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�e ultimate compressive load of concrete-filled steel tubular (CFST) structural members is recognized as one of the most
important engineering parameters for the design of such composite structures. �erefore, this paper deals with the prediction of
ultimate load of rectangular CFSTstructural members using the adaptive neurofuzzy inference system (ANFIS) surrogate model.
To this end, compression test data on CFSTmembers were extracted from the available literature, including: (i) the mechanical
properties of the constituent materials (i.e., steel’s yield strength and concrete’s compressive strength) and (ii) the geometric
parameters (i.e., column length, width and height of cross section, and steel tube thickness). �e ultimate load is the output
response of the problem. �e ANFIS model was trained using a hybrid of the least-squares and backpropagation gradient descent
method. Quality assessment criteria such as coefficient of determination (R2), root mean square error (RMSE), and slope of linear
regression were used for error measurements. A 11-fold cross-validation technique was employed to evaluate the performance of
the model. Results showed that for the training process, the average performance was as follows: R2, RMSE, and slope were 0.9861,
89.83 kN, and 0.9861, respectively. For the validating process, the average performance was as follows: R2, RMSE, and slope were
0.9637, 140.242 kN, and 0.9806, respectively. �erefore, the ANFIS model may be considered valid because it performs well in
predicting ultimate load using the validated data. Moreover, partial dependence (PD) analysis was employed to interpret the
“black-box” ANFIS model. It is observed that PD enabled us to locally track the influence of each input variable on the output
response. Besides reliable prediction of ultimate load, ANFIS can also provide maps of ultimate load. Finally, the ANFIS model
developed in this study was compared with other works in the literature, showing that the ANFIS model could improve the
accuracy of ultimate load prediction, in comparison to previously published results.

1. Introduction

Concrete-filled steel tubular (CFST) structural members
exhibit very interesting properties, as they combine the
advantages of the two constituent materials. In such com-
posite structures, the tensile strength of the steel tube and the
compressive strength of the concrete core combine to en-
hance many properties and structural performances of the
members, such as strength [1, 2], ductility [3, 4], load-
bearing capacity [5, 6], fire resistance [7, 8], earthquake
resistance [9, 10], energy absorption capacity [11, 12], and so

on. To date, rectangular CFSTmembers have been employed
in many constructions such as buildings, bridges, and un-
derground stations because of their strong moment resis-
tance [13] and simple beam-column joints [10, 14].
Moreover, with a given sectional size, rectangular CFST
members exhibit greater stiffness than circular or elliptical
members [15–17]. Although the design process for rectan-
gular CFST columns is set forth in many current codes such
as Eurocode 4 [18], AISC [19], and ACI [20], up until now,
the axial behavior of rectangular CFSTmembers has received
crucial attention from researchers/engineers. �e main
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reason is that current codes do not necessarily have the
capacity to take account of different material strengths or
ranges of geometrical dimension [21–24]. As indicated in
Xiong et al. [22], Eurocode 4 is only applicable to CFST
members with steel yield strength in the range of 235MPa to
460MPa, whereas concrete cylinder compressive strength
varies from 20MPa to 50MPa. In the case of AISC, the yield
strength of steel may vary up to 525MPa, whereas the
cylinder compressive strength of concrete may be up to
70MPa. As axial compression of composite columns is a
complex problem, there are a range of questions which still
need to be investigated. Indeed, many variables are involved
in this problem, including geometrical parameters and
mechanical properties of the constituent materials [25]. As
CFST members are composite structures, the relationship
between variables and macroscopic properties must be
established in order to accurately investigate their me-
chanical performance and failure. �erefore, there are many
ongoing theoretical, numerical, and experimental studies to
obtain a better understanding of the axial behavior of
rectangular CFST members.

