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)is study aims at proposing a computer visionmodel for automatic recognition of localized spall objects appearing on surfaces of
reinforced concrete elements. )e new model is an integration of image processing techniques and machine learning approaches.
)e Gabor filter supported by principal component analysis and k-means clustering is used for identifying the region of interest
within an image sample. )e binary gradient contour, gray level co-occurrence matrix, and color channels’ statistical mea-
surements are employed to compute the texture of the extracted region of interest. Based on the computed texture-based features,
the logistic regression model trained by the state-of-the-art adaptive moment estimation (Adam) is utilized to establish a decision
boundary that delivers predictions on the status of “nonlocalized spall” and “localized spall.” Experimental results demonstrate
that the newly developed model is able to achieve good detection accuracy with classification accuracy rate� 85.32%, pre-
cision� 0.86, recall� 0.79, negative predictive value� 0.85, and F1 score� 0.82. )us, the proposed computer vision model can be
helpful to assist decision makers in the task of the periodic survey of structure heath condition.

1. Introduction

Public safety is a major concern of civil engineers who design
and maintain high-rise buildings. Despite considerable ef-
forts in design and advanced knowledge of building
structures, accidents can still happen in the built environ-
ment due to excessive usage, structural aging, and inclement
weather conditions [1]. Among the hazards occurred in
high-rise buildings, falling objects from overhead caused by
concrete spalling can be particularly dangerous and have a
high potential severity to occupants’ heath [2]. )e effect of
concrete debris can be devastating for human lives if it gets
broken off from surfaces of exterior wall systems of high-rise
buildings [3].

A concrete spall (Figure 1) is regarded as flakes of
concrete/mortar broken off from a concrete element (e.g.,
beam, wall, and ceiling) [4]. Spalling is typically caused by
stresses brought about by differential movement of

materials. Most often, spalling in concrete is due to cor-
rosion of steel reinforcement embedded in the structure. To
prevent such accidents and to ensure the safety and ser-
viceability of the built environment, periodic visual surveys
of structural heath condition and proper maintenance ac-
tivities are very crucial [5].

In developing countries, including Vietnam, manual
visual inspection is still the principal method for evaluating
structural heath conditions. )is activity is performed at
regular intervals to identify potential damages and guarantee
the service/safety requirements of high-rise buildings.
Provided the well-trained technicians experienced in
structural heath assessment, manual visual inspection is able
to providing accurate surveying outcomes. Nevertheless, due
to the increasing numbers of buildings needed to be
inspected periodically and the limited number of experience
technicians, timely evaluation of building elements becomes
infeasible and inspection deficiencies become a major
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concern of property owners. )erefore, there is a practical
need to substitute the unproductive manual visual survey
with a more effective approach.

Recently, due to the ease of access to low-cost and high-
quality visual sensing equipment including digital cameras,
computer vision-based models have been increasingly used
for automatic structural heath monitoring [6]. )ese ad-
vanced approaches have been proved to be viable alterna-
tives to replace the labor-intensive and subjective methods
relied on manual survey. With the use of advanced image
processing techniques operated on image samples collected
from digital cameras, the physical condition of civil struc-
tures can be continuously surveyed and reported to main-
tenance agencies. )is evaluation outcome can be effectively
used to support the decision-making process regarding
maintenance prioritization and funding allocation.

Due to such reasons, a large number of computer vision-
based approaches have been proposed to successfully detect
various forms of structural defects such as cracking and
spalling. Abdel-Qader et al. [7] employs a principle com-
ponent analysis-based model to recognize cracking defects
appeared on bridge surfaces; the principle component
analysis is utilized to support data cluster identification with
a large database of bridge images. O’Byrne et al. [8] utilizes
texture analysis for detecting damages appeared on infra-
structural elements; the texture-based image segmentation
relies on pixel intensity values and gray level co-occurrence
matrix. Subsequently, a support vector machines model is
then employed for the data classification task. Lattanzi and
Miller [9] rely on the data clustering approach for image
segmentation based on the Canny and k-means algorithm;
the research finds that the combined algorithms can deliver
good accuracy of crack recognition under different envi-
ronmental circumstances.

As can be seen from the literature, a large number of
previous studies have been dedicated to crack detection for
concrete structures [10–20]. Only recently, there is an in-
creasing focus on detecting other forms of damage including
concrete spalling [21–24]. German et al. [25] constructs a
combination of segmentation, template matching, and
morphological preprocessing for detecting spall appeared on
surfaces of concrete columns. Machine learning models

including support vector machines, Näıve Bayesian classi-
fier, and random forest have been employed to identify
concrete defects [8, 26]. A model for localization and
quantification of concrete spalling defects based on terres-
trial laser scanning has been proposed in [27]. Dawood et al.
[21] presented a computer vision-based model for spalling
detection used in environment of subway networks.

