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Mineral tailing deposits are one of the most important issues in the field of geotechnical engineering. (e void ratio of mineral
tailings is an essential parameter for investigating the geotechnical behavior of tailings. However, there has not yet been a
comprehensive empirical formulation for initial prediction of the void ratio of mineral tailings. In this study, the void ratio of
various types of mineral waste is estimated by using gene expression programming (GEP).(erefore, taking into consideration the
effective physical parameters that affect the estimation of this parameter, eight different models are presented. A reliable ex-
perimental database collected from different sources in the literature was applied to develop the GEP models. (e performance of
the developed GEP models was measured based on coefficient of determination (R2), mean absolute error (MAE), and root mean
square error (RMSE). According to the results, the model with effective stress (σ′), initial void ratio (e0), and parameters of
R2 � 0.92, MAE� 0.109, and RMSE� 0.180 performed the best. Finally, a new empirical formulation for the initial prediction of the
void ratio parameter is proposed based on the aforementioned analyses.

1. Introduction

Understanding tailing behavior is one of the most chal-
lenging issues for both geotechnical and environment en-
gineers. Tailings are defined as mineral waste that is crushed
and deposited after the extraction of desired minerals.
Constructing a tailing dam usually requires a remarkable
amount of loan resources. In practice, mineral waste is
applied to reduce the construction costs of tailing dams [1].
It is also difficult to work in the laboratory with mineral
waste due to the particular conditions of this type of soils. In
addition, according to the International Commission on
Large Dams, more than 200 failures of tailing dams have
occurred since the early twentieth century. A remarkable
volume of mineral waste flows down the tailing dams after a
failure occurs. (is usually leads to both human deaths and
severe environmental pollution. (erefore, understanding
the strength and consolidation behavior of mineral waste
used in the tailing dams can give us an insight into factors
that affect failure occurrence and slope stability.

Several research studies have been carried out to in-
vestigate the consolidation, strength behavior (monotonic
and cyclic), and permeability of the mineral tailings. (e
void ratio parameter is known as an important parameter for
better understanding of the consolidation behavior of tail-
ings. Several studies have been dedicated to the investigation
of the effect of different physical parameters on the void ratio
parameter for various types of mineral waste. In this regard,
there have been many studies that investigated the effect of
the effective stress parameter on the void ratio parameter in
mineral tailings [1–7]. (e results indicated that increasing
the effective stress leads to nonlinear reduction of the void
ratio for various types of tailings. Quille and O’Kelly in-
vestigated the effect of soil classification on the void ratio in
zinc/lead mine tailings [8]. (e results showed that the void
ratio of fine-grained waste is less than the void ratio of
coarse-grained waste. Experimental works conducted by
Bonin et al. on gold mine tailings revealed that the void ratio
parameter increases with increasing initial void ratio pa-
rameter [9]. Qiu and Sego studied the effect of physical
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parameters on the consolidation features of copper, gold,
and coal mineral tailings [10]. It was observed that the void
ratio parameter also increases with increasing water content.
It can be concluded from the literature review that the void
ratio parameter generally depends on the effective stress
(σ′), initial void ratio (e0), water content (ww), clay per-
centage (c (%< 2ηm)), and grain size. However, there are no
comprehensive relationships for initially estimating the void
ratio parameter based on its influential parameters in mine
tailings.

In recent years, soft computing methods such as artificial
neural networks (ANNs), adaptive network-based fuzzy in-
ference system (ANFIS), and gene expression programming
(GEP) have been successfully used to develop predictive
models to solve nonlinear and complex problems in various
topics of civil engineering, particularly in geotechnical en-
gineering. In these regards, Heshmati et al. used linear genetic
programming (LGP) for a formulation of soil classification
[11]. Narendra et al. successfully used computational intel-
ligence techniques to estimate the unconfined compressive
strength of soft grounds [12]. Furthermore, Heshmati et al.
used artificial neural networks (ANNs) to predict the un-
confined compressive strength of soil-stabilizer mixes [13].
Soleimani et al. also developed new prediction models for the
unconfined compressive strength of geopolymer stabilized
soil by employing multigene genetic programming [14]. In
addition, several soft computing-based approaches such as
neural network [15], decision tree (DT) [16], Bayesian net-
works (BNs) [17], patient rule inductionmethod (PRIM) [18],
and gene expression programming (GEP) have been used to
estimate the seismic liquefaction potential. Mozumder et al.
predicted the penetrability ofmicrofine cement (MC) grout in
granular soil using artificial intelligence techniques [19].
Emamgolizadeh et al. also predicted the soil cation exchange
capacity using GEP and multivariate adaptive regression
splines (MARS) [20]. Generally, the robustness of soft
computing approaches for developing new predictive models
in different fields of geotechnical engineering based on the
mentioned studies has been confirmed.