Experimental investigations are normally the best ap-
proach to study the behavior of CFST members. However,
experimental design is often carried out subject to a small
range of parameters, leading to a limited number of spec-
imens [13]. In addition, extensive experimental studies have
hitherto been costly and time-consuming [25, 26]. In terms
of numerical modeling, An andHan [27] put forward a finite
element (FE) model for investigating CFSTmembers under
both compression and bending. �e model developed has
been used for a parametric study of the parameters influ-
encing the strength of the composite structures. In another
study, Zhou and Han [28] also employed the FE method to
model the fire behavior of CFSTmembers. Nguyen et al. [29]
developed a FE model taking account of the interface
properties between steel and concrete in CFSTcolumns. �e
FE technique has also been used in many other works to
numerically model the axial behavior of CFST columns
[30–33]. �ere are also several empirical formulae in the
available literature such as Ding et al. [1], Wang et al. [23],
Tran et al., [21] andHan et al. [34] for predicting the ultimate
load of rectangular CFST members. However, these equa-
tions have been derived on the basis of simple assumptions
and observations. Consequently, it is not guaranteed that
these models will be applicable. �e aforesaid studies have
provided significant contributions to progress in modeling
and prediction of axial behavior of CFST members. How-
ever, there is a need for a more efficient and robust manner
to better characterize the mechanical performance of such
composite structures, including the influence of variables on
their macroscopic properties.

Artificial intelligence- (AI-) based models have received
significant attention from researchers all around the world,
especially in civil engineering-related problems [35–46]. For
single-material structures, various studies have set out to
predict (i) the buckling capacity of steel members [47–50]
and (ii) the compressive strength of concrete [51–55]. For
composite structures, Sarir et al. [36] proposed a tree-based
and whale optimization model for predicting the load-

bearing capacity of circular CFST members. In addition,
Ahmadi et al. [56, 57] applied an artificial neural network to
predict the axial capacity of short CFST columns. Güneyisi
et al. [58, 59] derived a gene expression programming model
to predict the load-bearing capacity of circular CFST
members. �e performance of such a model has been shown
to be better higher than the formulae found in the preex-
isting literature. Al-Khaleefi et al. [60] introduced a neural
network model for studying the fire resistance of CFST
members, taking account of different structural, material
factors, and loading conditions. Moon et al. [61] have
successfully developed a fuzzy logic model for predicting the
strength of circular CFST stub columns. �e study inves-
tigated the effect of concrete confinement on the axial ca-
pacity of the columns. Despite the importance of rectangular
CFST columns, most AI-based studies so far have concen-
trated on members with a circular cross section [36, 58, 61].
Most recently, a few studies have been published involving
square cross sections. Ren et al. [35] employed support
vector machine and particle swarm optimization to inves-
tigate the axial capacity of square CFSTmembers. Tran et al.
[21] developed a neural network-based model to predict the
load-bearing capacity of square CFST columns. �erefore,
more investigations are required to assess the potential
applications of AI-based models for studying axial behavior
of rectangular CFSTcolumns, especially in the highly topical
context of high-rise construction.

�is work is devoted to the prediction and influence of
variables on the ultimate load of rectangular CFSTcolumns,
using the adaptive neurofuzzy inference system (ANFIS)
model. It should be noted that ANFIS has not yet been used,
in the literature, for studying rectangular CFST members
and highlighting the influence of variables on the macro-
scopic properties. �e reason for selecting the interpretable
ANFIS technique is described in Section 2.2. Section 2.1
introduces the database used to train and validate the de-
veloped ANFIS model. In Section 2.2, details of considered
variables and reasons for selection are presented. Section 3
presents the phase of training and 11-fold cross-validation of
the ANFIS model, together with regression analysis. Finally,
partial dependence (PD) analysis was applied in order to
interpret the “black-box” ANFIS model, which elucidated
the influence of each variable on the output response.

2. Materials and Methods

2.1.Database. As set forth in the literature, the experimental
process followed the steps below [35, 62–64]:

(1) Design of specimens.
(2) Manufacture of steel tube (cold-formed or welded).
(3) Manufacture of concrete.
(4) Assembly of composite structural members.
(5) Loading and measurement (see Figure 1 for sche-

matic description of the test).