Hoang [28] relies on a steerable filter and machine
learning to recognize wall defects such as cracks and spalls. A
concrete spalling detection model for metro tunnel from
point cloud that employs a roughness descriptor has been
developed by Wu et al. [24]. Hoang [29] presents an image
processing approach for automatic detection of concrete
spalling using machine learning algorithms and image
texture analysis. Nevertheless, this model focused on ma-
chine learning-based texture discrimination and was not
capable of isolating the entire individual spall object.

Yao et al. [30] establishes a convolutional neural net-
work-based model for concrete bughole detection; a large
number (about 10,000) of image examples have been used as
a training dataset. Li et al. [31] proposed a model for
detecting exposed aggregate appeared on stilling basin slab
using the attention U-Net network. Chow et al. [32] employs
deep learning of a convolutional autoencoder for anomaly
detection of defects existing on concrete structures. A model
for recognizing damaged ceiling areas in large-span struc-
tures has been proposed by Wang et al. [33]; this model
employs a convolutional neural network for pattern rec-
ognition. Although deep learning-based models are capable
of performing feature extraction phase automatically, these
supervised learning models generally demand a large-size
training dataset and a meticulous process of data labeling
[34–36]. )is data labeling process itself can be time-con-
suming as well as error prone [5]. In addition, the deep
learning models also require experience and the trial-and-
error process to adjust a significant amount of model’s free
parameters.

An effort of combining unsupervised learning and
machine learning-based data classification has been recently
introduced in [37]. )e k-means clustering algorithm and
machine learning classifier have been integrated to form an
automatic approach for estimating stripping of asphalt

(a) (b) (c)

Figure 1: Spall objects on (a) ceiling, (b) beam, and (c) wall structures.
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coating. )e k-means clustering algorithm is utilized to
separate pixels with similar values on the surface of ag-
gregates; subsequently, machine learning models are used to
categorize the identified clusters into groups of asphalt-
coated and uncoated areas.

As pointed out by previous studies, the current chal-
lenges faced by computer vision-based concrete damage
detection including spall recognition are complex envi-
ronmental conditions (e.g., noisy background image) [5]
and the difficulty of the image labeling process [32]. More
efforts should be dedicated to automatically identify the
damage’s region of interest (ROI) via unsupervised learning
methods. Capable machine learning methods with few free
parameters should be investigated as viable alternatives to
sophisticated models used for data classification. It is be-
cause simple and manageable models significantly facilitate
the development and application of hybrid computer vision-
machine learning approaches for concrete spalling
detection.

Based on such motivation, this study proposes and
verifies an automated method for recognizing localized spall
objects based on an integration of a Gabor filter, k-means
clustering, image texture analysis, and logistic regression
pattern classification models. )e Gabor filter coupled with
the principal component analysis and the k-means clustering
are used synergistically for automatic identification of ROI
on concrete surface. )e image texture analysis combines
powerful texture discriminators of binary gradient contours,
color channels’ properties, and the gray level co-occurrence
matrix. )e logistic regression model trained by the state-of-
the-art adaptive moment estimation (Adam) optimizer is
employed for data classification.

)e subsequent sections of the study are organized as
follows: the second section reviews the research method-
ology. )e third section presents the image data collection
process. )e proposed integrated model used for concrete
spall detection is described in the next section, followed by
the experimental results and discussion. )e final section
summarizes the research findings with several concluding
remarks.

2. Research Methodology

2.1. Gabor Filter (GF). Image segmentation is the process of
separating an image into distinctive regions [38, 39]. )e GF
is a widely applied approach for segmenting image [40, 41].
)is approach is inspired by the multichannel operation of
the human visual system used for visual interpretation in
real-world circumstances [42–44]. Based on experimenta-
tion, it has been shown that the GF resembles simple cells in
the Mammalian vision system. )us, this filter can be a
reasonable model of how humans actually recognize and
discriminate areas characterized by different texture [45].

)e GF consists of two-dimensional Gabor filters which
can be described as complex sinusoidal waves modulated by
Gaussian envelopes [43]. )is filter carries out a localized
and oriented frequency analysis of a two-dimensional signal.
)e GF yields a response that can be mathematically given as
follows [45]:
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where u0 denotes the frequency of a sinusoidal plane wave
along the x axis. σx and σy represent the space constants of
the Gaussian envelope along the x and y axes, respectively. It
is noted that the GF with arbitrary orientations can be
obtained via a rigid rotation of the x-y coordinate system.