(emain objective of this study is to develop a predictive
model for the void ratio parameter of the mineral tailings
using the GEP method. In order to develop the GEP models,
a comprehensive database from previous studies including
113 laboratory data was collected. To find a robustness
model, eight different GEP models are developed to estimate
the void ratio parameter. (e performance of the developed
GEP models was evaluated using accuracy criteria. (e
relative importance of influential parameters dealing with
the void ratio parameter was also investigated by the sen-
sitivity analysis. In addition, the robustness of predicted GEP
models was evaluated through parametric analysis. (e GEP
models were compared with each other, and finally the most
appropriate model was selected.

2. Methods

2.1. Gene Expression Programming (GEP). (e gene ex-
pression programming method was firstly introduced by
Ferreira in 1999 [21]. (is method is an evolutionary

algorithm which is closely related to genetic algorithms
(GAs) and genetic programming (GP). (e significant dif-
ference between these methods is in the statement and
nature of individuals. In the GEPmethod, the individuals are
stated as linear, symbolic, and fixed length string composed
of one or more genes. However, despite their fixed length,
the chromosomes are capable of nonlinear state entities with
various shapes and sizes, which are known as expression
trees, while in GA and GP methods, the individual elements
are fixed length linear entities and nonlinear entities with
various shapes and sizes, respectively [21]. Figure 1 shows a
simple flowchart of the GEP algorithm.

Figure 1 illustrates the main steps of the GEP algorithm.
At first, initial chromosomes are randomly generated to
create an initial population. After that, these chromosomes
are expressed, and fitness function is calculated for each one.
(en, the chromosomes are chosen and kept based on their
fitness function to develop a new population for the next
iteration.(is process is continued until the stopping criteria
are achieved.

In the GEP model, the chromosomes are expressed as a
tree structure (expression tree). In the tree structure, ter-
minals represent leaves and functions represent nodes. (e
terminal set consists of the independent variables that are
considered as input variables of the model. So, the first step
to use the GEP method is to define the terminal set. In the
present study, the terminal set contains
c(%< 2ηm), D50, e0, ww, σ′  which are the clay percentage,
the mean grain diameter, the initial void ratio, the water
content, and the effective stress, respectively. Also, the
function set of {+, −, ×, /, √, Exp, and Ln} is considered as
nodes of the tree structure, and each chromosome can be
expressed according to the terminal set and function set. An
evolutionary process is used in the GEP method for finding
the best program and individual. (e chromosomes are
modified and optimized in each iteration based on the fitness
function and genetic operators like the genetic algorithm.
(is process is repeated until the convergence criteria are
achieved. In this study, to evaluate the cost of chromosomes,
the root relative square error (RRSE) is considered as the
fitness function based on the following equation [22]:

RRSE �
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where Pi is the predicted value, Ti is the target value, T is the
mean of target values, and n is the number of data.

2.2. Dataset. In this study, a suitable laboratory dataset
gathered from different references in the literature is used.
Different types of tailings including gold, zinc, and so on
from various locations in the world are employed in the
collected database. More details about the used database are
presented in Table 1.

