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In this study, a hybrid machine learning (ML) technique was proposed to predict the bearing capacity of elliptical CFSTcolumns
under axial load. �e proposed model was Adaptive Neurofuzzy Inference System (ANFIS) combined with Real Coded Genetic
Algorithm (RCGA), denoted as RCGA-ANFIS.�e evaluation of the model was performed using the coefficient of determination
(R2) and root mean square error (RMSE). �e results showed that the RCGA-ANFIS (R2 � 0.974) was more reliable and effective
than conventional gradient descent (GD) technique (R2 � 0.952). �e accuracy of the present work was found superior to the
results published in the literature (R2 � 0.776 or 0.768) when predicting the load capacity of elliptical CFST columns. Finally,
sensitivity analysis showed that the thickness of the steel tube and the minor axis length of the elliptical cross section were the most
influential parameters. For practical application, a Graphical User Interface (GUI) was developed inMATLAB for researchers and
engineers and to support the teaching and interpretation of the axial behavior of CFST columns.

1. Introduction

In recent decades, composite concrete-filled steel tubular
(CFST) columns are considerably employed in the con-
struction of infrastructures thanks to their excellent struc-
tural behavior [1]. �ese structural members exhibit many
benefits than single material columns (i.e., concrete columns
or hollow steel columns).�ese advantages could be listed as
fire, axial capacity, and earthquake resistance [2, 3]. In
practical engineering, various cross section geometries of
CFST columns have been considered, such as circular [4],
square [5], or rectangular cross sections [6]. Recently, the
elliptical cross section was adopted in several works [3, 7, 8].
Indeed, the use of elliptical CFST columns has gained at-
tention from the scientific community and applied engi-
neering as it provides specific advantages compared to other
cross sections of CFST, including a better strength and ri-
gidity as well as fire resistance [9]. Due to its reasonable

distribution of the major-minor axis, elliptical CFSTcolumn
exhibits a better architectural aesthetic appearance and a
small fluid resistance coefficient [10, 11]. Moreover, the
prevention of local buckling in the elliptical CFST columns
could be well-established thanks to the concrete core
[12, 13]. �e elliptical section possesses aesthetic qualities
along with more effective bending resistance when com-
pared to circular section due to having different second
moments of area around its principal axes [14]. �erefore,
analyzing the structural behavior, especially the ultimate
load of elliptical CFST columns, is essential to facilitate the
use in civil engineering structures.

However, there are currently no standards or codes in
any countries for assessing the load-carrying capacity of
elliptical CFST columns [15]. Besides, there were several
empirical formulations in the available literature such as
Liu and Zha 2011 [16] and Shen et al. [17] for predicting
the ultimate load of elliptical CFST members. However,
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these equations were derived using assumptions and ex-
perimental observations, which led to a simplification of
the prediction model. Consequently, the application of
these models could not be extended to other results. All
these limit the application of elliptical CFST columns in
engineering practice. Although previous studies provided
significant contributions to the progress in modeling and
prediction of axial behavior of CFST members, a more
robust and efficient model should be developed to reduce
the cost and time consumed in experiments and field
works.

Recently, machine learning (ML) approaches have been
employed in various mechanical and civil engineering ap-
plications [18, 19], particularly for structural members under
compression [20, 21]. As an example, Sarir et al. [22] pro-
posed a tree-based and whale optimization model for pre-
dicting the load-bearing capacity of circular CFSTmembers.
Besides, Ahmadi et al. [23, 24] applied an artificial neural
network for predicting the axial capacity of circular CFST
short columns. In another work, Tran et al. [25] developed a
neural network-based model for predicting the load-bearing
capacity of square CFSTcolumns.�e obtained results in the
literature demonstrated that ML methods have a very
promising potential for predicting the mechanical behavior
of structural elements. Despite the importance of elliptical
CFST columns, most ML-based studies focused on circular
and square cross sections [22, 26, 27]. �erefore, more in-
vestigations should be carried out to assess the potential
applications of ML-based models for studying the axial
behavior of elliptical CFST columns.

�erefore, the primary objective of the present work
was to develop an ML-based model to predict the ultimate
load of elliptical CFST columns under axial loading. For
this purpose, a hybrid ML model, namely Adaptive
Neurofuzzy Inference System (ANFIS) combined with
Real Coded Genetic Algorithm (RCGA), was developed.
�e RCGA was chosen because of its higher optimization
capability than the conventional gradient descent (GD)
technique, as highlighted in this study. As the present
work mainly focused on elliptical CFST columns, the
input data included the length of the column, the major
and minor axis lengths of the elliptical cross section, the
thickness of the steel tube, and the mechanical properties
of steel and concrete (i.e., yield strength and compressive
strength, respectively). In order to train and validate the
developed hybrid ML model, statistical quality assess-
ments such as coefficient of determination (R2) and root
mean squared error (RMSE) were employed. Monte Carlo
simulations were also carried out in order to estimate the
robustness of the proposed ML model. A sensitivity
analysis was conducted to investigate the influence of
input variables on the prediction results. �e prediction
capacity of the RCGA-ANFIS model was also compared
with existing equations in the literature for estimating the
ultimate load of elliptical CFST columns. Finally, a
Graphical User Interface (GUI) based on the developed
ML model was provided, aiming at quick and efficient
estimation of the ultimate load of elliptical CFST
columns.

