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Conventional triaxial strength criteria are important for the judgment of rock failure. Linear, parabolic, power, logarithmic,
hyperbolic, and exponential equations were, respectively, established to fit the conventional triaxial compression test data for 19
types of rock specimens in the Mohr stress space. .en, a method for fitting the failure envelope to all common tangent points of
each two adjacent Mohr’s circles (abbreviated as CTPAC) was proposed in the Mohr stress space. .e regression accuracy of the
linear equation is not as good as those of the nonlinear equations on the whole, and the regression uniaxial compression strength
(σc)r, tensile strength (σt)r, cohesion cr, and internal frictional angle φr predicted by the regression linear failure envelopes with the
method for fitting the CTPAC in the Mohr stress space are close to those predicted in the principal stress space. .erefore, the
method for fitting CTPAC is feasible to determine the failure envelopes in the Mohr stress space..e logarithmic, hyperbolic, and
exponential equations are recommended to obtain the failure envelope in the Mohr stress space when the data of tensile strength
(σt)t are or are not included in regression owing to their higher R2, less positive x-intercepts, and more accurate regression
cohesion cr. Furthermore, based on the shape and development trend of the nonlinear strength envelope, it is considered that
when the normal stress is infinite, the total bearing capacity of rock tends to be a constant after gradual increase with decreasing
rates. .us, the hyperbolic equation and the exponential equation are more suitable to fit triaxial compression strength in a higher
maximum confining pressure range because they have limit values. .e conclusions can provide references for the selection of the
triaxial strength criterion in practical geotechnical engineering.

1. Introduction

.e Mohr-Coulomb strength criterion has been widely
applied in rock engineering. Cohesion c and internal friction
angle φ obtained from the conventional triaxial compression
tests are commonly used as strength parameters of rock.
Rock is a kind of anisotropic material with natural fractures
and defects, and inaccuracies, such as loading cell friction,
end plate roughness, and membrane stiffness, are inevitable
in the triaxial compression tests, so it is hard for Mohr-
Coulomb failure envelope to be tangent to all Mohr’s circles
[1–4]. Many scholars put forward various methods to obtain
more accurate strength parameters of rock. Stafford et al. [4]
suggested a method of resorting to a plot of (σ1–σ3)/2 against

(σ1 + σ3)/2 for each test and drawing the best fitting straight
line through the points and then deriving c and φ from this
as shown in Figure 1(a). Another commonmethod is to use a
linear equation to fit the relationship between the major
principal stress σ1 and the minor principal stress σ3 at failure
with the least square method as shown in Figure 1(b), and
then 6∼8 points are equidistantly selected on the regression
line to determine Mohr’s circles. Finally, the linear regres-
sion failure envelope can be drawn based on the common
tangent points of all Mohr’s circles, and thus c and φ can be
obtained as shown in Figure 1(c). Yang et al. [6] presented a
linear equation obtained by fitting the relationship between
σ1 and σ3 with the least square method, in which the slope
and the y-intercept of the regression line are obtained, and c
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and φ can be further calculated. Wang firstly calculated the
coordinates of common tangent points on each two Mohr’s
circles, and then c and φ can be predicted by fitting a straight
line to all the common tangent points with the least square
method [5]. For example, in Figure 1(d), there are three
Mohr circles, three common tangent lines, and six common
tangent points, which are used to obtain the linear regression
failure envelope.

With the increasing depth in geotechnical engineering,
the rock failure mechanism changes, and the brittle rock
under a low confining pressure gradually presents ductile
failure feature under a higher confining pressure [7].
Moreover, the differential stress (σ1–σ3) at failure of rock
would approach being a constant, and the dip angle of the
failure plane is close to π/4 when the maximum confining
pressure becomes high enough [8]. In this case, the inac-
curacy is quite large using a linear equation to obtain the
failure envelope, so that the above-mentioned methods of
determining linear strength envelopes are unavailable.
.erefore, the nonlinear equations are needed to fit the test
data. Specifically, when using Wang’s method to get c and φ,
the slope of common tangent line is relatively steep for two
adjacent Mohr’s circles under low confining pressures, and
then it gradually tends to be gentle with the increase in
confining pressure. .eoretically, for two nonadjacent
Mohr’s circles, the farther the distance between them, the

smaller the slope of common tangent line. Moreover, the
common tangent points will significantly differ from those
on the adjacent Mohr’s circles, which may result in an
unavailable failure envelope. .us, the common tangent
points on only two adjacent Mohr’s circles (CTPAC) are
adopted here to obtain the failure envelope. In particular, we
use only four common tangent points 1, 3, 4, and 6 generated
from the two common tangent lines L1 and L2 and three
Mohr’s circles to obtain the rock failure envelope as shown
in Figure 1(d).