In this work, 99 compression tests on CFST members
were collected from the literature (data summarized in
Table 1). Table 2 shows the initial analysis, including
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notation, unit, minimum, maximum, average, standard
deviation, and coefficient of variation of all variables in the
database.�ose variables are height of cross sectionH, width
of cross sectionW, thickness of steel tube t, length of column

L, yield stress of steel fy, compressive strength of concrete fc′,
and ultimate load Nu, respectively (see Figure 1 for geo-
metric description). A hypothesis was made such that the
influence of initial geometric imperfections and residual

Axial load

Axial load

Axial shortening

t

H

W

L

Rectangular
cross section

Concrete

Steel
tube

Column under
compression

Nu

Figure 1: Diagram of concrete-filled steel tube under compression including frontal view and cross-sectional view.

Table 1: Summary of the dataset used in this study.

N° 1 2 3 4 5 6 7 8 9 10 11 —

Reference Bridge
[65]

Du
et al.
[63]

Du
et al.
[66]

Ghannam
et al. [64]

Han
[67]

Han
and
Yang
[68]

Han
and

Yao [2]

Lin
[69]

Schneider
[70]

Shakir-
Khalil and
Mouli [71]

Shakir-Khalil
and Zeghiche

[72]
Total

Number of
tests 1 5 8 12 20 4 19 6 9 14 1 99

Proportion
(%) 1 5.1 8.1 12.1 20.2 4 19.2 6.1 9.1 14.1 1 100

Table 2: Initial statistical analysis of variables in the database.

Parameter Column’s length Steel tube
thickness

Cross section
height

Cross section
width

Steel yield
stress

Concrete compressive
strength

Ultimate
load

Notation L t H W fy fc′ Nu
Unit mm mm mm mm MPa MPa kN
Type Predictor Predictor Predictor Predictor Predictor Predictor Target
Minimum 100 0.7 90 60 194 7.9 490
Median 545 3 150 100 340.1 33.74 1006
Maximum 3050 10.01 360 240 514.53 46.85 3575
Average 869.23 4.12 163.38 110.94 329.09 31.12 1267.61
Standard deviation 772.12 1.97 53.01 35.63 78.73 12.21 768.72
CV∗ 88.83 47.84 32.45 32.12 23.92 39.23 60.64
∗CV stands for coefficient of variation (%).
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stress was negligible compared to the major geometric pa-
rameters and mechanical properties of the constituent
materials [36]. In addition, there is no steel reinforcement in
the concrete core or the tube (i.e., stiffeners). Finally, only
uniaxial monotonic compression tests were considered.

2.2. Machine Learning Method: Adaptive Neurofuzzy Infer-
ence System. �e adaptive neurofuzzy inference system
(ANFIS) is a combination between the learning rules of
adaptive networks and a fuzzy inference system, designed to
make precise predictions in many aspects of human
knowledge. �e inference system is based on if-then rules
[73], while the adaptive networks system is based on the
gradient descent and the chain rule introduced in [74].

Figure 2 shows the basic structure of the ANFIS algo-
rithm in a simplified case with only two inputs. In more
complicated cases with a large number of inputs, the al-
gorithm is straightforward. Basically, the ANFIS structure
consists of five main layers (shown in Figure 2), each layer
containing node functions of the same function family [75].
�e layers are as follows [41]:

Layer 1. Each node in this layer corresponds to a node
function, which can be chosen to be bell-shaped with
minimum value equal to 0 andmaximum value equal to
1—for example, the Gaussian function such that

μAi(x) � exp −
x − ai

bi

 

2
⎡⎣ ⎤⎦, (1)

where x is the problem input and ai and bi are input
parameters.
In fact, any continuous and differentiable function can
be chosen for the nodes in this layer.
Layer 2. Each node in this layer is a node function that
multiplies the incoming inputs and sends the results to
the next layer:

wi � μC
1
i x1(  × μC

2
i x2(  × · · · μC

n
i xn( . (2)

Layer 3. Each node in this layer computes the ratio
between the i-th rule’s firing strength and the sum of all
rules’ firing strength:

wi �
wi


n
k�1 wk

. (3)

Layer 4. Each node in this layer is a node function
chosen such that

fi � wi c0 + 

n

k�1
ckXk

⎛⎝ ⎞⎠. (4)

Layer 5. �e circle node in this layer calculates the sum
of all incoming results and exports the overall output:

overall ouput � 
i

wifi. (5)