Various physical properties such as the initial void ratio
(e0), effective stress (σ′), water content (ww), clay content (c
(%< 2ηm)), and mean grain diameter (D50) can affect the
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void ratio parameter. In the present study, these effective
parameters are used as predictor variables. (e ranges of
input and output variables are presented in Table 2.
According to this table, the values of the void ratio pa-
rameter appear to be between 0.44 and 4.4. (is range in-
cludes various waste types such as zinc and gold. It should be
mentioned that different methods can be applied to deposit
waste in the mentioned range. As a result, the used database
contains a comprehensive and practical range related to the e
parameter. Furthermore, according to Table 2, the values of
the effective stress parameter vary between 0.1 and 7500 kPa
which are very common ranges for real issues in geotech-
nical engineering problems. (e initial void ratio changes
between 0.68 and 4.4. In the tailing gradation section, the
variation of the mean grain diameter is from 0.008mm to

0.182mm, which indicates that the waste classification varies
from fine to coarse grains. (e range of ww parameter varies
between 7% and 141.4%, and the range of clay content
parameter is between 1.3% and 35%.

3. Developed GEP Models

To develop a robust formulation for the void ratio parameter
based on the GEP model, the database is randomly divided
into the training and testing datasets. (e GEP model is
trained by 70% of the whole database, and the remaining
data points are used to test and evaluate the developed GEP
model. In fact, the testing dataset is considered to verify the
generalization capability of the developed model and also to
avoid overfitting problems.

Start

Random initial population generation

Express the chromosome

Execute the expression tree

Calculate the cost of the chromosomes by 
using the fitness function 

The termination 
criterion achieved? Yes

Save the best chromosomeReproduction

Create the new generation End

No

Figure 1: Simple flowchart of the GEP method [22].

Table 1: (e sources of the datasets.

Reference Type of tailing No. of data
Highter and Vallee [2] Garnet-zinc 7
Poulos et al. [3] Aluminum 4
Stone et al. [4] Gold 8
Aubertin et al. [23] Sulfide free (not mentioned) 7
Qiu and Sego [10] Copper-gold-coal-CT 18
Berilgen et al. [24] Gold 8
Wong et al. [6] Oil sands 6
Riemer et al. [5] Not mentioned 5
Jeeravipoolvarn et al. [25] Oil sands 6
Wickland et al. [26] Gold 5
Quille and O΄Kelly [8] Zinc 7
Al-Tarhouni et al. [27] Gold 12
Antonaki et al. [7] Not mentioned 14
Bonin et al. [9] Gold 6
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To investigate the effect of each input parameter and also
to examine different combinations of input variables, a
group of eight GEP models was developed to estimate the
void ratio parameter. In Model 1, all input parameters were
included in the developing process. In Models 2 to 6, input
parameters were excluded one at a time, from the developing
process to observe the effect of each parameter on the void
ratio parameter. Model 7 contains effective stress (σ′), mean
grain diameter (D50), and initial void ratio (e0); however,
Model 8 only consists of effective stress (σ′) and initial void
ratio (e0). (e eight models are presented below:

Model 1� f(σ, e0, D50, ww, c(%< 2ηm))

Model 2� f(σ, e0, ww, c(%< 2ηm))

Model 3� f(σ, e0, D50, ww)

Model 4� f(σ, D50, ww, c(%< 2ηm))

Model 5� f(e0, D50, ww, c(%< 2ηm))

Model 6� f(σ, e0, D50, c(%< 2ηm))

Model 7� f(σ, e0, D50)

Model 8� f(σ, e0)

To investigate the accuracy of the developed GEP
models, three different statistical error criteria, including the
coefficient of determination (R2), the mean absolute error
(MAE), and the root mean square error (RMSE) are
considered:

R
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where Oi is the measured value, Pi stands for the prediction
values, N is the number of data points, Om is the mean value
for observation, and Pm is the mean value of prediction.

4. Results

4.1. PerformanceAnalysis. (e void ratio parameter is one of
the effective and practical parameters for specifying the
behavior of various types of soils like clay, silt, mineral
tailing, and so on. However, there is a need for a reliable
predictive model for the estimation of this parameter. In this
study, the GEP method is employed to develop new

formulations for estimating the void ratio parameter of
tailings. To obtain the best predictive model, different
combinations of input parameters are considered. In this
aspect, eight models are developed. In Model 1, all input
parameters are considered in the model development pro-
cess. (e mean diameter, clay percentage, initial void ratio,
effective stress, and water content were not considered in
Models 2 to 6, respectively. In Model 7, the clay percentage
and water content were not considered. In the last model, the
effective stress and initial void ratio were only considered in
the developing process. It should be noted that the other
combinations of input parameters were also considered but
are not presented here due to their weaker performance in
comparison with the presented ones.