As mentioned above, the nonlinear strength envelope
can obtain a better fitting accuracy and reflects the bearing
characteristics of rock more accurately in a larger range of
the maximum confining pressure. Many studies have been
conducted on the nonlinear strength criteria [8–13], in
which You compared 16 strength criteria composed of one,
two, and three parameters, respectively. In this paper, some
empirical equations for conventional triaxial strength cri-
teria of intact rock are proposed and studied comparatively.
From the review authored by Cartrin [14], most empirical
formulas of strength criteria are simple elementary function
forms, such as power function, exponential function, and
logarithmic function, and most of them are in the form of
power function. Among them, linear function, parabolic
function, and hyperbolic function can be regarded as the
variation form of power function. .erefore, this paper
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Figure 1: Methods of obtaining strength criteria. (a).emethod by Stafford et al. [4]. (b) A linear curve in the commonmethod. (c) Mohr’s
circles in the common method. (d) .e method by Wang [5].
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mainly focuses on the applicability of linear equation,
parabolic equation, power equation, logarithmic equation,
hyperbolic equation, and exponential equation in describing
the intact rock strength criterion. Finally, more suitable
empirical equations are recommended based on the bearing
mechanism of rock.

2. Conventional Triaxial Strengths and
Empirical Equations

2.1. Test Data of Conventional Triaxial Strengths. Table 1
shows σ1 and σ3 at failure of red sandstone (RS) [15], Tyndall
limestone (TL) [16], Lac du Bonnet granite (LG) [16],
Dunham dolomite (DD) [17], Inada granite (IG) [17],
Mizuho trachyte (MT) [17], Marazuru andesite (MA) [17],
Orikable monzonite (OM) [17], Bunt sandstone (BS) [18],
Yamaguchi marble (YM) [18], Solnhofen limestone (SL)
[18], Carrara marble (CM) [18], Granite (G) [19], Quartzite
(Q) [19], and Basalt (B) [19].Moreover, σ1 and σ3 at failure of
powder-grained marble (PGM), fine-grained marble (FGM),
middle-grained marble (MGM), and coarse-grained marble
(CGM) were obtained using RMT-150B rock mechanics test
machine and are also shown in Table 1.

When the test data of uniaxial tensile strength (σt)t and
uniaxial compressive strength (σc)t are included in the pa-
rameters calculation of the Hoek-Brown strength criterion, a
better fitting result than that using only the triaxial data can
be obtained [9]. .erefore, whether the tensile strength data
(σt)t should be included in regression is discussed here, and
the tensile strengths of seven kinds of rock are listed in
Table 1.

.e marble samples were collected from a quarry in
Nanyang City, Henan Province, and the main minerals are
calcite, dolomite, and magnesite. According to the re-
quirements of the International Society of Rock Mechanics
(ISRM), the standard cylindrical specimens with the di-
ameter of 50mm and the length of 100mmwere prepared, as
shown in Figure 2(a).

After treating P wave testing on rock specimens with the
ultrasonic detector (Figure 2(b)), a serious test of uniaxial
compression, Brazilian splitting and triaxial compression
were conducted using the RMT-150B electrohydraulic servo
rock mechanics testing system developed by Wuhan Insti-
tute of Geotechnical Engineering, Chinese Academy of
Sciences (Figure 2(c)). .e basic mechanical parameters of
rock, such as uniaxial compressive strength, tensile strength,
internal friction angle, cohesion, elastic modulus, and
Poisson’s ratio, were obtained, as shown in Table 2..e axial
and lateral loading capacities of this system are 100 t and 50 t,
respectively. One vertical displacement sensor with the
stroke of 20mm was used to monitor the axial deformation
of rock specimen, and two horizontal displacement sensors
with the stroke of 2.5mm were used to monitor the
transverse deformation of rock specimen.