It is interesting to notice that ANFIS was especially
helpful in various engineering applications where conven-
tional techniques failed or the latter were too complicated to
be used [76]. �e crucial advantages of the ANFIS model are
highlighted as follows: (i) simplicity, (ii) computational
efficiency, and (iii) adaptability [77], compared with other
machine learning methods. Indeed, ANFIS constructs an in-
out mapping based on human knowledge and generates
output responses by using backpropagation algorithm [78].
After training, validating, and testing, the ANFIS model can
be employed to recognize data that were semblable to any of
the specimens exposed during the training process. �e
ANFIS model exhibits better effectiveness than the two lone
models (i.e., artificial neural network and fuzzy logic), as
proved in many studies such as Aditya et al. [79] and Nayak
et al. [80]. Presently, ANFIS has been more and more
employed in the field of structural engineering [78, 81–85].
�e investigations explored that the ANFIS model yielded
superior accuracy compared with other machine learning
techniques and experimental data points. However, the
ANFIS model suffers from a number of limitations; for
instance, it is weak in finding the optimal firing strength
[86, 87]. By using several metaheuristic optimization tech-
niques such as genetic algorithm or simulated annealing as
examples in [88, 89], it is possible to search for and better
determine the firing strengths of parameters.

2.3. K-Fold Cross-Validation. In this work, the K-fold cross-
validation technique was employed to evaluate the perfor-
mance of the ANFIS model. It is interesting to notice that
such a technique could reduce the overfitting problem as
well as the effect of randomness of training and test data [90].
Moreover, this technique is also efficient in case of small
dataset [91]. Various investigations have pointed out that 10-
fold is the optimal number of folds that allows obtaining a
suitable result within an acceptable range of error [90, 92].
�erefore, in this study, regarding the number of data points,
the 11-fold cross-validation technique was adopted to
evaluate the efficiency of the ANFIS model, following the
procedure described in Bui et al. [92].�e diagram of the 11-
fold cross-validation technique is shown in Figure 3. More
precisely, the procedure is as follows. �e index of 99 data in
the initial dataset was randomly selected and split into 11
different subsets or folds. In the first run, the first fold was
used to test the model while the 10 remaining subsets were
employed for training the model. Hence, the ANFIS model
was trained 11 times using 11 different training and testing
datasets, i.e., all data points were used in both training and
testing phases. In each run, the performance of the model
was recorded in order to evaluate the overall performance of
the model.
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2.4. Quality Assessment Criteria. In the present work, sta-
tistical criteria—namely, coefficient of determination (R2),
mean absolute error (MAE), and root mean square error
(RMSE)—have been used in order to validate and test the AI
models developed. R2 allows us to identify the statistical
relationship between two pieces of data. �is measurement
of the linear correlation yields a value between 0 and 1
inclusive, where 0 is no correlation and 1 is total correlation.
R2 can be calculated using the following equation [93–97]:

R
2

�


N
k�1 pk − p(  wk − w( 

�������������������������


N
k�1 pk − p( 

2


N
k�1 wk − w( 

2
 , (6)

where N is the number of the observations and pk and p are
the predicted and mean predicted values while wk and w are
measured and mean measured values of ultimate load, re-
spectively (k � 1: N). In the case of MAE, a low MAE in-
dicates good accuracy of prediction output using the models.
MAE can be calculated using the following equation
[98–101]:

MAE �


N
k�1 pk − wk




N
, (7)

where pk and wk are the predicted and observed values,
respectively (k � 1: N). �e formulation of RMSE is de-
scribed by the following equation [102–106]:

RMSE �

��������������

1
N



N

k�1
pk − wk( 

2




. (8)

Finally, the slope criterion is defined as the slope of the
linear regression fit between predicted and observed
vectors.