)e frequency domain representation of the GF is given
by [45]
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It is worth noticing that it is necessary to specify tuning

parameters of the GF including the orientation angles and
the radial frequency. Based on the suggestions of Jain and
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2.2. .e K-Means Clustering Algorithm. In this study, the
unsupervised machine learning approach of k-means clus-
tering [46] is employed to divide an image into different
regions based on the analysis results obtained from the GF.
)is unsupervised machine learning method is simple yet
powerful algorithm for automatic data grouping [47]. Based
on such method, image pixels that have the similar prop-
erties can be grouped in one cluster. Accordingly, data
samples belonging to one cluster feature the smallest degree
of variation. )e iterative algorithm used to compute the
cluster centers is presented in Algorithm 1.

2.3. Image Texture Analysis

2.3.1. Binary Gradient Contours (BGC). )e BGC, proposed
by Fernández et al. [48], is a group of computationally simple
texture descriptors. Given a 3× 3 grayscale image patch,
these texture descriptors employs a set of eight binary
gradients between pairs of pixels all along a closed path
around the central pixel [49]. )e BGC includes three
versions which are single-loop, double-loop, and triple-loop
descriptors. Via experimentation, the BGC operator has
been found to achieve good texture discrimination
outcomes.

A matrix S which is the pixel intensity of an image patch
of the size 3× 3 is given as follows:

S �

I7 I6 I5

I0 Ic I4

I1 I2 I3

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)
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where Ic denotes the central pixel. I0, I1, . . ., I7 are the
neighboring pixels.

)e schematic representations of BGC with three ver-
sions of single, double, and triple loops are presented in
Figure 2. In addition, to facilitate the mathematical for-
mulation of these texture descriptors, a square crop Sm,n is
given by

S �

Im−1,n−1 Im−1,n Im−1,n−1

Im,n−1 Im,n Im,n+1

Im+1,n−1 Im+1,n Im+1,n+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

where Im,n represents the pixel at mth row and nth column.
Accordingly, the formulations of the single, double, and

triple-loop versions are given by [48]

(i) Single-loop version:

BGC1 � 
7
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− 1. (5)

(ii) Double-loop version:
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(iii) Triple-loop version:
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(7)

2.3.2. RGB Channels’ Properties. Since the color properties
of spall and nonspall objects are expected to be dissimilar,
this study employs the statistical measurements of three
color channels: red (R), green (G), and blue (B) as a means of
texture description. Given an image sample I, the first-order
histogram P(I) can be computed. Accordingly, the mean
(μc), standard deviation (σc), skewness (Sc), kurtosis (Kc),
entropy (Ec), and range (Rc) of the three color channels (R,
G, and B) can be calculated [29, 50].

2.3.3. Gray Level Co-Occurrence Matrix (GLCM). )e
GLCM [51, 52] is also an extensively employed approach for
characterizing image texture. )is approach focuses on
capturing the repeated occurrence of certain gray-level
patterns [53].)erefore, indices extracted from a GLCM can
be effectively utilized to evaluate the coarseness/fineness of
an image region. Let r and θ represent a distance and a
rotation relationship between two individual pixels. )e
GLCM, denoted as Pδ, denotes a probability of the two gray
levels of i and j having the relationship specifying by r and θ
[54]. Based on the recommendations of Haralick et al. [51],
the GLCM can be constructed with r� 1 and θ � 0°, 45°, 90°,
and 135°. Accordingly, for each matrix, four indices of
angular second moment (AM), contrast (CO), correlation
(CR), and entropy (ET) can be computed as follows [29, 55]:
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where Ng denotes the number of gray level values;
μX, μY, σX, and σY are the means and standard deviations of
the marginal distribution with respect to PN

δ (i, j).

2.4. Logistic Regression Model (LRM). )e LRM is a capable
method for solving binary classification problems
[29, 56–58]. )e task at hand is to construct a decision

Single loop

I7 I6 I5
I0 Ic I4
I1 I2 I3

Double loop Triple loop

Figure 2: )e graphical representation of BGC.

Determine the number of cluster k
Randomly assign k centers of data samples

(1) Loop
(2) Assign each data points to the cluster with the nearest mean
(3) Recalculate means for data points assigned to each cluster
(4) Until the data assignments are unchanged.