(e statistical error indices related to each developed
model are presented in Table 3 for both training and testing
datasets. For more illustration, the predicted values of the
void ratio parameter by developed models versus the ob-
served ones are shown in Figure 2.

As mentioned, Model 1 contains all input parameters
(σ, e0, D50, ww, c(%< 2ηm)). According to Figure 2(a), the
dispersion of Model 1 is less than twenty percent. Also,
according to Table 3, the accuracy criteria are R2 � 0.92,
MAE� .086, and RMSE� 0.122, and they show high accu-
racy. (erefore, Model 1 is suitable for the prediction of
output parameter e.

(e parameters σ, e0, ww, and c(%< 2ηm) were consid-
ered in Model 2 for estimating the void ratio. As seen in
Figure 2(b), the scatter of Model 2 exceeds the twenty
percent error in some cases and also the dispersion of Model
2 is more than that in Model 1. In addition, according to the
results of Table 3, the accuracy of Model 2 is less than that of
Model 1. (erefore, it can be concluded that Model 2 is not
suitable for the prediction of the void ratio parameter. In
Model 3, all input parameters, except the clay percentage,
were considered as predictor variables. Figure 2(c) shows
that the scatter diagram of Model 3 is similar to that of
Model 1. Also, it can be inferred from Table 3 that the
performance of Model 3 and Model 1 is nearly the same.
(us, Model 3 has remarkable accuracy prediction of the
output parameter e.

Four input parameters, namely, σ′, D50, ww, and

c(%< 2ηm), were used for the prediction of the void ratio in
Model 4. According to Figure 2(d), the dispersion ofModel 4
is more than that of Model 1. Table 3 also shows that the
accuracy of Model 4 is significantly low in comparison with
Model 1. As a result, Model 4 cannot be used to accurately
predict parameter e. In Model 5, parameters
e0, D50, ww, and c(%< 2ηm) were considered, and parameter
σ was excluded. As shown in Figure 3(e), the maximum

Table 2: Statistical properties of the datasets.

Parameter e e0 σ (kPa) D50 c(%< 2ηm) ww

Range 0.44–4.4 0.68–4.4 0.1–7500 0.008–0.182 1.3–35 7–141.4
Minimum 0.44 0.68 0.1 0.008 1.3 7
Maximum 4.4 4.4 7500 0.182 3.5 141.4
Average 0.972 1.540 175.224 0.066 13.513 51.731
Std. deviation 0.505 0.969 843.698 0.058 8.810 31.867
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Table 3: Performance of the GEP models in predicting void ratio for training and testing datasets.

Models
Train Test

MAE RMSE R2 MAE RMSE R2

Model 1 0.086 0.122 0.93 0.121 0.24 0.92
Model 2 0.097 0.133 0.93 0.196 0.543 0.90
Model 3 0.09 0.117 0.95 0.127 0.189 0.92
Model 4 0.143 0.183 0.72 0.19 0.388 0.83
Model 5 0.18 0.287 0.31 0.286 0.534 0.55
Model 6 0.091 0.118 0.92 0.136 0.258 0.92
Model 7 0.076 0.104 0.96 0.111 0.17 0.94
Model 8 0.093 0.127 0.93 0.125 0.234 0.91
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Figure 2: Continued.
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dispersion is related to Model 5. Also, Table 3 shows high
error levels and a significant drop in the accuracy ofModel 5.
(erefore, Model 5 can be removed from the list of ap-
propriate predictive models. Parameters
σ′, e0, D50, and c(%< 2ηm) were applied in Model 6 to es-
timate the void ratio. Figure 2(f ) and Table 3 indicate that the
accuracy of Model 6 is similar to that of Model 1. (erefore,
Model 6 is appropriate for predicting the output parameter.