2. Materials and Methods

2.1. Database. In this work, a database was constructed by
extracting available datasets from experimental research of
Uenaka [28], Yang et al. [29], Liu et al. [30], Ren et al. [12],
Dai et al. [31], Jamaluddin et al. [32], Yang et al. [33],
McCann et al. [34], and Zhao and Packer [35]. From these
investigations, a total number of 94 configurations were
collected and summarized (Table 1), including the number
of data points and proportion (in %). As revealed in the
literature, the experimental procedure was conducted fol-
lowing the steps below:

(i) Design of specimens
(ii) Manufacturing of steel tube
(iii) Manufacturing of concrete core
(iv) Assembly of composite columns
(v) Loading and measurement (see Figure 1 for a

schematic description of the test as well as geo-
metrical parameters of the members)

In terms of the experimental studies, various geometrical
parameters, as well as mechanical properties of the con-
stituent materials, were considered in order to test the failure
of elliptical CFSTcolumns under axial compression. For that
reason, the input parameters of the problem regarding the
geometry were the length of the column (denoted by L), the
major axis length of the elliptical cross section (denoted by
D), the minor axis length of the elliptical cross section
(denoted by d), and the thickness of the steel tube (denoted
by δ). Regarding the mechanical properties of constituent
materials, the yield strength of the steel tube (denoted by fy)
and the compressive strength of the filled concrete (denoted
by fc
′) were considered. �e ultimate load of the column

under axial compression was the output of the problem,
denoted byQn. A primarily statistical analysis of the database
is indicated in Table 2, including the min, average, max,
standard deviation (StD), and coefficient of variation (CV)
values of all variables. It should be noticed that several
statistical correlation techniques such as Principal Com-
ponent Analysis [36] were applied, and no significant cor-
relations were found in the input space. �is confirmed that,
for the prediction problem, all input parameters in this study
were independent, and the selection of inputs was relevant.
Finally, all data were scaled into the range of [−1, 1] in order
to minimize numerical bias in the training phase.

2.2. Methods Used

2.2.1. Adaptive Neurofuzzy Inference System (ANFIS).
�e Adaptive Neurofuzzy Inference System, referred to as
ANFIS, is an ML model constructed from the combination
between a set of fuzzy if-then rules and the fuzzy inference
systems through an adaptive network [37, 38].�emain idea
of ANFIS is to construct a set of fuzzy if-then rules, including
suitable membership functions to create the stipulated
output and input variables [39, 40]. Supposing that the
ANFIS model has two input variables such as X and Y and
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one output variable such as Z, we apply the following Takagi
and Sugeno’s if-then rules [41, 42]:

If X isA1 andY isB1, then Z1 � a1X + b1Y + c1 (rule 1);

If X isA2 andY isB2, then Z2 � a2X + b2Y + c2(rule 2).

(1)

Here, A and B are linguistic labels characterized by ap-
propriate membership functions, and a, b, and c are the
linear output parameters.

Consider the above ANFIS model with two input var-
iables X and Y. Its structure can be divided into five main
layers as follows [43]:

Layer 1: each node in this layer corresponds to a node
function, which can be chosen to be bell-shaped with a
minimum value equal to 0 and a maximum value equal
to 1, for example, the Gaussian function, such that

μAi(x) � exp −
x − ai

bi

􏼠 􏼡

2
⎡⎣ ⎤⎦, (2)

where x is problem input and ai, bi are input
parameters.
In fact, any continuous and differentiable functions can
be chosen for the nodes in this layer.
Layer 2: each node in this layer is a node function that
multiplies the incoming inputs and sends the results to
the next layer:

wi � μC
1
i x1( 􏼁 × μC

2
i x2( 􏼁 × · · · × μC

n
i xn( 􏼁. (3)

Layer 3: each node in this layer computes the ratio
between the ith rule’s firing strength and the sum of all
rules’ firing strength:

wi �
wi

􏽐
n
k�1 wk

. (4)

Layer 4: each node in this layer is a node function
chosen such that

fi � wi c0 + 􏽘
n

k�1
ckXk

⎛⎝ ⎞⎠. (5)

Layer 5: the circle node in this layer calculates the sum
of all incoming results and exports as the overall output

Overall ouput � 􏽘
i

wifi. (6)

�e training algorithm uses a combination of the least-
squares and backpropagation gradient descent methods to
model the training dataset [44].

2.2.2. Real Coded Genetic Optimization Algorithm. Real
Coded Genetic Algorithm, referred to as RCGA, is a met-
aheuristic optimization technique which is inspired by the
principles of biological evolution. �e basic idea of RCGA is
to move a population of chromosomes, which are composed
of strings of ones and zeros (or genes), to a new one that
performs better than the old one [45].�ere are two primary
operations in RCGA, which are crossover and mutation
[46, 47]. Crossover is a phase where the chromosomes in the
population randomly share their features. �is is the most
significant operation in the RCGA, as more powerful off-
spring are created taking useful features from their parent’s
genes. Mutation is a process that is operated within each
offspring, meaning that some of the bits in the bit string can
be flipped. �e main objective of the mutation process is to
maintain the diversity of the population after new offspring
are created from crossover [48].

�e RCGA can be divided into five main steps as follows
[48, 49]:

(i) Initial population. In this step, a set of chromosomes
called population is defined. Each individual of the
population corresponds to a solution of the con-
sidered problem. Each chromosome is formed by
joining genes into a string. Typically, chromosomes
are composed of strings of ones and zeros.