ALGORITHM 1: )e k-means clustering.
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boundary that categorizes the input data into two distinctive
regions. )erefore, given a vector of input data
xi � xi1, xi2, ..., xi D, where D is the number of the features
used for classification, the model is able to derive the class
output y with either y� 0 (for the negative class of nonspall)
and y� 1 (for the positive class of spall).

)e probability of the positive class hθ(xi) derived by a
LRM is given by [59]

hθ xi(  � hθ xi1, xi2, ..., xi D(  �
1

1 + exp −ηi( 

�
1

1 + exp −θT
xi 

,

(9)

where ηi � θ0 + θ1xi1 + θ2xi2 + · · · + θDxi D � θTxi. )e
vector θ � θ0, θ1, θ2, ..., θD is the model parameter.

As a supervised learning approach, a set of training
examples needs to be prepared so that the vector θ can be
adapted during the model training phase. A LRM can be
trained by either minimizing the least square loss function or
maximizing the log likelihood function.

)e least square loss function is given by [60]

Loss (θ) � 
M

i�1
yi − hθ xi( ( 

2
, (10)

where M is the number of training data.
)e log likelihood function is described as follows

[61, 62]:

Loss ( θ ) � log( L( θ ) ) � 

M

i�1
yilog( hθ( xi )

+( 1 − yi )( 1 − log( hθ( xi ) ).

(11)

A LRM can be trained via the stochastic gradient descent
framework [29]. If the least square loss function is used, the
update rule for adapting the model parameters is given by
[60]

θk � θk + Lr × y − hθ xi( (  × hθ xi(  1 − hθ xi( (  × xi,k,

(12)

where Lr denotes the learning rate parameter.
Meanwhile, if the log likelihood function is selected, the

update rule used that compute θ is given by [61, 62]

θk � θk + Lr × yi − hθ xi( ( xi,k. (13)

2.5. Adaptive Moment Estimation (Adam) Optimizer.
Adam, proposed by [63], is designed as an algorithm for
first-order gradient-based optimization of stochastic ob-
jective functions. )is algorithm is relied on adaptive esti-
mates of lower-order moments. Adam can be considered as
an extension of the stochastic gradient descent employed to
train machine learning models via an iterative weight
updating process [64]. It is noted that the conventional
stochastic gradient descent employs a constant learning rate
(Lr) for all weight updates. Adam seeks for improving the

model training phase by adaptively fine-tuning the Lr
parameter.

Adam harnesses information obtained from the average
of the second moments of the gradients. In detail, this
optimization algorithm computes an exponential moving
average of the gradient and the square gradient. Moreover, a
set of parameters (β1 and β2) is used to dictate the decay rates
of these moving averages [64]. Via experimentation, it can be
shown that the advantages of this optimizer include efficient
computation, straight forward implementation, no memory
requirements, and the capability of dealing with a large
number of optimized parameters [63].

In order to implement Adam to optimize a LRM, it is
necessary to compute the gradient (gt). )e gradient gt in
the case of using the least square loss function is given by
[60]

gt �
z Loss(θ)

zθk

� 2 y − hθ xi( (  × hθ xi(  × 1 − hθ xi( (  × xi,k.

(14)

If the log likelihood function is employed, the gradient gt

is given by [22, 61, 62]

gt �
z Loss(θ)

z θk( 
� yi − hθ xi( ( xi,k. (15)

Accordingly, the Adam procedure (illustrated in Algo-
rithm 2) used for training a LRM can be performed itera-
tively with the following steps:

(i) Compute gradient gt

(ii) Update the biased first and second raw moment
estimates

(iii) Compute the bias-corrected moment estimates
(iv) Adapt the optimized parameters

3. Collection of Image Samples

)e LRM used in this study belongs to the category of
supervised machine learning methods. To train this LRM
with the use of the aforementioned Adam optimizer, it is a
requisite to prepare a set of training image samples as well as
a set of testing image samples to verify the model con-
struction phase. )erefore, this study has carried out field
surveys at several high-rise buildings in Danang city
(Vietnam) to collect a set of 600 image samples. Among
them, 300 samples contain localized spall objects and 300
samples consist of nonlocalized spall objects. Notably, image
samples of the two class of nonspall (class label� 0) and spall
(class label� 1) have been assigned by a human inspector for
the purposes of model training and testing.)e Cannon EOS
M10 (CMOS 18.0 MP) and Nikon D5100 (CMOS 16.2 MP)
have been employed to collect image samples. In addition,
the image size has been standardized to be 64× 64 to fa-
cilitate the computation process. )e image set has been
collected so that a diverse background (e.g., cracks and
stains) can be included. )e collected image set is demon-
strated in Figure 3.
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4. The Proposed Hybrid Approach of Image
Processing and Machine Learning
Approach for Automatic Detection of
Concrete Spall

)is section of the study aims at describing the structure of
the proposed hybrid approach of image processing and
machine learning used for recognizing localized spall object.
)e overall structure of the proposed approach is presented
in Figure 4. It is noted that the hybrid model used for
automatic concrete spall detection has been developed in
Visual C#.NET environment (Framework 4.6.2) and
implemented with the ASUS FX705GE–EW165T (Core i7
8750H, 8GB Ram, 256GB solid-state drive).