2.2. Empirical Equations. Six equations (linear, parabola,
power, logarithm, hyperbola, and exponent) were used here
to fit the failure curves, respectively, in theMohr stress space.

When the conventional strength criteria are fitted to CTPAC
in the Mohr stress space, it should be ensured that each two
adjacent Mohr’s circles cannot wrap each other, because
their common tangent points are not obtained. Besides, the
latter Mohr’s circle (the center is located on the right side)
should be removed in regression if its diameter is smaller
than that of a former one (the center is located on the left
side), because it is unreasonable that the common tangent
points locate on the right side of the vertex of aMohr’s circle.
.e removed data in specimens MA, SL, Q, B, and PGM
were marked with ∗ as shown in Table 1.

.e linear equation is

τ � a1σ + b1, (1)

where a1 and b1 are the regression.
.e parabolic equation is

τ �

���������

a2 σ − b2( 



, (2)

where a2 and b2 are the regression constants and a2> 0,
x> − b2, and σ > b2.

.e power equation is

τ �
σ − d3

a3
 

1/b3
, (3)

where a3, b3, and d3 are regression constants and a3> 0,
b3> 1, and σ > d3.

.e logarithmic equation is

τ � a4 ln σ + b4(  + d4, (4)

where a4, b4, and d4 are regression constants and a4> 0.
.e hyperbolic equation is

τ �
1
a5

1
σ − d5

+
1

a5b5
 

− 1

, (5)

where a5, b5, and d3 are regression constants and a3> 0 and
σ > d3. .e slope of regression failure envelope k,
k5 � a3

5b
2
5/(x + a5b5d5)

2, decreases with increasing σ. When
σ �∞, k� 0, and τ � b5, the radius of the ultimate Mohr’s
circle in Mohr stress space b3 does not increase with σ.

.e exponential equation is

τ � a6 1 − e
− σ/b6  + d6, (6)

where a6, b6, and d6 are regression constants, and a6> 0 and
b6> 0. In the Mohr stress space, the slope of regression
failure envelope k decreases with increasing σ. When σ �∞,
k� 0, τ � a6 + d6, and y � a6 + d6, the radius of the ultimate
Mohr’s circle in the Mohr stress space does not increase with
σ3.

3. Regression Results of Linear
Strength Criterion

In this paper, the newly added subscript t expresses the test
values, the subscript r expresses the regression values, the
subscript m expresses the values in the Mohr stress space,
and the subscript p expresses the values in the principal
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Figure 2: Specimen and test equipment: (a) marble specimen; (b) ultrasonic detector; (c) RMT-150B rock mechanical test system.

Table 1: Conventional triaxial compression strengths (MPa).

Rock σ3 and σ1 at failure

RS [15] σ3 −3.46 0 2.5 5 10 15 20 25 30 35
σ1 0 68 83.1 100.9 130.3 153.4 172.3 200.3 212.1 238.3

TL [16] σ3 −3.8 0 5 10 15 20 25 30 35 40
σ1 0 52 88 106 118 137 149 164 176 190

LG [16] σ3 −13 0 4 5 7 10 12 14 18 21 25 30 35 40
σ1 0 226 289 317 337 365 396 426 445 487 528 571 593 637

DD [17] σ3 0 25 45 60 65 85 105 125
σ1 262 400 487 540 568 620 682 725

IG [17] σ3 0 20 40 70 100 150 200 230
σ1 229 508 692 860 1013 1168 1374 1497

MT [17] σ3 0 15 30 45 60 75 100
σ1 100 196 259 302 341 368 437

MA [17] σ3 0 16 20 40 70 100 110 130∗
σ1 140 349 372.5 552 671 806 875 881

OM [17] σ3 0 5 20 40 80 140 200
σ1 234 339 504 584.7 751.3 962 1107

BS [18] σ3 0 6 12.5 25 40 55 70 85 100 150 200
σ1 81 113 130 175 210 246 272 295 324 397 454

YM [18] σ3 0 5 10 20 30 40 50 60 70 80 90 100
σ1 60 100 122 154 193 221 253 275 310 323 346 361

SL [18] σ3 0 6 15 24 46 72 111 162 195∗ 304∗
σ1 293 335 360 381 426 467 518 558 595 709