(ii) Fitness function. In this step, the fitness score of
each individual in the population is calculated. It
defines how to fit the chromosome or the ability of
that chromosome to compete with others. A higher
fitness score means that the individual is more likely
to be reproduced.

(iii) Selection. In this step, the chromosomes with the
highest values of fitness score will be selected in
order to share their features in the next step.

(iv) Crossover. In this step, the crossover process will be
operated on the most fitting chromosomes. �eir
genes are randomly exchanged to create new
offspring.

Table 1: Organization of database.

Source of data Number of data
points

Proportion of data
(%)

Uenaka [28] 19 20.2
Yang et al. [29] 2 2.1
Liu et al. [30] 18 19.1
Ren et al. [12] 6 6.4
Dai et al. [31] 13 13.8
Jamaluddin et al.
[32] 17 18.1

Yang et al. [33] 9 9.6
McCann et al. [34] 2 2.1
Zhao and Packer
[35] 8 8.5

Total 94 100
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(v) Mutation. In this step, the mutation process is done
within each individual offspring to maintain the
diversity of the population.

�e algorithm is terminated when the model has con-
verged, meaning that the newly created offspring are not
different from the previous ones. In the literature, RCGA was
used mainly in hybrid ML approaches [49]. For instance, Kim
and Shin [50] used a hybrid approach based on neural net-
works and genetic algorithms for detecting temporal patterns,
Le et al. [51] in steel structures applications, or Yan et al. [52]
for engineering design problems. Finally, a complete review of
the RCGA technique could be found in Lee [53].

2.2.3. Random Sampling Technique: Monte Carlo Method.
�emain idea of the Monte Carlo method is that the output
is computed by repeating the sampling of variables ran-
domly from the input space [54–56].�at way, (i) the Monte

Carlo method is widely applied in order to propagate the
variability of inputs on the output response; (ii) based on
statistical analysis of output, several posttreatments such as
robustness and/or sensitivity analyses could be thoroughly
achieved [57] (see Figure 2 for a typical statistical problem
using the Monte Carlo method). As shown in Figure 2, each
input exhibits a probability distribution describing its var-
iability. Due to the variabilities of input variables, the re-
sponse also exhibits its statistical behaviors, which are
necessary to be characterized [58]. �e robustness of the
model and/or sensitivity of input variables could then be
deduced based on statistical analysis of output response
[59–61].

Using Monte Carlo simulation, the bigger the number of
realizations, the higher the reliability of the response ar-
chived. In this work, in order to optimize the number of
Monte Carlo runs, a statistical estimator of convergence was
applied, such as [62–65]

Axial
loading

L

δ

(a)

Steel
tube

Concrete
core

D

d

(b)

Axial shortening

Axial load

Qn

(c)

Figure 1: Schematization for (a) the CFST columns under axial loading, (b) the elliptical cross section, and (c) the load-axial shortening
curve (a drawing based on experimental curves of Uenaka [28]).

Table 2: Initial statistical analysis of the database.

Parameter Unit Notation Min Average Max StD CV (%)
Length of column mm L 160 991.86 3600 923.908 93.1
Major axis length of cross section mm D 136.5 177.281 318.5 35.986 20.3
Minor axis length of cross section mm d 63.1 93.693 155 21.466 22.9
�ickness of steel tube mm δm1 3.854 9.72 1.679 43.6
Yield strength of steel tube MPa fy 201 360.657 439.3 59.378 16.5
Compressive strength of concrete MPa fc

′ 13.18 48.638 102.26 20.843 42.9
Ultimate load kN Qn 413.3 1130.462 2607 484.164 42.8
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NMC↦I NMC( 􏼁 �
1

W

1
NMC

􏽘

NMC

i�1
Wi, (7)

where W is the mean of the considered variableW and NMC
is the number of Monte Carlo runs.

2.3. Quality Assessment Criteria. In the present work, sta-
tistical criteria, namely, the coefficient of determination (R2)
and Root Mean Squared Error (RMSE), have been used in
order to validate and test the developed ML model. �e R2

allows us to identify the statistical relationship between two
data points. �is measurement of the linear correlation
yields a value between 0 and 1 inclusively, where 0 is no
correlation and 1 is total correlation. R2 could be calculated
using the following equation [66, 67]:

R
2

�
􏽐

N
k�1 pk − p( 􏼁 wk − w( 􏼁􏼐 􏼑

2

􏽐
N
k�1 pk − p( 􏼁

2
􏽐

N
k�1 wk − w( 􏼁

2,
(8)

where N is the number of the observations, pk and p are
predicted and mean predicted values, and wk and w are
measured and mean measured values of ultimate load, re-
spectively (k � 1: N). �e formulation of RMSE is described
by the following equation [68–70]:

RMSE �

��������������

1
N

􏽘

N

k�1
pk − wk( 􏼁

2

􏽶
􏽴

. (9)

Finally, the slope criterion is defined, such as the slope of
the linear regression fit between predicted and observed
vectors.

