj
�

(1 + ])rj

E
α1 + α2 + α3( 􏼁. (16)

As the surrounding rock is at the state of critical yield
stress at elastoplastic interface, its circumferential and radial
stresses both satisfy the yield criterion at peak point. (en,
substituting equation (14a) into equation (2), the radial
contact stress of elastoplastic zone with M-C criterion is

py1
�

1
1 + ξ

(1 + λ)σ0 + 2(1 − λ)σ0 cos 2θ − Y􏼂 􏼃. (17)

When λ� 1, equation (17) can be transferred into radial
contact stress in the elastoplastic zone with uniform pressure
as given in equation (18), which is the same with the result
given by Park [5]:

py2
�
2σ0 − Y

1 + ξ
. (18)

2.4. Solution of Stress and Deformation of Plastic Zone

2.4.1. Stress and Radius of Plastic Zone. (e stress of the
plastic zone should satisfy the yield criterion and equilib-
rium equation under the postpeak state. By combining
equations (2) and (5) with the stress boundary condition
σrp � pin in the position of r� r0, the expression of stress can
be deduced as follows:.
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Figure 2: Equivalent mechanical model of a deep circular opening. (a) Uniform compressive stress field. (b)(e stress field with horizontal
tensile stress and vertical compressive stress.
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σrp � H1
r

r0
􏼠 􏼡

ξr − 1

+ H2,

σθp � ξrH1
r

r0
􏼠 􏼡

ξr− 1

.

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(19)

where the subscript notation p represents the plastic zone,
H1 � pin − (Yr/1 − ξr), and H2 � (Yr/1 − ξr).

From equations (14a) and (14b), it shows that the radius of
the plastic zone should be determined first to obtain the closed
analytical solution of the stress in the surrounding rock.
According to the boundary conditions at the elastoplastic
interface, r� rj, and (σrp)r�rj� py1

, the radius of the plastic zone
is proposed by combining equations (17) and (19):

rj1
� r0

(1 + λ)σ0 + 2(1 − λ)σ0 cos 2 θ − Y

(1 + ξ)H1
−

H2

H1
􏼢 􏼣

1/ξr− 1( )

.

(20)

2.4.2. Displacement of Plastic Zone. It is assumed that the
circumferential strain and radial strain in the plastic zone are
both composed of elastic and plastic strain, and the total
strain is

εrp � εe
r + εp

r ,

εθp � εe
θ + εp

θ ,

⎧⎪⎨

⎪⎩
(21)

where εrp and εθp are the total radial and circumferential
strain, respectively; εp

r and εp

θ are the radial and circum-
ferential plastic strain, respectively; and εe

r and εe
θ are the

radial and circumferential elastic strain, respectively.
In any cases, the plastic deformation of rock should

satisfy the flow rule, which is determined by the plastic
potential function. Corresponding to the Mohr–Coulomb
yield criterion, the following potential function is used:

ϕ � σθ − βrσr, (22)

where βr � (1 + sinψ)/(1 − sinψ) and ψ is the dilation angle
of rock. If the dilation angle is not equal to the frictional
angle, a nonassociated flow rule is used.

Based on plastic potential theory, the circumferential
and radial plastic stresses in plastic zone are

εp

θ � λp

zϕ
zσθp

,

εp
r � λp

zϕ
zσrp

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(23)

where λp is the parameter related to plastic strain.
Substituting equation (22) into equation (23), the plastic

strain in the plastic zone should satisfy the following
relationship:

εp
r + βrε

p

θ � 0. (24)

And substituting equations (21) and (24) into equation
(6), the differential equation of radial displacement of the
plastic zone is

durp

dr
+ βr

urp

r
� g(r), (25)

where g(r) � εe
r + βrεe

θ.
According to radial displacement continuous condition

urp � urj
in the position of r� rj, the radial displacement of

the plastic zone is obtained by solving equation (25):

urp �
1

r
βr

􏽚
r

rj

g(r)r
βrdr + urj

rj

r
􏼒 􏼓

βr

. (26)

According to equation (26), it may be seen that the
displacement of the plastic zone is closely related to the
elastic stain g(r). By taking into account Young’s modulus
attenuation along the radial direction, the elastic strain at a
specific position in the plastic zone can be expressed as
follows:

εe
θ �

1 + vr

E(r)
1 − vr( 􏼁 σθp − σ0􏼐 􏼑 − vr σrp − σ0􏼐 􏼑􏽨 􏽩,

εe
r �

1 + vr

E(r)
1 − vr( 􏼁 σrp − σ0􏼐 􏼑 − vr σθp − σ0􏼐 􏼑􏽨 􏽩.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(27)

Substituting equation (27) into equation g(r) � εe
r+ βrεe

θ,
the expression of g(r) is

g(r) �
1 + ]r

E(r)
1 − ]r − ]rβr( 􏼁σrp + βr − ]rβr − ]r( 􏼁σθp􏽨

+ 2]r − 1( 􏼁 1 + βr( 􏼁σ0􏼃.
(28)

Substituting equation (19) into (28), equation g (r) with
M-C criterion can be obtained:

g(r) �
1 + ]r

E(r)
δ1

r

r0
􏼠 􏼡

ξr− 1

+ δ2⎡⎢⎣ ⎤⎥⎦, (29)

where δ1 � [(1 − ]r − ]rβr) + ξr(βr − ]rβr − ]r)]H1 and
δ2 � (1 − 2]r)(1 + βr)(H2 − σ0).

From equations (26) and (29), it is known that the
deformation of surrounding rock is closely related with
Young’s modulus in the plastic zone. In order to analyze the
influence of different attenuation functions of Young’s
modulus on the rock deformation, based on the RDM in
equation (3), three expressions for Young’s modulus at-
tenuation are proposed:

(i) Case 1: when α� 0 and E� E (r)� Er, Young’s
modulus of rock in the plastic zone is the initial one,
which means that the effect of Young’s modulus
attenuation on rock deformation is ignored

(ii) Case 2: when α� 0 and E≠ E (r)� Er, Young’s
modulus of rock in the plastic zone is the residual
one, which is a constant
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(iii) Case 3: when α> 0 and E (r)� Er (r/r0)α, Young’s
modulus of rock in the plastic zone decreases, as
defined in RDM

For Cases 1 and 2, substituting equations (29) into (26),
the displacement of the plastic zone without considering the
RDM is

u
case1,2
rp �

1
2Grr

βr
δ1f1(r) + δ2f2(r) − δ1f1 rj􏼐 􏼑􏽨

− δ2f2 rj􏼐 􏼑 + 2Grurjr
βr

j 􏼕,

(30)

where Gr � Er/[2(1 + ]r)], f1(r) � (1/rξr− 1
0 )(rβr+ξr /ξr + βr),

f1(rj) � (1/rξr− 1
0 )(r

βr+ξr

j /ξr + βr), f2(r) � (rβr+1/1 + βr),

and f2(rj) � (r
βr+1
j /1 + βr).

Similarly, with Case 3, substituting equations (3) and
(29) into (26), the displacement of the plastic zone con-
sidering the RDM is

u
case3
rp �

1
2Grr

βr
c3 r

c1 − r
c1
j􏼐 􏼑 + c4 r

c2 − r
c2
j􏼐 􏼑 + 2Grurj

r
βr

j􏼔 􏼕,

(31)

where c1 � βr + ξr − α, c2 � βr − α + 1, c3 �

(δ1/r
ξr− α− 1
0 (βr + ξr − α)), and c4 � (δ2/r− α

0 (βr − α + 1)).

3. Analytical Results

3.1. Model Validation and Comparison. Comparing with the
closed-form solutions in the literature, the presented work takes
lateral pressure coefficient and Young’smodulus attenuation into
consideration.When λ� 1, α� 0, and v � vr, themodel provides
solution for the condition of uniform stress and constant Young’s
modulus, which has been studied by Park [5]. To verify the
accuracy of the proposed model, results of the proposed model
and Park’s solution were compared, as shown in Figure 3. (e
geometric and physical parameters are listed in Table 1.

As shown in Figure 3, when λ� 1, α� 0, and v � vr � 0.2,
the proposed model in the present study provides the same
result as that of Park’s research. (erefore, the result of
Park’s research is a special case of present work.

