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A series of laboratory experiments, including oedometer tests, direct shear tests, and mercury intrusion porosity (MIP) tests, were
conducted to investigate the effects of repeated wetting-drying-freezing-thawing (WDFT) cycles on the mechanic behaviors and
pore characteristics of compacted loess. *e results of mechanical tests indicate that the WDFTweathering can cause significant
deterioration of mechanical properties for compacted loess. As the number of treatment cycles increases, vertical compression
strain and coefficient of collapsibility of the loess specimens increase while the cohesion decreases. *e compacted and non-
collapsible loess specimen exhibits collapse again after the 7 WDFTcycles. *e results of MIP tests show that WDFTcycles have a
main influence on the pores with a pore diameter of 1∼35 μm between the soil aggregates, and medium pore contents (10∼35 μm)
increase significantly with the increasing number of WDFTcycles. By comparing compression and collapse characteristics of the
loess specimens subjected to wetting-drying, freeze-thaw, andWDFTcycles, we found that the dry-wet action plays the dominant
role in the deterioration of engineering properties of compacted loess during WDFT cycles.

1. Introduction

Loess soil is a type of quaternary aeolian deposits composed
predominantly of particles in the range of 0.005∼0.05mm. It
has characteristics of high porosity, low density, high car-
bonate content, and open and metastable structure. Due to
these characteristics, the loess can exhibit a sudden decrease
in total volume upon wetting and overburden pressure
which causes various problems to man-made infrastructures
built on loess soils [1].

Previous studies have shown that various countermea-
sures, including dense compaction, prewetting, and chem-
ical stabilization, can largely eliminate loess collapsibility to
meet the requirements of strength and deformation as a
foundation [2, 3]. However, the engineering properties of
treated loess soils are easily influenced by the long-term

strong weathering processes such as freeze-thaw (FT) and/or
wetting-drying (WD) cycles [4]. Hence, these weathering
processes may put infrastructures built on treated loess soils
at risk of instability or failure due to excessive deformation
produced.

Numerous investigations have been conducted to un-
derstand the effects of FT cycles on the physical and me-
chanical properties of soils. Zhang et al. pointed out that FT
cycles can induce the fragmentation of soil coarse particles
and the aggregation of fine particles leading to the change
in soil structure [5]. Chamberlain and Gow showed that the
hydraulic conductivity of soils increases by one or two
orders of magnitude after FTcycles [6].*e FTcycles have a
dual effect on the void ratio of soils as follows: loose soils
become denser while dense soils become looser, and both
loose and dense soils will have the same void ratio after
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several FT cycles [7, 8]. *e mechanical properties of soils
show different trends under freezing-thawing weathering
because of different soil types, densities, and methods of the
FTcycle test [9]. Mu et al. indicated that the microstructure
of soils changes significantly under cyclic freeze-thaw
conditions, the contents of macro- and midpores
can increase, and the bonding of soil particles can partially
change from face-to-face contact to point-to-point contact
after a few FT cycles [10].

*e wetting-drying process can lead to large variations in
the strength, permeability, and deformation of fine-grained
soils including the loess soils. All these changes are due to the
modification of the size, shape, and arrangement of loess
particles [11], destruction of pore structures [12, 13], change
in interparticle bonding forces [13], decrystallization and
crystallization of soluble salts [14], and shrinking and
swelling of clay minerals. Generally, the static and dynamic
strength of soils decreases obviously in the first few WD
cycles and remains almost unchanged with additional WD
cycles [15–17]. *e cumulative deformation and perme-
ability coefficient of soils can increase with an increasing
number of WD cycles [18, 19]. *e release and transport of
loess colloidal particles can also increase with the increasing
number of the WD cycle [20, 21].

In the Loess Plateau, loess foundations or subgrades are
often subjected to combined FT and WD weathering. Little
attention, however, has been paid to the effects of repeated
wetting-drying-freezing-thawing (WDFT) cycles on the
geotechnical properties of soils [22]. In the present paper, a
series of laboratory experiments, including oedometer tests,
direct shear tests, and mercury intrusion porosimetry (MIP)
tests, have been carried out to investigate the effects of
WDFT cycles on the deformation behaviors and pore
characteristics of compacted loess.