3. Results and Discussion

3.1. Optimization of ANFIS’s Weight Parameters. In this
section, the optimization of ANFIS’s weight parameters is
presented. Such optimization procedure was done using
both conventional GD and advanced RCGA techniques,
respectively, to identify the best training algorithm. Table 3
indicates the characteristics of ANFIS, including the type of
membership function, the number of weights per mem-
bership function, and the number of membership functions
per input as well as the number of nodes. It is seen that there
were 190 consequent and antecedent ANFIS parameters to
be optimized as ANFIS was generated using the c-means
clustering algorithm for the considered six-dimensional
input space [71, 72]. In this study, a maximum number of
iterations of 1000 was employed as the stopping condition
when optimizing. �e cost function was selected as RMSE.
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Figure 2: Monte Carlo simulation taking into account variability in the input space for robustness and sensitivity analysis.
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�e parameters of RCGA during the training phase are also
indicated in Table 3. Figures 3(a) and 3(c) present the
evolution of RMSE during the optimization process, using
GD and RCGA, respectively. �e same illustration is pre-
sented in Figures 3(b) and 3(d), but for the evolution of R2. It
should be noticed that, in these figures, the value of RMSE
(i.e., R2) for training and testing data was also highlighted
during the learning phase. It is seen that at least 600 iter-
ations were needed for obtaining a convergence with respect
to both RMSE and R2. At the same time, the evolution of
RMSE and R2 is plotted using the testing data, which were
totally new when applied. Such evolution exhibits efficiency
during the training process; i.e., no overfitting or under-
fitting was observed.

�e values of all quality assessment criteria at the end of
the training process are indicated in Table 4, whereas the
results in terms of regression plots and error distribution are
shown in Figures 4(a)–4(c), respectively. As indicated in
Table 4, using the training data, RCGA-ANFIS provided the
highest value of R2, which is 0.971, while the R2 value of GD-
ANFIS is 0.933. In terms of RMSE, RCGA-ANFIS yielded
the smallest value, which is 70.379 kN, whereas the RMSE
value of GD-ANFIS is 105.428 kN. In terms of linear fit, the
RCGA-ANFIS model produced the highest value of slope
(0.98) corresponding to a slope angle of 44.425°, while the
slope value of GD-ANFIS was 0.937 corresponding to slope
angle of 43.125°. Regarding error analyses, using the training
data, the mean values are 1.409 and 0.972%, while the
corresponding standard deviation values are 11.082 and
8.497% for GD-ANFIS and RCGA-ANFIS, respectively. It
can be seen that the RCGA-ANFIS model yielded an error
mean, which is the closest to zero and the smallest standard
deviation value (see also Figure 4(c)). �e application of the
twoMLmodels to the validating data is presented in the next
section.

3.2. Validation of Model. �e previously developed GD-
ANFIS and RCGA-ANFIS models were applied to the
validating data for validation. As a result, Figures 5(a) and
5(b) present regression graphs between actual and predicted
ultimate load, whereas Figure 5(c)shows error distribution,

respectively. All quantitative values of quality assessment
criteria are indicated in Table 4. As indicated in Table 4,
using the validating data, GD-ANFIS provided R2 � 0.952,
RMSE� 130.065 kN, Meanerror � −0.456 kN,
StDerror � 8.967 kN, and slope� 0.920, whereas RCGA-
ANFIS provided R2 � 0.974, RMSE� 100.340 kN,
Meanerror � 2.541 kN, StDerror � 8.042 kN, and slope� 1.019,
respectively. �e same remarks were obtained for the
training data, RCGA-ANFIS yielded the best prediction
performance. It could be stated that the RCGA-ANFIS
model is validated because it performs well the prediction of
ultimate load using the validating data. �us, RCGA-ANFIS
model was selected as the final prediction model for esti-
mating the ultimate load of elliptical CFST columns.

3.3. Sensitivity Analysis. In this section, the influence of
input variables on the prediction of column load-carrying
capacity is presented. For this purpose, the probability
distribution of each input was characterized by 11 levels of
quantiles such as Q0, Q10, Q20, Q30, Q40, Q50, Q60, Q70, Q80,
Q90, and Q100. For a given input, a local influence index,
denoted by θ (in %), was computed by the following
equation:

θk
q �

Q
k
q − Q

all
median

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

Q
all
median

× 100, (10)

where Qall
median is the output, the ultimate load when all inputs

are equal to their Q50 values. Qk
q is the output of the ML

model when applying kth input at its qth levels (quantiles
from 0 to 100 every 10, respectively) (k� 1, . . ., 6 and q� 1,
. . ., 11).�at way, the global influence index of the kth input,
denoted by Mk, is calculated as follows:

M
k

� 􏽘
11

q�1
θk

q. (11)

Figures 6(a) and 6(b) present the global influence index
of all inputs parameters using GD-ANFIS and RCGA-
ANFIS, respectively (see the appendix for statistical con-
vergence of Monte Carlo simulations). It could also be

Table 3: Parameters of ANFIS and RCGA used in this study.