2.5. Interpretation of Machine Learning Method: Partial
DependenceAnalysis. In this work, partial dependence (PD)
analysis was used to interpret the AI-based model [107, 108].
To this end, individual conditional expectation (ICE) [109]
was first investigated to generate all possible partial re-
sponses. By design, ICE allows us to track any changes to the
output response by varying a given input variable (other
inputs remain unchanged). Consequently, ICE responses
may be highly heterogeneous [109, 110]. PD was then de-
fined as the average of all partial responses. �at way, PD
reduces the complexity of the modeled relationship by

Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Inputs
x1

x2

A1

A2

B2

B1

N

N
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f2

Overall
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ω
1

ω2

ω 2

ω–1

ω–2

Fixed node

Adaptive node

∏

∏

∑

f2ω–2

f1ω–1

Figure 2: Illustration of basic ANFIS structure with two input parameters.
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Figure 3: Diagram of 11-fold cross-validation.
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graphing the significant relationship between the predicted
output and the predictors. More details on the calculation of
ICE and PD can be found in Goldstein et al. [109] and
Molnar [111].

3. Results and Discussion

3.1. Training and Performance of ANFIS. �is section
presents the ANFIS training procedure. Before training, an
initial Sugeno-type fuzzy inference system (FIS) was gen-
erated, as illustrated in Figure 4. �e parameters of this
initial FIS are also indicated in Table 3, showing the
membership function type and the number of linear and
nonlinear parameters. A hybrid combination of least-
squares and backpropagation gradient descent methods are
used to optimize the initial FIS in accordance with the
collection of input-output data. �e cost function was the
root mean square error, with 1000 being chosen as the
stopping criterion. Figures 5(a) and 5(b) show the training
process performance for one case in 11-cross folds in terms
of cost function and step size, respectively, starting at a large
value and decreasing to a smaller one. Figure 5(a) shows that
convergence is obtained after about 600 iterations. An op-
timal step size profile of the ANFIS model initially increases,
reaches a maximum, and then decreases for the rest of the
training. Figures 6(a)–6(c) show the regression graphs using
the training data, testing data, and all data, whereas
Figures 7(a)–7(c) show both actual and predicted ultimate
load as a function of sample index, respectively, for one case
in 11-cross folds. Figures 6 and 7 show a strong correlation
between the actual and predicted ultimate load. �e average
values of all quality assessment criteria at the end of the
training process over 11 testing folds are given in Table 4.
�e average values of R2, RMSE, ErrorStD, and slope for
training are 0.9861, 89.93 kN, 90.3333 kN, and 0.9861, re-
spectively. As indicated in Table 4, R2 � 0.9637,
RMSE� 140.2420 kN, ErrorMean� 2.9249 kN, ErrorStD�

141.9824 kN, and slope� 0.9806, for the testing dataset. In
addition, using all data, R2 � 0.9836, RMSE� 97.8972 kN,
ErrorMean� 0.2658 kN, ErrorStD� 98.2993 kN, and
slope� 0.9859. �e overall responses confirm that the
training process provides the optimal results. Finally,
without exhibiting complex architecture, the proposed
ANFIS model was able to produce the optimal results in an
efficient way, avoiding costly computation.

3.2.ComparisonwithLiterature. Various investigations have
been introduced in the literature in order to predict the
ultimate load of CFSTmembers using AI-based approaches.
A highlight of previous studies involving the reference, the
model used, the cross section geometry, the number of data,
the number of inputs, and quality assessment criteria is given
in Table 5. Various AI methods have been employed, such as
particle swarm optimization, support vector machine, gene
expression programming, artificial neural network, and so
on. In addition, the cross section may be circular or square.
In terms of the value of quality assessment criteria, the
ANFIS model improves the ultimate load prediction,

making it even more accurate than previously published
results.