)e model can be divided into several operational steps:

(i) Automatic ROI identification

(ii) Image texture computation
(iii) Machine learning-based pattern classification

4.1.AutomaticRegionof Interest (ROI) Identification. To deal
with the diverse shapes of localized spall objects, this study
relies on the techniques of GF to automatically identify ROIs
that contains the potential defects of interest. It is noted that
an image sample has been denoised by a median filter with a
window size of 4 pixels and converted to a grayscale one.
After the GFs with different orientations and radial fre-
quency are computed, the principal component analysis
(PCA) is performed to transform the set of GFs and reduce
the data dimensionality (Figure 5). )e number of the PCA
transformed data is selected corresponding to 99% of cu-
mulative variance explained. It is noted that the GF and the

(a)

(b)

Figure 3: Demonstration of the collected image samples: (a) images containing localized spall objects and (b) images containing non-
localized spall objects.

Define step size a� 0.001
Define exponential decay rates β1 � 0.9 and β2 � 0.9999
Define the objective function f(θ)
Randomly initialize the searched variable θ
Assign m0 � 0, v0 � 0, and t� 0

(1) While (θt not converged)
(2) t� t+ 1
(3) Compute gradient: gt � ∇θft(θt−1)

(4) Update biased 1st moment estimate
(5) mt � β1mt−1 + (1 − β1)gt

(6) Update biased 2nd raw moment estimate
(7) vt � β2vt−1 + (1 − β2)g2

t

(8) Calculate bias-corrected first moment estimate
(9) mt � mt/(1 − βt

1)

(10) Calculate bias-corrected 2nd raw moment estimate
(11) vt � vt/(1 − βt

2)

(12) Update the searched parameter
(13) θt � θt−1 − α × ( mt/

��
vt


+ ε)

(14) End While
(15) Return θt

ALGORITHM 2: )e Adam optimization procedure.
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PCA operations have been implemented via built-in func-
tions provided by the Accord.NET Framework [65].

Based on the PCA result, the k-means clustering algo-
rithm is used to segment the image sample. Via experi-
mentation, the suitable number of clusters for the collected
dataset is found to be 3. Subsequently, the morphological
operation of filling and removing small objects are utilized to
process the segmented image. Moreover, the operation of
background removal is performed to remove redundant
objects. In this study, an object within an image sample is
considered to be background if its width or height is equal to
that of the image sample.

Accordingly, each image cluster or segment is presented
as a binary image. )e connected component labeling al-
gorithm [66] is then used to analyze the position of the
binary-1 pixels and separate them into distinctive compo-
nent regions. Essentially, all pixels having value binary 1 and
are connected to each other are grouped into one object [38].
To remove crack objects, for each grouped pixels obtained
from the connected component labeling analysis, an object
slenderness index (OSI) is computed as follows:

OSI � Max
LOX

μOX

,
LOY

μOY

 , (16)

where LOX and LOY are the object lengths along the X axis
and Y axis, respectively. μOX and μOY denote the mean
thicknesses of the object along the X axis and Y axis,
respectively.

If the OSI of an object is greater than a certain threshold
(TOSI), this object is classified as a crack. Via several trial-and-
error experiments with the collected image sample, a suitable
value for the threshold TOSI is found to be 5. After the ROIs
have been identified, operations of image convolution and
cropping are employed to isolate the areas of interest within
the image sample. )e processes of ROI identification and
isolation are demonstrated in Figures 6 and 7.