3.2. Effect of Lateral Pressure Coefficient on the Distribution of
Plastic Zone. (e elastoplastic radial contact stress and the
radius of the plastic zone under nonuniform pressure can be
obtained by equations (17) and (19). (e distribution of the
plastic zone is shown in Figure 4, which shows that the lateral
pressure coefficient has important influence on the distribution
of the plastic zone. When 0< λ< 1, the ranges of the plastic
zone in side walls are larger than those in the roof and floor;
when λ> 1, the results are on the contrary. Besides, when the
lateral pressure coefficient increases, the ranges of the plastic
zone in side walls shrink, while those in roof and floor increase.

3.3. Effect of Lateral Pressure Coefficient on the Surface Dis-
placement of Surrounding Rock. (e radial displacement on
the surface of opening under nonuniform pressure was

obtained by equations (30) and (31), as shown in Figure 5. It
shows that the lateral pressure coefficient has remarkable
effects on the surface displacement. With the increase of
lateral pressure coefficient, the surface displacement de-
creases at the sides of opening and increases around the roof.
For example, when βr � 2 and λ increases gradually from 0.8
to 1.2∼1.5, the displacement at roof increases by 1.07mm to
1.37mm, which is 202 to 258 percent; while the displace-
ment at side wall decreases by approximately 0.39mm to
0.67mm, which is 30 to 52 percent. Meanwhile, when
0< λ< 1, the surface displacement at side wall is larger than
at roof and floor; however, when λ> 1, the results are on the
contrary.

From Figure 5, it is also known that the surface dis-
placement increases greatly with the increase of the dilation
coefficient. For example, when λ� 0.8 and βr changes from 1
to 1.5∼2, the surface displacement at roof, spandrel (60°) and
side wall increase about 0.06 to 0.13mm, 0.11 to 0.24mm,
and 0.25 to 0.63mm, respectively, which vary by 15 to 32.5,
22.91 to 50, and 37.31 to 94.03 percent, respectively. We may
conclude that the dilation coefficient also has great influence
on surface displacement of surrounding rock.

3.4. Effect of the Buried Depth on Maximum Surface Dis-
placement of Surrounding Rock. (e maximum surface
displacement of surrounding rock is given in Figure 6. It may
be seen that the surface displacement increases with the
burial depth by exponential law. For example, when λ� 1.2
and σ0 varies from 1 to 1.2∼1.8MPa, the displacement in-
creases from 3.3 to 20.7mm, which means a great influence
of the buried depth on the deformation of surrounding rock.
It is important to note that the location of the maximum
displacement is also different with different lateral pressure
coefficients. When 0< λ< 1，the location of the maximum
surface displacement occurs in two sides (0°); otherwise,
when λ> 1, the maximum displacement distributes in the
roof and floor (90° or 270°).

3.5. Effect of Lateral Pressure Coefficient on Response Curve
between Surrounding Rock and Support. According to the
analytical solution, the response curve between the sur-
rounding rock and support can be deduced (Figure 7). It can
be seen that the lateral pressure coefficient influences the
response curve in two aspects. First, that response curve
varies at different sites under specific lateral pressure co-
efficient. Second, the location of the maximum value of
response curve transfers from side (0°) to roof (90°) with the
increasing of lateral pressure coefficient, which is in ac-
cordance with the deformation of surrounding rock.

As shown by the above analysis, the influence of lateral
pressure coefficient should be taken into full consideration
for the design of the primary support under nonuniform
pressure, and the reinforced support should be carried out in
the key parts to prevent rock instability.

Table 2 illustrates the critical support resistance of each
position when the surrounding rock begins to show the
plastic state. If pin> pyc, it means that the part of surrounding
rock is in the elastic state, whose response curve could be
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Figure 3: Comparisons between displacement of plastic zone in this paper and Park’s solution. (a) (e solution with soft rock parameters.
(b) (e solution with hard rock parameters.

Table 1: Geometrical and physical parameters of a circular opening [5].