Parameter of ANFIS Value Parameter of RCGA Value
Number of inputs 6 Population size 100

Number of outputs 1 Length of
chromosome 190

Membership function Gaussian Fitness function Linear ranking
Number of parameters per membership function 2 Crossover type Random pair
Number of membership functions per input (rules) 10 Crossover probability 0.4
Number of nodes 149 Number of offsprings 12
Number of nonlinear parameters of the antecedent membership
function 120 Mutation type Random

Number of linear parameters of the consequent membership function 70 Mutation probability 0.7
Total number of parameters 190 Number of mutants 21
Cost function RMSE Mutation rate 0.15

Selection function Fitness proportionate
selection
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noticed that the bar graphs are reorganized in decreasing
order of the mean value for all six input variables. All values
are indicated in Table 5. It is clearly observed that all input
variables affect the axial capacity of structural members
considerably under axial compression from a minimum of
6.1% to a maximum of 22.5% on average. It is also seen that
the axial capacity is in function of inputs under a nonlinear
form (i.e., a linear equation could not join all mean values of
sensitivity index). It is seen that there are at least four levels
of influence ranking. Indeed, the two most important var-
iables are d and δ, which exhibit more than 20% of influence
each. Next, L and D could be classified in the second group,
which exhibit about 18% of influence each. �e third group

contains the compressive strength of concrete, whereas the
yield strength of steel has about 6% of influence and is in the
last group. Last but not least, it is seen that the fluctuation of
the influence index obtained by GD-ANFIS is higher than
the ones obtained by RCGA-ANFIS. �is points out that
RCGA-ANFIS is more robust and efficient than GD-ANFIS,
which confirms the higher performance of RCGA than GD,
as identified in Section 3.2.

3.4. Comparison with Existing Models. In this section, the
best prediction model, namely RCGA-ANFIS, is compared
with existing models in the literature for the axial capacity of
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Figure 3: Evolution during optimization process for RMSE using (a) GD and (c) RCGA; for R2 using (b) GD and (d) RCGA.

Table 4: Summary of prediction capability.

Data used Model R2 RMSE Meanerror (%) StDerror (%) Slope Slope angle (°)

Training GD-ANFIS 0.933 105.428 1.409 11.082 0.937 43.125
RCGA-ANFIS 0.971 70.397 0.972 8.497 0.980 44.425

Testing GD-ANFIS 0.952 130.065 −0.456 8.967 0.920 42.600
RCGA-ANFIS 0.974 100.340 2.541 8.042 1.019 45.536
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elliptical CFSTcolumns. Liu and Zha [16] have proposed the
following equation:

Q
Liu−2011
n �

1 + 1.5(d/D)
0.3

1 + As/Ac( 􏼁
×

Asfy

Ac

, (12)

where As and Ac are the cross-sectional area of the steel
tubular and the concrete core, respectively. Another formula
for predicting the axial capacity of elliptical CFST columns
was developed by Shen et al. [17], such as

Q
Shen−2015
n � fc

′ As + Ac( 􏼁 0.0075 ×
Asfy

Acfc
′

􏼠 􏼡

3

+ 0.0624 ×
Asfy

Acfc
′

􏼠 􏼡

2

+ 0.7080 ×
Asfy

Acfc
′

􏼠 􏼡 + 1.3625⎡⎣ ⎤⎦. (13)

Figures 7(a)–7(c) present the regression graph between
actual and predicted ultimate load, using Liu et al. 2011, Shen
et al. 2015, and RCGA-ANFIS model, respectively. All

performance indicators are also highlighted in Table 6. It is
seen in Figure 7 and Table 6 that the RCGA-ANFIS model
provided better performance than the literature, with respect
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Figure 4: Results after training process for (a) using GD, (b) using RCGA, and (c) distribution of errors.
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Figure 5: Results after validating process for (a) using GD, (b) using RCGA, and (c) distribution of errors.
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Figure 6: Sensitivity analysis of input variables using (a) GD-ANFIS and (b) RCGA-ANFIS.
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to all error measurement criteria. In Table 6, the percentage
of gain is also indicated. �e percentage of gain is calculated
based on the following equation:

%Gain �

Ωthis− study
− 1􏼐 􏼑 − Ωliterature − 1􏼐 􏼑􏼐 􏼑 × 100, in case of : R

2 and Slope;

Ωliterature −Ωthis− study
􏼐 􏼑

Ωliterature
⎛⎝ ⎞⎠ × 100, in case of : RMSE and ErrorStD.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(14)

Table 5: Statistical analysis of global influence index (in %).

Parameter Model L D d δ fy fc
′

Mean GD-ANFIS 18.898 18.832 22.505 20.882 6.422 11.378
RCGA-ANFIS 17.692 17.788 21.344 22.264 6.151 13.210

StD GD-ANFIS 4.198 6.895 5.045 4.795 4.683 3.671
RCGA-ANFIS 4.085 4.300 3.807 3.839 3.682 4.113

R2 = 0.776
RMSE = 348.435 kN
StDerror = 33.817%
Slope = 1.121
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Figure 7: Regression graphs between predicted and actualQn (all data) using (a) Liu and Zha [16], (b) Shen et al. [17], and (c) RCGA-ANFIS
model.
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Figure 8 shows the comparison regarding the perfor-
mance indicators between RCGA-ANFIS and existing
models. Obviously, the RCGA-ANFIS model showed an
excellent performance in predicting the ultimate load of the
elliptical CFST columns.

3.5. Practical Application. For further application of RCGA-
ANFIS model, a Graphical User Interface (GUI) was de-
veloped in MATLAB 2018a [73]. Figure 9 presents the main
GUI, which is simple and easy to use. Users can enter the
values of input variables; the ultimate load of elliptical CFST
columns is then displayed directly by clicking the Start

Predict button. �e GUI is provided freely at https://github.
com/Tien-�inhLe/
EllipticalCFST_AxialCapacityPrediction.