4.2. Image Texture Computation. Based on ROIs obtained
from the previous step, image texture analysis consisting of
statistical measurements of BGC, RGB channels, and GLCM
is carried out. )e BGC texture descriptor includes all of the
three variants of single, double, and triple loops. Each of the
variants yields a histogram which describes the texture
property of an image sample. Accordingly, statistical indices
including mean, standard deviation, skewness, kurtosis, and
entropy can be computed for each histogram. )erefore, the
BGC results in 15 numerical features. As mentioned earlier,
the mean (μc), standard deviation (σc), skewness (Sc),
kurtosis (Kc), entropy (Ec), and range (Rc) of the three color
channels (R, G, and B) are used to represent the color
features of image samples. )us, there are 6× 3�18 addi-
tional numerical features. Moreover, properties of the

Logistic regression
model training 

Training samples

Image texture
computation Detected spall

objects

Image texture
computation

Binary gradient
contours

Gray level co-
occurrence matrix

Testing samples

Training images

Region of interest
(ROI) extraction

Gabor filter

Connected component
labeling operation

RGB channel’s
statistical properties

Testing images

K-Means
clustering

Adam-LL

Adam-LS

Training method
selection

Logistic regression
model prediction

Figure 4: )e proposed model structure.

Gabor filter

Principal component
analysis

�e 1st principal
component

�e 2nd principal
component

�e 3rd principal
component

RGB image Grayscale image

Figure 5: Image processed by the Gabor filter.
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GLCM including the four indices of angular secondmoment
(AM), contrast (CO), correlation (CR), and entropy (ET) are
used. It is noted that for each image sample, four GLCMs are
established. )us, the GLCM texture descriptor yields
4× 4�16 features. In total, there are 15 + 18 + 16� 49 nu-
merical features that can be extracted from the image texture
computation process.

4.3. Pattern Classification Using LRM Trained by the Adam
Optimizer. Using the extracted ROIs and the aforemen-
tioned texture descriptors, a dataset with 790 samples and 49
features can be constructed. )is dataset contains 465
nonlocalized spall samples and 325 localized spall samples.
As stated earlier, the output class is either 0 for the negative
class and 1 for the positive class. Moreover, in order to
standardize the input features’ range, the numerical texture
descriptors have been normalized by the Z-score equation as
follows:

XZN �
Xo − mX

sX

, (17)

where Xo and XZN represent the original and normalized
input data, respectively. mX and sX are the mean and the
standard deviation of the original input data, respectively.

Based on the aforementioned dataset, the LRM is trained
with the Adam optimizer using the least square and log
likelihood loss functions. )ese two LRM is denoted as

Adam-LS and Adam-LL. It is noted that 90% of the collected
dataset has been employed to construct the LRM model.
Meanwhile, the rest of the dataset is reserved to verify the
generalization capability of the model.

5. Research Findings and Discussion

As mentioned earlier, the whole collected dataset is divided
into two subsets: a training set (90%) and a testing set (10%).
Moreover, to diminish the effect of randomness brought
about by data sampling and to assess the generalization
capability of the integrated method reliably, the data sam-
pling process has been repeated 20 times. A partitioned
datasets used for model training and testing are demon-
strated in Table 1. In addition, the LRM trained with the
stochastic gradient descent algorithm with the least square
and log likelihood loss function are employed as benchmark
models. )e stochastic gradient descent models coupled
with the former and later loss function are denoted as LS-LR
and LL-LR, respectively. Furthermore, the two LRMs trained
with the Adam optimizer are denoted as Adam-LS-LR and
Adam-LL-LR. All of the LRMs have been trained with 1000
iterations.

In addition, the classification accuracy rate (CAR),
precision, recall, negative predictive value (NPV), and F1
score are computed to quantify the model predictive ac-
curacy. )ese performance measurement indices are pro-
vided as follows [67]:

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(a)

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(b)

Figure 6: ROI extraction for images containing localized spall objects: (a) one object and (b) multiple objects.
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Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROIImage sample

(a)

Gabor filter Segmented image

Binarized segments Segmented objects 

Extracted ROI
Image sample

(b)

Figure 7: ROI extraction for images containing nonlocalized spall objects: (a) one object and (b) multiple objects.

Table 1: Demonstration of the collected dataset.

Set Case IF1 IF2 IF3 IF4 . . . IF46 IF47 IF48 IF49 Class label

Training

1 39.64 37.27 34.53 34.33 . . . 0.10 745.72 0.00 6.47 0
2 12.92 11.63 9.60 18.34 . . . 0.17 497.69 0.00 3.82 0
3 68.21 65.76 59.38 40.67 . . . 0.03 770.71 0.00 6.82 0
4 44.78 45.60 43.86 56.59 . . . 0.29 1835.96 0.00 4.39 0
5 65.40 64.84 66.24 60.02 . . . 0.12 2458.40 0.00 4.12 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