Parameters σ′, e0, and D50 were used in Model 7 to
develop the appropriate model for predicting the void ratio
parameter. According to Figure 2(g), the dispersion of
Model 7 is less than that of Model 1. Also, Table 3 indicated
that Model 7 outperformsModel 1. As a result, Model 7 is an

effective model for predicting the void ratio. Model 8 pre-
sented good results in estimating the void ratio using ef-
fective stress and initial void ratio parameters (σ′, e0 ). (e
scatter diagram of Model 8 shows an appropriate estimation
of the void ratio parameter. According to Table 3, the ac-
curacy of Model 8 is relatively lower than that of Model 7;
however, in comparison with Model 1, the conditions are
quite similar. (us, Model 8 is efficient for the prediction of
the void ratio.

In general, the results of the performance analysis in-
dicate that Models 1, 3, 6, 7, and 8 can be effectively applied
to estimate parameter e. However, it should be noted that the
robustness of the developed models must also be physically
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Figure 2: Measured versus predicted void ratio of tailings using GEP models. (a) Model 1. (b) Model 2. (c) Model 3. (d) Model 4. (e) Model
5. (f ) Model 6. (g) Model 7. (h) Model 8.
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Figure 3: Variation of DR against effective stress for (a) Model 1, (b) Model 3, (c) Model 6, (d) Model 7, and (e) Model 8.
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investigated; this is to ensure that their results are also
regarded when selecting the best model among Models 1, 3,
6, 7, and 8.

To further confirm the accuracy of the developed GEP
models, a new validation criterion introduced by Tropsha
et al. was employed [28]. In the mentioned method, several
factors including gradients of the regression lines (k and k′),
coefficient of the determination for the regression line (m, n)
through the origin, correlation coefficient (R), and the
condition of cross validation (Rm) are defined. (e formulas
related to these criteria are presented as follows:
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where R2
0 is the squared correlation coefficient between the

predicted and measured values and the R′20 is the squared
correlation coefficient between measured and predicted
values. (eir formulas are defined as follows:
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(e values of the R and Rm should be more than 0.8 and
0.5, respectively. (e values of the k and k′ should be between
0.85 and 1.15, respectively.(e values ofm and n should also be
less than 0.1.(e testing dataset was used to obtain the value of
the new validation criteria for the developed GEP models
(Models 1, 3, 6, 7, and 8). (e results of the statistical analysis

are presented in Table 4. According to Table 4, all the GEP
models satisfy the condition of the new validation criteria.

In order to complete the performance analysis, the dis-
crepancy ratio (DR) between predicted and measured values is
depicted as a function of input parameters in Figures 3 and 4.

DR � log
Pi

Oi

. (13)

As shown in these figures, the DR values of the developed
GEP models (Models 1, 3, 6, 7, and 8) are approximately
independent of the value of the input parameters. It can be
interpreted from these observations that the input param-
eters are correctly incorporated in the developed GEP
models. It should be noted that the same performance is also
observed in D50, c(%< 2ηm), and ww.

4.2. Sensitivity Analysis. In the present study, a sensitivity
analysis is implemented to determine the most effective
parameters in the estimation of the void ratio parameter. To
achieve this, seven scenarios are considered. In the first
scenario, all input variables are included in the modeling
process. In the remaining scenarios, the input parameters are
singly excluded from the modeling procedure. According to
Table 3, Model 1 includes all of the input variables while the
mean diameter, clay percentage, initial void ratio, and water
content were not considered in Models 2 to 6, respectively. It
can be seen from this table that the errors of the developed
models are sensitive to the elimination of each input pa-
rameter. Based on Table 3, removing the effective stress
parameter from Model 5 remarkably increases the errors of
the developed model. (is indicates that this parameter is
very important in the estimation of the void ratio parameter.
(e initial void ratio also shows a significant contribution in
generating a predictive model for the void ratio parameter.
(e effectiveness of other parameters in comparison with the
initial void ratio and effective stress parameters is negligible.
(ese results are in line with the physical concepts of the
problem and also with previous studies in the literature.

4.3. ParametricAnalysis. To investigate the robustness of the
developed models, parametric analysis is conducted to en-
sure that the results of the GEP models are in line with the
nature of the problem. To achieve this purpose, parameter e
which has been predicted by the developed GEP models is
plotted as a function of each input parameter. (e results of
the parametric analysis are shown in Figure 5. As shown in
Figure 5(a), the void ratio predicted by all the GEP models

Table 4: External validation statistical measures for different approaches.