2. Materials and Methods

2.1. Materials. *e loess soil used in this investigation was
collected in Yongdeng County (36°36′34″ N and 103°22′05″
E), Gansu Province at western Loess Plateau of China. *is
loess was characterized by high collapse potential [14].
Figure 1 presents the particle size distribution of the loess. It
can be observed that the loess consists predominantly of clay
and silt particles, accounting for 66.1% and 19.2%, re-
spectively. *e particle size distribution curve shows two
peaks at particle sizes of about 0.08 and 35 μm, respectively.
Some basic physical properties of the loess soils are given in
Table 1. *e main chemical compositions of the collapsible
loess are SiO2, CaCO3, and Al2O3, accounting for 51.5%,
12.7%, and 10.5%, respectively (Table 2).

2.2. Preparation of Compacted Loess Specimen. *e sampled
loess soils were air-dried naturally and crushed to pass
through a 2mm sieve to ensure good mixing. To achieve the
optimum water content of 13% (Table 1), the required
amount of deionized water was added to the air-dried loess
using a spray bottle. *en, the wetted loess was kept in a
sealed plastic bag for 24 h to reach moisture equilibrium.

Finally, the loess was put in a cylindrical steel mold and
densely compacted to a density of 1.81 g/cm3, producing
specimens with a diameter of 61.8mm and a height of
20mm.

2.3.Wetting-Drying-Freezing-2awingCycle. *e Yongdeng
County has a temperate continental climate with a monthly
average air temperature ranging from −14°C in January to
26°C in July. We measured the volumetric water content of
compacted loess in the shallow layer of the embankment
near the sampling site and found that it ranged from 5% to
29%. *erefore, the backfilled loess was subjected to com-
bined FT and WD cycles. In this study, the specimens
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Figure 1: Grain size distribution curve of the loess.

Table 1: Physical properties of the loess.

Parameter Value
Specific gravity 2.70
Liquid limit (%) 26.29
Plastic limit (%) 18.24
Plasticity index (%) 8.05
Optimum moisture content (%) 13.0
Maximum dry density (g/cm3) 1.912
Total soluble salt content (%) 0.8

Table 2: Main chemical components of the loess.

Chemistry Content (%)
Silicon oxide (SiO2) 51.5
Calcium carbonate (CaCO3) 12.7
Aluminum oxide (Al2O3) 10.5
Calcium oxide (CaO) 7.1
Ferric oxide (Fe2O3) 2.8
Magnesium oxide (MgO) 2.1
Potassium oxide (K2O) 1.8
Ferrous oxide (FeO) 1.8
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underwent WDFT processes as follows: the prepared
specimens in Section 2.2 were first air-dried to 1% water
content at room temperature. Next, the specimens were
wetted to the saturated water content of 18% by dripping
water using a burette. After that, the specimens were
wrapped by plastic membranes and placed in sealed poly-
ethylene bags to prevent water loss throughout the FTcycles,
frozen at −15°C for 12 h, and then thawed at 16°C for another
12 h. Finally, the specimens were dried naturally to the target
water content of 13%. Each WDFT cycle contained a WD
cycle and an FT cycle. *e specimens were subjected to 1, 3,
5, or 7 WDFT cycles.

2.4. Experimental Methods. When one or several WDFT
cycles were reached, compression tests, collapsibility tests,
direct shear tests, and MIP tests were performed on the loess
specimens according to testing methods of soils for highway
engineering [23]. For the sake of comparison, the same
geotechnical tests were also carried out on specimens not
subjected to any weathering.

Compression tests were conducted on compacted loess
specimens exposed to a given weathering intensity with the
optimum water content of 13% at loads of 50, 100, 150, 200,
300, 400, 800, and 1600 kPa, using a GZQ-1 oedometer
apparatus. When the measured vertical settlement for a
given load was less than 0.01mm per hour, it was assumed
that the compression deformation was stabilized at this load,
and then, a new load was applied. Double-oedometer tests
were used in this study for investigating the collapsibility of
specimens. Two nominally identical specimens were tested
under four loads, i.e., 50, 100, 200, and 300 kPa, in the GZQ-
1 oedometer. One with a water content of 13% was tested to
give an unsaturated compression curve. *e other one was
inundated with water at a load of 50 kPa when the measured
compression deformation was less than 0.01mm per hour,
and then, the load was increased up to 300 kPa, for testing
the saturated compression curve. It should be noted that,
during the above tests, the unsaturated loess specimens
should be covered with cotton gauze to prevent excessive
evaporation which could lead to erroneous results [23].
Quick shear tests were carried out with four compacted loess
specimens with a constant water content of 13% using
normal pressures of 50, 100, 150, and 200 kPa after each
WDFT cycle in the strain-controlled direct shear apparatus.
*e shear strain-controlled rate was 0.8mm/min in these
tests. *e tests ceased when the shear displacement reached
6mm.