3.6. Proposed Empirical Formula. It is not convenient for
researchers/engineers to employmachine learningmodels in
practice, because such a model contains weights, bias pa-
rameters, and transfer functions. �us, an empirical formula
based on the developed machine learning model should be
derived to be employed in the engineering field. Based on the
results obtained from the machine learning model, a
mathematical method was used to derive a practical

Table 6: Comparison between RCGA-ANFIS model and literature.

Parameter Model used R2 RMSE Meanerror StDerror Slope Slope angle (°)

Performance indicator
Liu et al. 2011 0.776 348.435 15.523 33.817 1.121 48.277
Shen et al. 2015 0.768 515.333 29.887 39.776 1.310 52.636

�is work 0.974 80.489 1.439 8.352 1.003 45.092

% of gain Liu and Zha [16] +19.8 +76.9 +90.7 +75.3 +11.8 +7.1
Shen et al. [17] +20.6 +84.4 +95.2 +79.0 +30.6 +16.8
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Figure 8: Comparison betweenRCGA-ANFISmodel and literature: (a) in terms ofR2 and slope, (b) in terms of RMSE, and (c) in terms of StDerror.
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equation for the prediction of ultimate load of elliptical
CFST columns. Such a procedure was inspired by a recent
development of Nikbin et al. [74] in deriving an empirical
formula for prediction of fracture energy of concrete based
on machine learning models. Figure 10 presents the diagram
of the procedure. More details could be found in Nikbin et al.
[74].

Based on the procedure presented in Figure 10, the
ultimate load of elliptical CFST columns can be predicted
using

Q
Proposed formula
n � CL × CD × Cd × Cδ × Cfy

× Cfc
′ , (15)

where

CL � −0.0075912 ×
L

1000
􏼒 􏼓

2
− 0.15675 ×

L

1000
􏼒 􏼓 + 1.2827,

(16)

CD � −0.25383 ×
D

180
􏼒 􏼓

2
+ 1.313 ×

D

180
􏼒 􏼓 − 0.016222,

(17)

Cd � 0.06122 × d
2

− 2.7245 × d + 501.50, (18)

Cδ � 0.11857 ×
δ
4

􏼠 􏼡

2

+ 0.1051 ×
δ
4

􏼠 􏼡 + 0.83073, (19)

Cfy
� 0.51644 ×

fy

350
􏼠 􏼡

2

− 0.70249 ×
fy

350
􏼠 􏼡 + 1.2644,

(20)

Cfc
′ � 0.015364 ×

fc
′

50
􏼠 􏼡

2

+ 0.25698 ×
fc
′

50
􏼠 􏼡 + 0.80208.

(21)

�e coefficients presented in (16)–(21) were deduced based
on a least square optimization process (see also Nikbin et al.
[74]). In order to evaluate the performance of the proposed
equation, 94 experimental data points have been employed for
a comparison purpose. Details of the experimental dataset,
including input variables (geometric variables and strength of
constituent materials), output variable (measured ultimate
load), and three ratios (QLiu−2011

n /Qn), (QShen−2015
n /Qn),

(Q
Proposed formula
n /Qn), are indicated in Table 7. At the end of

Table 7, statistics of the three ratios are also indicated, including
the min, average, max, standard deviation, and coefficient of

Figure 9: MATLAB’s GUI for the prediction of the ultimate load of elliptical CFST columns based on RCGA-ANFIS model.
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Table 7: Comparison of performance between the proposed formula and existing equations.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

mm mm mm mm MPa MPa kN — — —
300 150.4 75.6 4.18 376.5 26.93 839 1.02 1.10 0.96
300 150.57 75.52 4.19 376.5 47.3 974 1.04 1.13 0.93
300 150.39 75.67 4.18 376.5 84.57 1265 1.02 1.20 0.86
300 150.12 75.65 5.12 369 26.93 981 0.99 1.14 0.88
300 150.23 75.74 5.08 369 47.3 1084 1.03 1.15 0.89
300 150.28 75.67 5.09 369 84.57 1296 1.07 1.27 0.90
300 148.78 75.45 6.32 400.5 26.93 1193 1.01 1.35 0.83
300 148.92 75.56 6.43 400.5 47.3 1280 1.07 1.27 0.88
300 149.53 75.35 6.25 400.5 84.57 1483 1.07 1.29 0.90
500 150.18 75.21 4.51 395 69.2 1075 1.16 1.32 0.96
500 150.49 75.26 5.41 358 69.2 1163 1.11 1.29 0.92
500 150.05 75.42 6.56 369 69.2 1310 1.11 1.33 0.92
600 200.21 100.12 5.2 397 69.2 1598 1.30 1.47 1.11
600 200 100.35 6.1 411 69.2 2068 1.10 1.25 0.95
600 200.6 100.02 8.17 383 69.2 2133 1.19 1.41 1.08
600 200.19 100.41 9.72 367 69.2 2290 1.19 1.46 1.15
698 220.7 110.7 6.16 421 48.2 2109 1.12 1.21 1.01
300 150.1 75 4.1 431.4 35.8 900 1.11 1.18 0.99
299 150.1 75.2 4.2 431.4 92.14 1239 1.16 1.36 0.97
398 197.8 100.1 5.1 347.9 36.87 1232 1.19 1.27 1.16
398 197.5 100.2 5.1 347.9 53.54 1737 0.97 1.08 0.90
398 197.4 100.1 5.1 347.9 102.26 2116 1.10 1.35 0.94
1497 150.9 75.4 4 431.4 17.9 650.8 1.32 1.54 1.03
1498 150.4 75.2 4.1 431.4 51.29 742.8 1.51 1.63 1.10
1496 150.3 75.2 4.1 431.4 77 923.2 1.42 1.62 1.01
1499 197.5 100.2 5.2 347.9 20.33 938.4 1.35 1.45 1.18