Item Performance criteria Condition Model 1 Model 3 Model 6 Model 7 Model 8
1 R R> 0.8 0.967542 0.97819 0.962684 0.983063 0.965097
2 K 0.85< k< 1.15 1.03594 1.063196 1.044038 1.036733 1.031193
3 k′ 0.85< k′ < 1.15 0.985769 0.962664 0.98137 0.981004 0.995735
4 Rm Rm> 0.5 0.713235 0.803656 0.695878 0.805972 0.697069
5 M |m|< 0.1 −0.06056 −0.02679 −0.06697 −0.02852 −0.06796
6 N |n|< 0.1 −0.06746 −0.03997 −0.07771 −0.03344 −0.07357
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Figure 4: Variation of DR against initial void ratio for (a) Model 1, (b) Model 3, (c) Model 6, (d) Model 7, and (e) Model 8.
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nonlinearly decreases with the increase of effective stress.
(is observation is in line with the existing knowledge of soil
mechanics. In fact, previous studies have also confirmed that
the void ratio parameter is inversely proportional to the
effective stress (σ′) in consolidation of the soils [2–8, 10].

Variation of the e parameter predicted by Models 1, 3, 6,
7, and 8 versus the e0 parameter is shown in Figure 5(d).
According to Figure 5(d), the e parameter increases with the
increase of the e0 parameter in Models 1, 3, 6, and 8, but this
relation is inverse in Model 7. By reviewing the literature, it
is inferred that the increase in the initial void ratio leads to
the increase of the void ratio parameter [9, 24]. (erefore,
Models 1, 3, 6, and 8 are in agreement with the nature of the
problem, but Model 7 cannot be verified in the aspect of the
parametric analysis. Variations of the e parameter predicted

by Models 1 and 3 versus the ww parameter are shown in
Figure 5(b). According to this figure, the value of the void
ratio parameter decreases with the increase of the value of
the water content parameter. In this regard, Qiu and Sego
investigated the effect of water content on the consolidation
properties of mineral deposits of copper, gold, and coal [10].
However, their results showed that the void ratio increases
with the increase of the water content. (us, both Models 1
and 3 may suffer from a lack of physical justification. It
should be noted that theww parameter was not considered in
Models 6 to 8. In Figure 5(c), the e parameter estimated by
Models 6 and 7 is also shown as a function of the D50
parameter. According to this figure, the e parameter de-
creases with the increase of the D50 parameter. However, in
soil mechanics, it has been proved that the value of the void
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Figure 5: Variation of the predicted void ratio (e) versus (a) effective stress (kPa), (b) water content (%), (c) D50 (mm), and (d) initial void
ratio (e0) for GEP Models.
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ratio increases with the increase of the value of D50. Also,
Quille and O’Kelly showed that the void ratio of the coarse-
grained waste is more than that of fine-grained waste [8]. As
a result, Models 6 and 7 cannot be approved based on the
results of the parametric analysis.

In general, based on the results of performance and
parametric analyses, Model 8 is the best model among the
other developed GEP models for predicting the void ratio
parameter. (e formulation of Model 8 is presented in
equation (14), and the expression tree of Model 8 is given in
Figure 6.

e �

��
e0

4
√

2.23
+

�������������
e0 e0 − 0.0082( 

2.712 + σ′( 

2



. (14)

It is important to note that GEP has high precision in the
void ratio (e) estimation. Given the fact that there is no
empirical formula for predicting the void ratio, the math-
ematical expression of the GEP model developed in this
study has the advantage of being simple in form and more
accurate in predictions of the void ratio. Finally, the pre-
dicted value of the e parameter in the design of the tailing
dam can be used.