Parameters Hard rock Soft rock
Radius of opening, r0 (m) 1 1
Initial stress, σ0 (MPa) 1 1
Internal pressure, pin (MPa) 0 0
Young’s modulus, E (MPa) 50,000 5000
Poisson’s ratio, ] 0.2 0.2
Shear modulus, G (MPa) 20,833 2083
βr (°) 3 3
c (MPa) 0.173 0.276
φ (°) 55 35
cr (MPa) 0.061 0.055
φr (°) 52 30
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Figure 4: Effect of lateral pressure coefficient on the distribution of the plastic zone. (a) (e polar coordinate system for the postprocessing
of the results. (b) (e result with soft rock parameters. (c) (e result with hard rock parameters.
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obtained by equation (15); on the contrary, if pin< pyc, it
means the part of surrounding rock is in the plastic state,
whose response curve could be obtained by equation (30) or
(31).

3.6. Effect of Young’s Modulus Attenuation on Radial Dis-
placement of Plastic Zone. (e change law of radial dis-
placement of the plastic zone with the increasing radius is
shown in Figure 8 in different cases of Young’s modulus
attenuation. It is known that Young’s modulus attenuation
has great influence on radial displacement of the plastic zone
when using RDM. For example, at side position (0°),
comparing Case 2 and Case 3 with Case 1, the surface

displacement of plastic zone (uE/σ0r0) increases 9.91 and
2.77, respectively, which is increased by 103 and 29 percent.
(erefore, it indicates that the damage of surrounding rock
in Case 2 is largest, while the one in Case 1 is smallest.

3.7. Effect of Young’s Modulus Attenuation on the Response
Curve between Surrounding Rock and Support. (e response
curves between surrounding rock and support are shown in
Figure 9 in different cases of Young’s modulus attenuation.
It shows that when Young’s modulus attenuation is ignored
(Case 1), the deformation of the surrounding rock and
support force will be underestimated; however, when a
residual value of Young’s modulus is assumed in the plastic
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Figure 5: Effect of lateral pressure coefficient on the surface displacement of surrounding rock. Parameter values:
v � vr � 0.2, α � 0, E � Er � 5GPa. (a) σ0 � 1MPa, βr � 1.5. (b) σ0 � 1MPa, βr � 1.0. (c) σ0 � 1MPa, βr � 2. u0 is the radial displacement at
the surface of tunnel. Note. As the displacement at the surface of surrounding rock is small, the result is scaled up by 1 : 400 to give a more
intuitive illustration.
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Table 2: (e changes of critical support resistance (pyc) when the surrounding rock changes from elastic to plastic state.

Lateral pressure coefficient 0° side (MPa) 30° spandrel (MPa) 60° spandrel (MPa) 90° roof (MPa)
λ� 0.8 0.243 0.200 0.115 0.072
λ� 1.5 0.094 0.200 0.414 0.520
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Figure 8: Effect of Young’s modulus attenuation model on the surface displacement of surrounding rock. Soft rock, σ0 �1MPa, λ� 1.2,
v � vr � 0.2, and βr � 3. (a) (e curve at side position (0°). (b) (e curve at the roof (90°).
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Figure 7: Changes of the response curve between rock wall and support frame with different lateral pressure coefficients. Parameter values:
soft rock v � vr � 0.2, βr � 3.0, α� 0, and E� Er � 5GPa. (e lateral pressure coefficient of (a) λ� 0.8 and (b) λ� 1.5.
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zone (Case 2), the deformation of the surrounding rock and
support force will be overestimated. (e RDM (Case 3)
seems to give more reasonable results and is recommended
for design of support parameters and stability analysis of
surrounding rock in the circular tunnel.

4. Support Design for Opening under
Nonuniform Pressure

According to the above analysis, it is known that the lateral
pressure coefficient is the main reason for nonuniform
distribution of the plastic zone and deformation of sur-
rounding rock. When 0< λ< 1, the range of the plastic zone
and deformation presents larger at side than roof positions,
while when λ> 1, the result is on the contrary. (e rule was
also verified well in many engineering practices in deep
openings [12–16], as shown in Table 3.

Many support techniques of deep opening under non-
uniform pressure were put forward, such as bolt-grouting
support, bolt-grouting and flexible arch combined support,
and bolt-mesh-cable and bolt-grouting combined support.