Start

Experimental
dataset

Machine learning
model

Determination of
reference values (based

on average values)

Determination of the most
sensitive parameter: minor axis

length of cross section (d)

Chart of relationship between
Qn and d

Determination of correction
factors for the rest of

variables

Final formula: comparison of
performance with existing

equations

End

Figure 10: Methodology flowchart for the development of empirical formula.
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Table 7: Continued.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

1498 197.7 100.1 5.1 347.9 77 1480 1.35 1.59 1.01
1785 150.7 75.2 4.2 431.4 51.67 663.2 1.72 1.87 1.18
1786 150.7 75.4 4.1 431.4 86.08 871.2 1.59 1.84 1.06
1785 197.6 100.2 5.1 347.9 31.32 967.5 1.44 1.52 1.15
1786 197.7 100.1 5.1 347.9 50.27 1237 1.33 1.46 1.00
1786 197.3 100 5.2 347.9 83.87 1411.2 1.49 1.77 1.05
2499 197.8 100.1 5.1 347.9 46.2 947 1.68 1.83 1.10
2498 197.7 100.1 5.1 347.9 87.28 1072.3 1.99 2.39 1.20
160 160 107.8 1 207 27.3 768.7 0.62 0.74 1.20
160 159.4 106.5 1.6 296 27.3 844 0.72 0.77 1.12
160 159.7 107.4 2.3 341 27.3 921.3 0.84 0.84 1.12
250 159.9 105.5 1 207 27.3 681.3 0.68 0.82 1.31
250 160.1 105.5 1.6 296 27.3 783.3 0.77 0.83 1.19
250 160.8 107 2.3 341 27.3 850.7 0.91 0.91 1.20
160 159.4 80.5 1.6 279 25 699.7 0.63 0.68 0.99
160 158.8 80.7 2.3 201 25 761.5 0.58 0.64 0.95
250 160.8 74.9 1 211 25 468.4 0.68 0.81 1.35
250 158.3 82 2.3 201 25 630.1 0.71 0.78 1.15
160 159.2 63.2 1 207 27.3 496 0.58 0.70 1.16
160 159.6 63.3 1.6 296 27.3 500.6 0.77 0.86 1.20
160 159.5 64.2 2.3 341 27.3 665.3 0.76 0.81 0.98
250 158.5 64.5 1 207 27.3 413.3 0.71 0.86 1.39
250 159.3 63.1 1.6 296 27.3 499.3 0.77 0.86 1.19
250 158.8 63.2 2.3 341 27.3 620.6 0.80 0.86 1.02
200 158.6 79.7 1 207 27.3 484.6 0.73 0.88 1.38
200 158 80.6 1.6 296 27.3 613.3 0.77 0.84 1.14
200 159.2 82.1 2.3 341 27.3 724 0.85 0.87 1.06
1678 150.4 75.2 4.1 410 45.64 743 1.40 1.51 1.00
1679 197.5 100 5.2 350 20.33 938 1.36 1.46 1.15
1678 197.7 100 5.1 350 77.2 1480 1.36 1.59 0.98
1965 150.5 75.4 4.1 410 13.18 484 1.65 2.20 1.21
1965 150.7 75.2 4.2 410 52.13 663 1.67 1.82 1.11
1966 150.7 75.4 4.1 410 86.18 871 1.55 1.81 1.00
1965 197.6 100 5.1 350 31.32 968 1.45 1.52 1.11
1966 197.7 100 5.1 350 50.27 1237 1.33 1.47 0.97
1966 197.3 100 5.2 350 84.17 1411 1.50 1.78 1.01
2681 150.1 75 4.1 410 86.18 547 2.45 2.86 1.35
2678 197.5 100 5.2 350 20.33 839 1.52 1.63 1.04
2679 197.8 100 5.1 350 46.56 947 1.69 1.84 1.06
2678 197.7 100 5.1 350 87.18 1072 1.99 2.39 1.15
3600 192 124 3.82 439.3 48.41 1121 1.68 1.73 0.89
3600 192 124 3.82 439.3 48.41 1157 1.63 1.67 0.86
2700 192 124 3.82 439.3 48.41 1389 1.36 1.39 0.93
2700 192 124 3.82 439.3 48.41 1322 1.43 1.46 0.98
1800 192 124 3.82 439.3 48.41 1896 0.99 1.02 0.83
1800 192 124 3.82 439.3 48.41 1829 1.03 1.06 0.86
2154 148.45 75.78 6.3 369.1 32 886.6 1.31 1.61 0.82
1154 148.37 75.63 6.3 369.1 33 1059.3 1.10 1.35 0.82
271 136.5 136.5 2.75 376.4 50.36 1296.3 1.03 1.05 1.16
271 137 137 2.75 376.4 50.36 1325.3 1.01 1.03 1.14
271 137.8 137.8 2.75 376.4 50.36 1343 1.01 1.03 1.14
338 170 112 2.75 376.4 50.36 1310.6 0.98 1.06 1.03
338 169.6 111 2.75 376.4 50.36 1299.2 0.98 1.06 1.03
338 168 112.5 2.75 376.4 50.36 1294.4 0.99 1.07 1.04
407 202 99 2.75 376.4 50.36 1298.7 1.01 1.13 1.01
407 199.8 100.8 2.75 376.4 50.36 1325 1.00 1.12 1.01
407 201.5 100.4 2.75 376.4 50.36 1381.1 0.96 1.07 0.97
475 236 95.8 2.75 376.4 50.36 1309.2 1.09 1.26 1.07
475 237.5 96 2.75 376.4 50.36 1364.6 1.06 1.22 1.03
475 236 96.5 2.75 376.4 50.36 1354.2 1.06 1.23 1.04
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Table 7: Continued.