707 68.85 58.73 45.76 34.57 . . . 0.01 824.92 0.00 6.77 1
708 55.85 51.50 46.05 26.86 . . . 0.01 762.79 0.00 7.48 1
709 51.27 47.45 42.09 35.80 . . . 0.05 928.80 0.00 6.93 1
710 60.32 55.98 49.76 31.67 . . . 0.01 1340.14 0.00 6.67 1
711 73.54 65.91 62.20 44.11 . . . 0.02 1180.24 0.00 7.82 1

Testing

1 56.26 58.54 61.95 25.44 . . . 0.01 498.38 0.00 7.27 0
2 93.11 95.22 103.83 41.81 . . . 0.10 1353.60 0.00 3.32 0
3 85.93 83.79 93.25 49.92 . . . 0.07 3975.50 0.00 3.95 0
4 58.64 59.44 64.39 55.01 . . . 0.18 968.76 0.00 5.57 0
5 83.84 84.93 88.35 68.18 . . . 0.14 493.65 0.00 5.54 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

75 62.98 47.68 28.07 32.93 . . . 0.03 244.76 0.00 7.79 1
76 46.17 44.28 39.69 33.57 . . . 0.08 467.10 0.00 6.35 1
77 51.47 46.08 37.80 20.61 . . . 0.01 370.11 0.00 8.62 1
78 34.17 30.02 24.89 29.42 . . . 0.10 413.32 0.00 6.74 1
79 44.89 37.54 27.15 56.16 . . . 0.32 528.69 0.00 5.10 1
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CAR �
TP + TN

TP + TN + FP + FN
× 100%,

Precision �
TP

TP + FP
,

Recall �
TP

TP + FN
,

NPV �
TN

TN + FN
,

F1 score �
2TP

2TP + FP + FN
,

(18)

where FN, FP, TP, and TN denote the number of false-
negative, false-positive, true-positive, and true-negative
samples, respectively.

)e experimental results obtained from the repetitive
data sampling with 20 runs are reported in Table 2. As can be
seen from this table, the Adam-LL-LR has achieved the best
predictive accuracy in both of the training (CAR� 85.25%,
precision� 0.84, recall� 0.81, NPV� 0.86, and F1 score-
� 0.82) and testing phases (CAR� 85.32%, precision� 0.86,
recall� 0.79, NPV� 0.85, and F1 score� 0.82). Since the
prediction performances obtained from the training and
testing phases of the Adam-LL-LR are relatively similar, it
can be shown that this model has not suffered from over-
fitting. In addition, the LL-LR model is the second best
approach (with CAR� 81.90% and F1 score� 0.78), followed
by the Adam-LS-LL (with CAR� 72.03% and F1 score-
� 0.71) and the LS-LR (with CAR� 70.82% and F1 score-
� 0.70). Herein, the index of the F1 score is emphasized
because it presents the harmonic mean of the precision and
recall.

)e training and testing performances of the employed
models are graphically presented in Figures 8 and 9. )e
boxplot shown in Figure 10 demonstrates the testing

performances of LRMs. In addition, to confirm the statistical
difference of each pair of the localized spall detection
models, the Wilcoxon signed-rank test with a significance
level (p value)� 0.05 is employed in this section of the study.
)e test outcomes are reported in Table 3. Observably,
experimental results show that all of the p values are lower
than the significance level. )us, the null hypothesis shows
that the performances of the two models under testing are
statistically indifferent and can be confidently rejected. )is
hypothesis test asserts the superiority of the Adam-LL-LR
model over other benchmark approaches.

Based on the experimental result, the Adam-LL-LR
model is best suited for the collected dataset at hand. )e
performance of this model is further studied in this section.
Illustrations of correctly recognized spall objects yielded by
Adam-LL-LR are presented in Figure 11. As can be observed,
the model can deliver accurate detection results in the

Table 2: Prediction result comparison.

Phase Indices
Adam-LL-LR LL-LR Adam-LS-LR LS-LR

Mean Std. Mean Std. Mean Std. Mean Std.