MIP tests were performed on the cube specimens using
an AutoPore IV 9520 porosimeter to measure the quanti-
tative distribution of pores within the compacted loess under
different WDFT cycles. *e cube specimens, having the
dimensions of approximately 1 cm3, were trimmed out from
the central part of the aforementioned air-dried cylindrical
specimens.

3. Experimental Results

3.1. Compression Deformation. *e secant modulus method
based on the vertical compression strain, proposed by Wei
[24], was used to directly describe the compression behavior
of compacted loess soils. *e vertical compression strain εi

can be calculated by the following equation, where h0 is the
initial height of the specimen and hi is the stabilized height at
a given load:

εi �
h0 − hi

h0
× 100%. (1)

Figure 2 shows the vertical compression strain of
compacted loess specimens with the same water content of
13% as a function of load under different WDFTweathering.
*e vertical compression strain increases rapidly with the
increasing load when the applied load is below 400 kPa and
then increases slowly for loads from 400 to 1600 kPa due to
the densification of loess. As the number of WDFT cycles
increases, the vertical compression strains of loess specimens
are all increased at different loads, indicating that theWDFT
cycles have a strong effect on the compression behavior of
loess soil.

Based on the analysis of the numerous experimental
data, Liu et al. pointed out that the relationship between
vertical compression strain (εi) and load (pi) for common
soils can be described with hyperbolic function [25], written
as equation (2). *e compression test data are fitted using
equation (2), and the fitting parameters A and B are sum-
marized in Table 3. From the results summarized, it can be
seen that the hyperbola model can describe the relationship
between εi and pi under different WDFT cycles, reasonably,
with R2 higher than 0.994. Parameters A and B are signif-
icantly reduced before and after the WDFT treatment, and
they gradually decrease with an increasing number ofWDFT
cycles. For instance, the value of the constant B decreases
from 17.47 for intact loess specimens to 11.60 after the first
cycle and to 6.79 after 7 WDFT cycles:

εi �
pi

A + Bpi

. (2)

Secant modulus is defined herein as the ratio of the load
and the vertical compression strain, i.e., Eoi

� pi/εi. *e
variations in secant modulus of compacted loess specimens
at loads of 100, 200, 300, and 400 kPa as a function of the
number of WDFT cycles are shown in Figure 3. *e secant
modulus decreases rapidly during the first 3 WDFT cycles
and then remains constant at all loads. Besides, the rela-
tionship between the secant modulus and the number of
WDFT cycles ni can be well fitted by a power function (i.e.,
equation (3)) with R2 higher than 0.969; the fitting pa-
rameters α and β increase linearly with the load increasing,
and c changes negligibly:

Eoi
� α + βe

cni . (3)
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3.2. Collapse Deformation. In the Chinese code for building
construction in collapsible loess regions [26], the coefficient
of collapsibility δs is employed to quantify the degree of
collapsibility of loess soils and is defined as equation (4),
where h0 denotes the initial height of the loess specimens and
hp and hp

′ represent the stabilized height of unsaturated and
saturated soil specimens at a given load, respectively. As a
rule, the loess soil is recognized as a collapsible soil for
δs > 0.015 at the load of 200 kPa:

δs �
hp − hp
′

h0
. (4)

Figure 4 shows the relations between δs of compacted
loess specimens and the vertical pressure for different in-
tensities of WDFT weathering obtained by the double-
oedometer tests. It can be seen that the coefficient of col-
lapsibility gradually increases with an increasing number of
WDFT cycles at all loads. For instance, the coefficients of
collapsibility increase from an initial value of 0 for intact
loess specimens to 0.013 after 5 WDFT cycles. Interestingly,
after 7 WDFT cycles, the coefficient of collapsibility exceeds
the critical value of 0.015 at a load of 200 kPa, indicating that

the compacted loess specimens exhibit secondary collapse.
*is is mainly attributed to a net increase in volume, a loose
structure, and a decrease in the salt content [14].