5. Conclusion

Geotechnical behavior of mineral tailings is one of the es-
sential requirements in geotechnical engineering. (e
consolidation and strength behavior of mineral tailings are
important in how to design the types of storage of this type of
soil. In both types of tailing behavior, the void ratio pa-
rameter is important. (erefore, with the proper estimation
of the void ratio, it is easier to understand the performance
of mineral tailings. In this study, GEP was used to develop a

robust model for the estimation of the void ratio in tailing
dams. A comprehensive laboratory dataset including 113
data vectors gathered from different sources in the literature
was used. According to the literature, the initial void ratio
(e0), effective stress (σ′), water content (ww), clay content
(c(%< 2ηm)), and mean grain diameter (D50) are the most
important factors which affect the void ratio parameter. In
order to evaluate the effect of each of the input parameters
on the output parameter and also to investigate the com-
bination of different input parameters, eight different GEP
models were developed to predict the void ratio parameter.
(e performances of the developed GEP models were
evaluated based on the accuracy criteria. Results indicated
that five GEP models estimated the void ratio fairly well.
Sensitivity analysis was also performed to determine the
most effective input parameters in the estimation of the void
ratio parameter. (e results indicated that e0 and σ′ were the
most effective parameters in the estimation of the void ratio
parameter. (e models without these two parameters
showed the least accuracy in comparison with the other
models. Finally, the robustness of the developed GEPmodels
was investigated based on a parametric analysis. Results
showed that only Model 8, in which e0 and σ′ parameters
were considered as input parameters, agreed with the nature
of the problem. Model 8 with RMSE� 0.180 and R2 � 0.92
had remarkable accuracy and precision in the prediction of
the void ratio parameter.
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σ′: (e effective stress
e0: (e initial void ratio
ww: (e water content
c(%< 2ηm): (e clay content
D50: (e mean grain diameter
e: (e void ratio.

Data Availability

(e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

(e authors declare that there are no conflicts of interest
regarding the publication of this paper.

References

[1] I. Jantzer, A. Bjelkevik, and K. Pousette,Material Properties of
Tailings from Swedish Mines, Lulea: Norsk Geoteknisk
Forening, ICOLD and UNEP, Lulea, Sweden, 2001.

[2] W. H. Highter and R. P. Vallee, “(e liquefaction of different
mine tailings under stress-controlled loading,” Engineering
Geology, vol. 16, no. 1-2, pp. 147–150, 1980.

[3] S. J. Poulos, E. I. Robinsky, and T. O. Keller, “Liquefaction
resistance of thickened tailings,” Journal of Geotechnical
Engineering, vol. 111, no. 12, 1985.

[4] K. J. L. Stone, M. F. Randolph, S. Toh, and A. A. Sales,
“Evaluation of consolidation behavior of mine tailings,”

Sub-ET 2

Sub-ET 1 Sqrt

/

LnSqrt

+

Exp

c1

Sqrt

/

d0 /

+
+

d0c1
c1+

d1

c0 c0

∗

c0

Figure 6: Expression tree of optimal GEP for the void ratio (Model
8).

Advances in Civil Engineering 11



Journal of Geotechnical Engineering, vol. 120, no. 3,
pp. 473–490, 1994.

[5] M. Riemer, Y. Moriwaki, and J. Obermeyer, “Effect of high
confining stresses on static and cyclic strengths of mine tailing
materials,” in Proceedings of the Geotechnical Earthquake and
Engineering and Soil Dynamics IV Congress, Sacramento, CA,
USA, May 2008.

[6] R. C.Wong, B. N. Mills, and Y. B. Liu, “Mechanistic model for
one-dimensional consolidation behavior of nonsegregating
oil sands tailings,” Journal of Geotechnical and Geo-
environmental Engineering, vol. 134, no. 2, pp. 195–202, 2008.

[7] N. Antonaki, I. Sasanakul, T. Abdoun, M. V. Sanin, H. Puebla,
and J. Ubilla, “Centrifuge modeling of deposition and con-
solidation of fine-grained mine tailings,” in Proceedings of the
Geo-Congress 2014 Technical Papers, Atlanta, Georgia, Feb-
ruary 2014.

[8] M. E. Quille and B. C. O’Kelly, “Geotechnical properties of
zinc/lead mine tailings from tara mines, Irelands,” in Pro-
ceedings of the Geo Shanghai 2010 International Conference,
Shanghai, China, June 2010.