Training

CAR (%) 85.27 1.76 84.52 3.82 72.52 1.69 71.81 2.52
TP 246.95 12.48 239.70 26.87 271.85 8.71 265.65 14.59
TN 359.30 13.68 361.25 14.25 243.75 13.76 244.90 11.57
FP 46.85 12.77 53.15 26.97 22.50 7.68 28.25 15.63
FN 57.90 14.13 56.90 14.71 172.90 12.92 172.20 10.72

Precision 0.84 0.04 0.82 0.09 0.92 0.03 0.90 0.05
Recall 0.81 0.04 0.81 0.04 0.61 0.02 0.61 0.02
NPV 0.86 0.03 0.86 0.03 0.58 0.03 0.59 0.03

F1 score 0.82 0.02 0.81 0.06 0.74 0.01 0.73 0.03

Testing

CAR (%) 85.32 4.64 81.90 4.06 72.03 5.37 70.82 5.92
TP 26.90 5.19 25.25 3.94 27.60 3.29 28.10 6.03
TN 40.50 5.68 39.45 4.78 29.30 3.45 27.85 5.17
FP 4.30 2.26 6.90 2.62 3.05 2.42 3.00 2.02
FN 7.30 2.76 7.40 2.91 19.05 4.34 20.05 3.73

Precision 0.86 0.07 0.79 0.08 0.90 0.07 0.90 0.09
Recall 0.79 0.08 0.78 0.06 0.59 0.07 0.58 0.09
NPV 0.85 0.06 0.84 0.07 0.61 0.08 0.58 0.07

F1 score 0.82 0.06 0.78 0.05 0.71 0.06 0.70 0.08

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

CAR Precision Recall NPV F1 score

Adam-LL-LR
LL-LR

Adam-LS-LR
LS-LR

Figure 8: Performance measurement indices for the training
phase.
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presence of a window (Figure 11(a)) and a minor defect on
the mortar surface (Figure 11(b)). Notably, the localized
spall objects can still be located well in the cases that there are
crack objects in the captured scenes (Figures 11(c)–11(e)).
Furthermore, Adam-LL-LR has also performed well in the
cases that there are multiple spall objects in the image
samples (Figures 11(f ) and 11(g)). In addition, the proposed

Adam-LL-LR model can be used to quantify the percentage
of damaged areas found in image samples; the computation
results are demonstrated in Figure 12.

Nevertheless, as shown in Figure 13, the newly developed
model has made incorrect detection results in the cases of
complex background. As observed in Figure 13(a), an area in
the background has the texture property similar to that of the
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Figure 10: Model performances obtained from the repetitive data subsampling process: (a) CAR (%) and (b) F1 score.
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Figure 9: Performance measurement indices for the testing phase.

Table 3: Wilcoxon signed-rank test results.

Indices Model comparison Test outcome p value

CAR (%)
Adam-LL-LR vs. LL-LR Significant 0.0184

Adam-LL-LR vs. Adam-LS-LR Significant 0.0001
Adam-LL-LR vs. LS-LR Significant 0.0001

F1 score
Adam-LL-LR vs. LL-LR Significant 0.0400

Adam-LL-LR vs. Adam-LS-LR Significant 0.0004
Adam-LL-LR vs. LS-LR Significant 0.0001
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Figure 11: Illustrations of correctly classified cases.
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spall object. )is can lead to a false-positive detection.
Complex background (Figure 13(b)) and irregular lighting
conditions (Figure 13(c)) also tend to reduce the model
accuracy. )ese phenomena can lead to false-negative cases.

6. Concluding Remarks

Localized spall is a common defect observed on surfaces of
reinforced concrete elements. Accurate detection of this
damage is crucial during the phase of the periodic structural
heath survey. )is study has developed and verified a
computer vision-based approach for automating the task of

localized spall recognition. )e newly developed model is a
hybridization of image processing and machine learning
approaches. Image processing methods of the GF coupled
with k-means clustering and morphological analyses are
used to automatically identify the ROIs that potentially
contain the defect. )e BGC, GLCM, and color channels’
properties are employed as texture descriptors. Based on the
computed image texture, the LRM optimized by the state-of-
the-art Adam is used to construct a decision boundary that
separate the data samples into two regions of nonlocalized
spall and localized spall. Experimental results show that the
LRM trained by the Adam optimizer can deliver the most

Original image Segmented image Detected objects Computation results

Percentage of damaged
area: 8.70%

Percentage of damaged 
area of the 1st object: 4.88%

Percentage of damaged 
area of the 2nd object: 4.84%

Figure 12: Demonstration of the calculation of the percentage of damaged areas.

Original
image

Segmented
image

Binary-detected
object

Falsely
detected/undetected

object

(a)

Undetected object

(b)

Undetected object

(c)

Figure 13: Illustrations of incorrectly classified cases.
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desired prediction accuracy. )erefore, the proposed inte-
grated model can be a useful tool to assist building main-
tenance agencies in the task of evaluating structure heath
condition.

Data Availability

)e image dataset used to support the findings of this study has
been deposited in the repository of GitHub: https://github.
com/NhatDucHoang/LocalizedSpallDetection_AdamLRM.
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