3.3. Shear Strength. Table 4 presents the shear strength of
loess specimens at loads of 50, 100, 150, and 200 kPa ob-
tained from the direct shear tests, as well as the cohesion and
internal friction angle, at different WDFT cycles. *e co-
hesion gradually decreases with an increase in the number of
WDFTcycles. For instance, the cohesion decreases by 37.9%
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Table 3: Fitting parameters of equation (2) for the data of com-
pression tests.

Number of cycles A B R2

0 9257.26 17.47 0.994
1 5164.09 11.60 0.997
3 3173.47 9.23 0.996
5 2833.08 8.21 0.998
7 1927.11 6.79 0.994
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from an initial value of 44.3 kPa to 27.5 kPa after 3 WDFT
cycles and then remains nearly unchanged. However, the
internal friction angle has no obvious change before and
after any intensity of WDFT weathering, ranged from 36.0°
to 37.7°.

3.4. Pore Distribution. In MIP tests, Washburn’s equation
(i.e., equation (5)), which is derived for the capillary flow of
a liquid in a cylindrical tube [27], was used to determine the
pore diameter (r) based on the applied pressure (P) needed
to force the mercury into a pore against liquid surface
tension, where σ is the surface tension of mercury at 20°C
and θ is the solid-liquid contact angle. In this paper, a solid-
liquid contact angle of 130° and a surface tension of
0.485N/m were used in the calculations:

r � −
4σcosθ

P
(5)

Figure 5 presents the pore size distribution in terms of
cumulative pore volume and pore size density of compacted
loess specimens exposed to different intensities of WDFT
cycles. *e distribution is shown for a diameter range of
0.003 to 1000 μm. Figure 5(a) depicts that all cumulative
intrusion curves are essentially flat at diameters less than
0.01 μm, indicating all of the pores in compacted loess have a
diameter larger than 0.003 μm. *eoretically, the measured
total mercury intrusion volume of loess specimens should be
consistent with the void ratio. It, therefore, increases with an
increase in the number of WDFT cycles. For instance, the
total mercury intrusion volume increases from an initial
value of 0.17mL·g−1 for intact loess specimens to
0.25mL·g−1 after 3 WDFT cycles. However, the abnormal
variation in total mercury intrusion volume occurs after 5
WDFT cycles. *is is due to the randomness of specimens
selected for theMIP test [28].*e pore size density functions
show the pore size in compacted loess is chiefly concentrated
in 0.01∼100 μm diameter, and the pores with a diameter of
1∼35 μm are significantly influenced by the WDFT cycles
(Figure 5(b)).

According to the measured distribution of pore size and
grain size of the compacted loess (Figure 1) and the clas-
sification of loess pores proposed by Lei [29], we herein
classify loess pores into four types based on the equivalent
pore diameter: the large pores (＞35 μm), the medium pores
(35∼10 μm), the small pores (10∼0.8 μm), and the micro-
pores (＜0.8 μm), to provide a quantitative analysis of the
effects ofWDFTcycles on the various pores. Pore contents of
the compacted loess specimens at different WDFTcycles are
calculated and given in Figure 6. Note that the WDFT

weathering decreases the volumes of small and micropores
but significantly increases the medium pore volume, without
changing the large pore volume, eventually leading to an
increase in mean pore diameter. Particularly, the medium
pore content increases from 1.04% for the intact specimens
to 11.2% after 3 WDFT cycles. *e results suggest that, with
the increase in the number of WDFT cycles, the small and
micropores may convert into medium pores. Moreover, the
medium pore has a major influence on the secondary col-
lapse of compacted loess [30]. *erefore, the compacted
loess specimens exhibit secondary collapse in this study
(Figure 4).