(e principles of support design can be concluded in three
aspects as follows:

(1) Allocate the key parts (where the surrounding rock fails
easily) and provide reinforced support in these areas. Due
to the nonuniform deformation around the opening
induced by the nonuniform initial pressure, the defor-
mation of the support structure is inhomogeneous, which
may cause buckling failure of the support. (erefore,
reinforced support around the key parts is needed to
control the nonuniform deformation of surrounding
rock and make the support structure bear uniform
pressure [38]. Specifically speaking, when 0<λ<1, the
key locations are around the side wall, and when λ<1,
the key locations are around the roof and floor.

(2) Improve the self-bearing capacity of surrounding rock
by grouting reinforcement.(e grouting reinforcement
can increase the strength of rock mass and make it
response elastically. Based on the results of present
research, the distribution of grouting boreholes can be
optimized to account for the nonuniform plastic zone
extent.
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Figure 9: Effect of Young’s modulus attenuation on the response curve between surrounding rock and support. Soft rock, λ� 1.2,
v � vr � 0.2, and βr � 3. (a) (e curve at side position (0°). (b) (e curve at roof position (90°).

Table 3: Summary of cases on fracture and support scheme of opening under nonuniform pressure.

Site Buried
depth (m)

In situ stress
state

Deformation
features Support schemes Support

effects
No. 1 coal
mine [13] 930 λ� 1.2 Roof (floor)

> side
Deep hole grouting + shallow hole grouting +whole section

high-strength bolt (rope) support Stable

No. 2 coal
mine [12] 535 λ� 0.3. Roof (floor)

< side Shallow hole grouting + high-strength bolt (rope) support Stable

No. 3 coal
mine [16] 640 λ� 1.5 Roof (floor)

> side Grouting + cable anchor + flexible truss yield support Stable

No. 4 coal
mine [38] 860 λ� 1.36 Roof (floor)

> side Cable anchor + concrete lining + steel pipe arch support Stable
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(3) Use flexible support structure if rigid support bears
too heavy load, especially for the key parts.

Combining engineering practices and theoretical analysis
results, an optimization method for support design was pro-
posed for deep circular opening under nonuniform pressure.
(e specific optimization flow is shown in Figure 10.

5. Conclusions

(e mechanical model of a circular opening with nonuni-
form pressure was proposed, which takes into account the
nonassociated flaw rule and Young’s modules attenuation.
(e closed-form solutions of stress, deformation, and radius
of the plastic zone of surrounding rock were obtained. (e
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measurement
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Figure 10: Optimization flow of support scheme of deep circular opening under nonuniform pressure.

Advances in Civil Engineering 11



influences of some factors including lateral pressure coef-
ficient, dilation coefficient, buried depth, and Young’s
modules attenuation on the state of surrounding rock were
analyzed. (e following conclusions can be drawn:

(1) An analytical solution of a circular opening with
nonuniform pressure was obtained. Compared with
the results under uniform pressure in the literature,
the proposed analytical solution is verified.

(2) (e lateral pressure coefficient has remarkable in-
fluence on the distribution of the plastic zone. When
0< λ< 1, the ranges of the plastic zone around side
walls are larger than those of the roof and floor; when
λ> 1, the results are on the contrary. Besides, with
the increasing of lateral pressure coefficient, the
range of the plastic zone in side walls shrinks
gradually, while that in the roof and floor increases.

(3) (e lateral pressure coefficient has an impact on
surrounding rock deformation and response curve of
the support. With the consideration on the effect of
lateral pressure coefficient, both the deformation and
response curve show nonuniform characteristic
around the tunnel.

(4) (e surface displacement of surrounding rock in-
creases with dilation coefficient and buried depth.
(erefore, their effect on deformation of sur-
rounding rock should be taken a full account on
support design.

(5) Young’s modulus attenuation has important influ-
ence on radial displacement of plastic zone. When
the attenuation effect is ignored, it will cause un-
derestimation for the deformation of surrounding
rock. (e RDM can be more effective on the design
of support parameters and stability analysis of sur-
rounding rock in deep circular opening.
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