L D d δ fy fc
′ Qn (QLiu−2011

n /Qn) (QShen−2015
n /Qn) (QProposed formula

n /Qn)

636 318 155 2.75 376.4 50.36 2607 1.06 1.24 1.21
636 318.5 151.5 2.75 376.4 50.36 2497.3 1.09 1.28 1.22
636 317 153.5 2.75 376.4 50.36 2521.5 1.08 1.27 1.23
279 139 68 2.75 376.4 50.36 687.2 1.06 1.16 1.04
279 138 68.2 2.75 376.4 50.36 688.1 1.05 1.15 1.04
279 137.5 68 2.75 376.4 50.36 699.2 1.03 1.13 1.02
2670.4 199.7 105.7 2.6 376.4 45 1140 1.11 1.22 0.79
1910.4 204.3 103.1 2.6 376.4 45 966 1.30 1.44 1.09

Min 0.58 0.64 0.79
Average 1.16 1.30 1.05
Max 2.45 2.86 1.39
StD∗ 0.34 0.40 0.13
CV∗∗ 29.27 30.62 12.55

StD: standard deviation, CV: coefficient of variation (%).
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Figure 11: Distribution of ratio predicted Qn/actual Qn using different equations.
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Figure 12: Continued.
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variation values. Finally, Figure 11 shows the probability
density distribution of the three ratios.

It is seen in Table 7 (statistics of the three ratios) and
Figure 11 that the prediction based on the proposed formula
exhibits the highest agreement with the experimental data
points or, in other words, the lowest error measurements (an
average value of 1.05 compared to 1.16, 1.30 using Liu and Shen
equations; a standard deviation value of 0.13 compared to 0.34,
0.40 using Liu and Shen equations; and a coefficient of variation
of 12.55% compared to 29.27, 30.62 using Liu and Shen
equations, respectively). It can be concluded that the prediction
performance based on the proposed formula is superior to
those available in the literature. �us, with a simple form, the
proposed formula can be used in practice. Moreover, if more
experimental data are available in the future, the model will be
improved (i.e., for a wider range of data).

4. Conclusions

�e research presented in this article proposed a robust
surrogate tool for the estimation of the ultimate load of
elliptical CFSTmembers under axial compression. Based on
the developments and analyses, the following conclusions
may be made:

(i) An experimental dataset was collected from the
available literature for the development of the
models including two groups of variables: geo-
metric dimensions of cross section and mechanical
properties of constituent materials (concrete and
steel).

(ii) Two hybrid ML models, namely, the conventional
GD-ANFIS and metaheuristic-based RCGA-
ANFIS, were proposed to predict the ultimate load
of the columns. �e results showed that the RCGA-
ANFIS model outperformed GD-ANFIS. In addi-
tion, the performance of the RCGA-ANFIS model
was superior to two empirical equations in the
literature.

(iii) �e robustness of the proposed models was assessed
by conducting Monte Carlo simulations taking into
account the variability in the input space.

(iv) Sensitivity analysis showed that the steel pipe wall
thickness and the short side length of the cross
section were the most critical parameters affecting
the bearing capacity of elliptical CFSTcolumns (i.e.,
22.264% and 21.344%, respectively).

(v) A Graphical User Interface was developed and
provided freely for researchers/engineers/interested
users. �e results of the present work could simplify
the design of elliptical CFSTcolumns. �e optimum
values obtained in this study could allow quick and
accurate determining of the bearing capacity of
elliptical CFST columns for practical purposes.

However, it is worth noticing that, in this research, only
elliptical CFST columns were considered. It is well-known
that the cross section of columns has other forms; thus, the
extension of the GUI to other cross sections would be the
main perspective of the next study. In further research, a
generic model should be developed for different types of
cross section (i.e., circular, rectangular, square, hexagonal,
etc.). Such a model can be highly beneficial for the research
and practical purposes. Finally, in terms of practical ap-
plication, a GUI based on Excel should be developed for
wider applicability.

Appendix

Convergence of Monte Carlo simulations

In this section, the convergence of the ML models in the
function of Monte Carlo runs is investigated (see Section
2.2.3). Figure 12 shows the convergence estimation in terms
of RMSE and R2, using the training and testing data, re-
spectively. Regarding the convergence of R2 for both training
and testing part, low order of fluctuation was observed
compared to RMSE. �e statistical convergence analyses
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Figure 12: Monte Carlo convergence for training data: (a) RMSE, (b) R2; for testing data: (c) RMSE, (d) R2.
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showed that at least 500 Monte Carlo simulations were
needed to obtain reliable results, particularly in terms of
RMSE.
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