4. Discussion

*e aforementioned results demonstrate that the WDFT
weathering has a stronger deterioration effect on the geo-
technical properties of densely compacted loess, which is
manifested by increased deformation, decreased strength,
and an obvious change in soil microstructure. *is is
consistent with the mesostructure evolution of compacted
loess exposed to WDFT cycles reported by Chen [31]. All
indicate that the variation trends of macromechanical pa-
rameters and micro- and mesoscopic structures in com-
pacted loess are consistent.

To help in comparison with the deterioration effects of
WD, FT, and WDFT weathering, the variations in vertical
compression strain and coefficient of collapsibility of
compacted loess specimens at a load of 200 kPa as a function
of weathering intensity are shown in Figure 7. *e vertical
compression strain increases considerably with the in-
creasing number of WD and WDFT cycles while it is not
affected at all by the FT cycles. *ese results suggest that the
WD and WDFT weathering have a much stronger effect on
the compression behavior of loess soils than FT weathering.
Besides, in the first 3 cycles, the vertical compression strains
of loess specimens subjected to WD and WDFT weathering
are equal. However, these deformations are much larger for
loess specimens exposed to WD weathering than those
exposed to WDFTweathering after 5 cycles (Figure 7(a)). As
illustrated in Figure 7(b), the coefficient of collapsibility
shows the same changing rule as the vertical compression
strain under WD, FT, and WDFT cycling. It also gradually
increases following the WD and WDFT cycles while it is
hardly affected by the FT cycles. After 5 WD and 7 WDFT
cycles, the compacted loess specimens exhibit secondary
collapse probably due to a significant increase in the medium
pore content (Figure 6).

As mentioned above, it can be concluded that dry-wet
action plays a dominant role in increasing loess deformation

Table 4: Results of the direct shear test for compacted loess specimens.

Number of cycles
Shear strength (kPa)

Cohesion (kPa) Internal friction angle (°)
50 kPa 100 kPa 150 kPa 200 kPa

0 83.05 123.05 155.30 200.50 44.3 37.6
1 72.89 116.43 158.65 187.31 37.5 36.3
3 68.62 95.60 130.62 177.77 27.5 36.0
5 68.71 92.85 148.44 172.86 29.2 37.7
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during the WDFT cycles, mainly due to the high sensitivity
of loess to water than the temperature [14]. However, freeze-
thaw action restraints the deformation growth to some
extent after 5 WDFT cycles in this study. *is phenomenon
can be explained by the residual void ratio and a corre-
sponding residual dry density for soils subjected to FTcycles
proposed by Viklander [7] and further confirmed by Li et al.
[8]. In the first 3 cycles, the dry density of compacted loess
specimens gradually decreases with an increasing number of

WDFT weathering. With the increase in the number of
WDFT cycles, freeze-thaw action begins to inhibit this de-
creasing trend when the density further reduces to residual
dry density.

Although the collapsible loess can meet the requirements
of strength and deformation by dense compaction, large
deformation and secondary collapse still occur in compacted
loess specimens during WDFT weathering. *erefore, the
influences of WDFT weathering should be taken into
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account for the prediction of the long-term stability of in-
frastructures built on loess soils in the arid and seasonally
frozen ground regions.

5. Conclusions

In this paper, the deterioration effect of WDFT weathering
on the mechanic properties of compacted loess was assessed
based on the results of oedometer tests, direct shear tests,
and MIP tests, and the following conclusions can be drawn:

(1) *e WDFTcycles have a significant influence on the
mechanic behavior of compacted loess. *e vertical
compression strain and coefficient of collapsibility of
compacted loess specimens gradually increase with
an increasing number of WDFT cycles while the
secant modulus and cohesion decrease. After 7
WDFT cycles, the compacted loess specimens begin
to exhibit secondary collapse.

(2) *e compacted loess specimens consist predomi-
nantly of pores smaller than 10 μm, and the pores
with a diameter of 1∼35 μm are greatly influenced by
the WDFT cycles. As the number of WDFT cycles
increases, small and micropores may convert into
medium pores, and thus, the medium pore content
increases more than tenfold.

(3) A comparison among the deformation properties of
compacted loess specimens after WD, FT, and
WDFT cycles shows that dry-wet action plays a
dominant role in increasing loess deformation
during the WDFT cycles, and freeze-thaw action
restraints the deformation growth after 5 WDFT
cycles.
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during wetting-drying, freeze-thaw, and wetting-drying-freezing-thawing cycles.
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