3.3. PD Analysis and Surface Mapping. Based on the vali-
dated ANFIS model developed previously, PD analysis is
employed in this section to interpret the machine learning
“black-box” model. Figures 8(a)–8(f) show the PD curve for
H,W, t, L, fy, and f’c, respectively. It should be noted that the
best fit was also applied for each case. PD allows us to locally
track the impact of each predictor on the output result. As an
example, Figure 8(c) shows that the relationship between Nu
and t can be approximated by a nonlinear quadratic
equation such as y� 17.837x2 + 51.447x+ 611.2. �at means
the ultimate load of the columns increases when increasing
the thickness of the steel tube following a nonlinear in-
crement. �e same conclusion (i.e., quadratic fit) was ob-
tained for the cases of H, W, fy, and f′c, but with different
amplitudes (see Figures 8(a), 8(b), 8(e), and 8(f) for details of
the equation). Besides, in the case of L, a third-order
equation should be used to describe the relationship between
Nu and L. It is observed that the effect ofH,W, t, fy, and f’c on
Nu is positive. However, Figure 8(d) shows that L exhibits a
negative effect onNu. �ese observations were in accordance
with the literature. If the length increases, the column be-
comes slender, and thus the ultimate load decreases. On the
other hand, the ultimate load increases when increasing all
other variables—especially the cross-sectional area (i.e., H,
W, and t) [21,35,36].

�e PD analysis presented herein demonstrates that the
machine learning technique can assist in the design of
rectangular CFST members. In addition to a reliable pre-
diction of ultimate load, as presented above, ANFIS can also
assist in the creation of ultimate load maps, as illustrated in
Figure 9. In particular, four input values are kept constant

Input Inputmf Rule Outputmf Output

Logical operations
AND
OR
NOT

Figure 4: ANFIS architecture used in this study. A colored circle
indicates a fixed node, whereas an adaptive node is indicated by a
white circle.
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Table 3: Parameters of the ANFIS model.

Parameter Value and description
Number of inputs 6
Number of outputs 1
Input membership function type Gaussian
Number of parameters per membership function 2
Number of membership functions per input 4
Output membership function type Linear
Number of nonlinear parameters 48
Number of linear parameters 28
Total number of parameters 76
Maximum iteration 1000
Cost function Root mean square error
Cross-validation 11 folds
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Figure 5: Cost functions: root mean square error (a) and step size (b), as a function of iteration.
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Figure 6: Continued.
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Data: R2 = 0.987
Linear fit
Diagonal line
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Figure 6: Regression between actual and predicted ultimate load: (a) using training data, (b) using testing data, and (c) using all data, for one
case in 11-cross folds.
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Figure 7: Continued.
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and a performance map is created, which depicts the in-
fluence of the other two input parameters on ultimate load.
�us, the proposed ANFIS model can create a huge number
of maps, each time selecting the parameters that will be kept
constant in order to examine the influence of the other two
parameters on ultimate load.

In Figure 9, four maps of ultimate load are presented
(same color range), involving the relationship between ul-
timate load and t-L, t-W, t-fy, and t-f’c, respectively.
Figure 9(a) illustrates that a maximum value of ultimate load
can be obtained if t reaches its maximum and L reaches its
minimum value. On the other hand, the ultimate load
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Figure 7: Ultimate load as a function of sample index: (a) using training data, (b) using testing data, and (c) using all data, for one case in 11-
cross folds.

Table 4: Average prediction capability of ANFIS model over 11-cross folds.

Data used R2 (−) RMSE (kN) ErrorMean (kN) ErrorStD (kN) Slope (−)
Training 0.9861 89.8300 −0.0001 90.3333 0.9861
Testing 0.9637 140.2420 2.9249 141.9824 0.9806
All 0.9836 97.8972 0.2658 98.2993 0.9859

Table 5: Highlight of works for prediction of ultimate load of CFST members.

Ref. Model used Cross
section

Number
of data

Number
of inputs Criteria used Criteria values

Ren et al.
[35]

Support vector
machine and particle
swarm optimization

Square 180 7 R2, MAPE,
MAE, MSE

R2 � 0.914, MAPE� 0.145, MAE� 227 kN,
RMSE� 304 kN

Tran et al.
[21]

Artificial neural
network Square 300 5 R Rtraining � 0.99685, Rvalidating � 0.99236,

Rtesting � 0.99366, Rall � 0.99599

Moon et al.
[61] Fuzzy logic Circular 123 5

Average error,
standard
deviation

Average error� 14.7, 11.5, and 11.2%,
STD� 0.146, 0.132, and 0.146

Sarir et al.
[36]

Gene expression
programming Circular 303 5 R2 R2

training � 0.928, R2
testing � 0.939

Ahmadi
et al. [57]