[9] M. D. Bonin, M. Nuth, A. M. Dagenais, and A. R. Cabral,
“Experimental study and numerical reproduction of self-
weight consolidation behavior of thickened tailings,” Journal
of Geotechnical and Geoenvironmental Engineering, vol. 140,
no. 12, 2014.

[10] Y. Qiu and D. C. Sego, “Laboratory properties of mine tail-
ings,” Canadian Geotechnical Journal, vol. 38, no. 1,
pp. 183–190, 2001.

[11] A. A. R. Heshmati, H. Salehzadeh, A. H. Alavi, A. Badkobeh,
A. H. Gandomi, and A. T. Ghasemi, “On the applicability of
linear genetic programming for the formulation of soil
classification,” American-Eurasian Journal of Agriculture and
Environment Sciences, vol. 45, pp. 575–583, 2008.

[12] B. S. Narendra, P. V. Sivapullaiah, S. Suresh, and S. N. Omkar,
“Prediction of unconfined compressive strength of soft
grounds using computational intelligence techniques: a
comparative study,”Computers and Geotechnics, vol. 33, no. 3,
pp. 196–208, 2006.

[13] A. A. R. Heshmati, A. H. Alavi, M. Keramati, and
A. H. Gandomi, “A radial basis functions neural network
approach for compressive strength prediction of stabilized
soil,” in Road Pavement Material Characterization and Re-
habilitation: Selected Papers from the 2009 Geo Hunan In-
ternational Conference, Changsha, China, August 2009.

[14] S. Soleimani, S. Rajaei, P. Jiaoc, A. Sabz, and S. Soheilinia,
“New prediction models for unconfined compressive strength
of geopolymer stabilized soil using multi-gen genetic pro-
gramming,” Measurement, vol. 113, pp. 99–107, 2017.

[15] A. M. Hanna, D. Ural, and G. Saygili, “Neural network model
for liquefaction potential in soil deposits using Turkey and
Taiwan earthquake data,” Soil Dynamics and Earthquake
Engineering, vol. 27, no. 6, pp. 521–540, 2007.

[16] A. H. Gandomi, M. M. Fridline, and D. Roke, “Decision tree
approach for soil liquefaction assessment,” 9e Scientific
World Journal, vol. 2013, Article ID 346285, 2013.

[17] J. L. Hu, X. W. Tang, and J. N. Qiu, “A bayesian network
approach for predicting seismic liquefaction based on in-
terpretive structural modeling,” Natural Hazards and Earth
System Sciences, vol. 18, pp. 1451–1468, 2015.

[18] A. Kaveh, S. M. Hamze-Ziabari, and T. Bakhshpoori, “Patient
rrule-induction method for liquefaction potential assessment
based on CPT dada,” Bulletin of Engineering Geology and the
Environment, vol. 77, no. 2, pp. 849–865, 2018.

[19] R. M. Mozumder, A. I. Laskar, and M. Hussain, “Penetrability
prediction of micro fine cement grout in granular soil using
artificial intelligence techniques,” Tunneling and Underground
Space Technology, vol. 72, pp. 131–144, 2018.

[20] S. Emamgolizadeh, S. M. Bateni, D. Shahsavani, T. Ashrafi,
and H. Ghorbani, “Estimation of soil cation exchange capacity
using genetic expression programming (GEP) and multi-
variate adaptive regression splines (MARS),” Journal of Hy-
drology, vol. 529, no. Part 3, pp. 1590–1600, 2015.

[21] C. Ferreira, “Gene expression programming: a new adaptive
algorithm for solving problems,” Complex Systems, vol. 13,
no. 2, 2001.

[22] I. Ebtehaj, H. Bonakdari, A. H. Zaji, H. Azimi, and A. Sharifi,
“Gene expression programming to predict the discharge
coefficient in rectangular side weirs,” Applied Soft Computing,
vol. 35, pp. 618–628, 2015.

[23] M. Aubertin, B. Bussiere, and R. P. Chapuis, “Hydraulic
conductivity of homogenized tailings from hard rock mines,”
Canadian Geotechnical Journal, vol. 33, no. 3, pp. 470–482,
1996.

[24] S. A. Ber[idot]lgen, P. B[idot]çer, M. M. Ber[idot]lgen, and
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