Artificial neural
network Circular 268 5 R Rtraining � 0.93634, Rvalidating � 0.93146,

Rtesting � 0.89924, Rall � 0.92629
Güneyisi
et al. [58]

Gene expression
programming Circular 314 5 R, MAPE, RMSE R� 0.989, MAPE� 7.49, RMSE� 228 kN

�is study ANFIS Rectangular 99 6
R2, RMSE,
ErrorMean,

ErrorStD, slope

R2
training � 0.9861, RMSEtraining � 89.83 kN,

ErrorMeantraining � 0 kN,
ErrorStDtraining � 90.33 kN,

slopetraining � 0.986 R2
testing � 0.9637, RMSE

testing � 140.24 kN,
ErrorMeantesting � 2.92 kN,

ErrorStDtesting � 141.98 kN, slopetesting � 0.98
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reaches its minimum if L reaches its highest value and t
reaches its smallest value. �is map confirms the negative
effect of L as identified by PD previously. In Figure 9(b), the
ultimate load increases when increasing both t and W (i.e.,
increasing the cross-sectional area). �e ultimate load is

small when t and W are small. In Figures 9(c) and 9(d), the
same remarks as in Figure 9(b) apply. However, the ultimate
load may not reach the maximum values like the cases in
Figures 9(a) and 9(b). �is remark confirms that the geo-
metric parameters of the cross section are more important
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than the mechanical properties of the constituent materials.
Generally speaking, these observations are in close agree-
ment with the experimental results in the literature
[21, 35, 36]. �e maps presented herein aim exclusively to
demonstrate the advantage of the proposed machine
learning approach. More datasets in a wider range are ur-
gently required in order to deliver reliable maps, and this will
be the salient goal for future work.

To quantify the level of influence (i.e., sensitivity rate) of
each input variable, the integral of each PD curve was
computed and served as an indicator of importance. Fig-
ure 10 plots the values of PD’s area of six input variables as a
bar graph (normalized to 1). �e ANFIS model demon-
strates that the geometric parameters of the cross section
(i.e., t,W, andH) are the most important variables, followed
by L, f’c, and fy, respectively. Overall, without solving
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Figure 9: Maps of ultimate load as a function of (a) t-L, (b) t-W, (c) t-fy, and (d) t-f’c.
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complex mechanical equations, an interpretable ANFIS
model could indicate nonlinear relationships efficiently,
avoiding excessive computational cost.

4. Conclusion and Outlook

In this work, an ANFIS model was developed and trained to
predict the ultimate load of rectangular CFST structural
members under compression. Various statistical criteria
such as coefficient of determination (R2), root mean square
error (RMSE), and slope of linear regression were employed
for error assessment. A hybrid combination of least-squares
and backpropagation gradient descent method was used to
train the ANFIS model. A 11-fold cross-validation technique
was employed to evaluate the overall performance of the
model. In comparison with the literature, the ANFIS
exhibited excellent potential as a surrogate model for the
prediction of the ultimate load of rectangular CFSTcolumns.
Moreover, the ANFIS model allowed us to quantitatively
explore the influence of each input variable on the output
response through PD analysis. In addition, many ultimate
load maps were created using the ANFIS model. Such
analysis could be useful in structural engineering design and
evaluation. �e developed ANFIS model could be useful in
the predesign process, by exploring some initial calculations
of the ultimate load before conducting any experimentation.

However, the application of an AI-based model is not
always relevant for practical engineering. In further studies,
an explicit empirical equation based on the ANFIS model
developed here should be derived for better use in design
and analysis. In addition, a numerical finite element scheme
should be investigated for studying the mechanical behav-
iors of composite structures at both micro and macro scales.
�e finite element scheme could also be coupled with AI
approaches to shed further light on the relationship between
the micro and macro behaviors of CFSTmembers. In future
research, a broader database should be used, in order to
cover more material properties and geometric ranges.

Finally, the methodology used in this work could be ex-
tended to estimate macroscopic properties of CFST mem-
bers under different loads and boundary conditions
(bending, eccentric compression, beam-column joint, etc.).
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