CM [18] σ3 0 25 50 68.4 85.5
σ1 137 234 314 358 404

G [19] σ3 0 32 100 120 150 200 300 400 500 600
σ1 233 630 1030 1180 1310 1380 1670 2135 2320 2650

Q [19] σ3 0 100 300 400∗ 500
σ1 327 1297.5 2430 2480 2986

B [19] σ3 0 150 200 300∗ 400 500 550 600∗
σ1 349 1455 1400 1490 1860 2020 2320 2340

PGM σ3 −1.78 0 5 10 15 20 25∗
σ1 0 141.68 176.86 192.2 204.31 221.7 225.8

FGM σ3 −2.826 0 5 10 15 20 25
σ1 0 70.93 95.52 107.9 118.34 133.3 146.3

MGM σ3 −2.137 0 5 10 15 20 25
σ1 0 65.17 94.33 119.4 131.81 143 152.4

CGM σ3 −1.568 0 5 10 15 20 25
σ1 0 48.38 72.3 90.03 96.52 113.2 122.5

∗Removed when fitting a strength envelope in the Mohr stress space.
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stress space. Moreover, the subscript umeans that (σt)t is not
included in regression, while the subscript imeans that (σt)t
is included in regression. For example, (σt)t means a test
tensile strength value of a rock specimen, and (σc)rmu means
a regression compressive strength value of a rock specimen
obtained in the Mohr stress space with (σt)t not being in-
cluded in regression.

.e linear strength criterion is most commonly used in
geotechnical engineering. .us, it is necessary to analyze the
following contents, including the regression results of the
linear equation in the Mohr stress space and in the principal
stress space, the influences of (σt)t contained in regression on
the validity of regression, and the applicability of fitting
strength envelopes to CTPAC in the Mohr stress space.

3.1. Regression Squared Correlation Coefficient. Figure 3
shows the regression squared correlation coefficients R2 of
linear equation in two different stress spaces. With (σt)t
being included in regression in the principal stress space, the
minimum (0.632), the average (0.844), and the maximum
(0.958) of (R2)rpi of linear equation are all lowest. .e re-
gression coefficients (R2)rmi of linear equation in the Mohr
stress space with (σt)t included in regression were shown as
follows, with the minimum, average, and maximum values
of 0.923, 0.948, and 0.983, respectively. However, when (σt)t
is not included in regression, the average R2 are all above
0.961 and the maximum R2 are all above 0.991. .us, R2 of
linear equation would generally reduce when (σt)t is in-
cluded in the regression.

3.2. Regression Strength Parameters. .e strength parame-
ters of rock (c, φ) are usually determined by fitting a line to
common tangent points on the ultimateMohr’s circles in the
Mohr stress space, and then (σc)r and (σt)r can be calculated
from the regression line (linear Mohr-Coulomb criterion) in
application. Especially in this paper, the linear strength
envelopes were fitted to CTPAC in the Mohr stress space.
Besides, (σc)r, (σt)r, cr, and φr also can be predicted by fitting
the relationship between σ1 and σ3 at failure in principal
stress space using equation (1). If (σc)r, (σt)r, cr, and φr
predicted by above two methods have no obvious differ-
ences, the linear strength envelope fitted to CTPAC can be
considered in the application.

Figure 4 shows (σc)r, Abs. (σt)r, cr, and φr predicted by
above two methods. In Figure 4(a), (σc)rpu has a linear re-
lation with (σc)rmu and they are almost equivalent with each
other. (σc)rpi and (σc)rmi are also equivalent with each other,
and they are both lower than the corresponding (σc)rpu and
(σc)rmu. However (σc)rpi and (σc)rmi are closer to (σc)t than

(σc)rpu and (σc)rmu. (σc)t is lower than (σc)rpu, and it has an
exponential relation with (σc)rpu, which is expressed as
follows:

σct � 382.08 × 1 − exp
−σcrpu
274.76

   − 32.35, (7)

in which R2 is 0.894. .erefore, equation (7) can be used to
modify (σc)rpu for more accurate estimation of the value of
(σc)t.

In Figure 4(b), Abs. (σt)rpu is about equal to Abs. (σt)rmu,
and it has a linear relation with Abs. (σt)rmu, but there is
some difference between them in a higher part of Abs.
(σt)rmu. Abs. (σt)rpi and Abs. (σt)rmi are close to each other,
and they are both lower than the corresponding Abs. (σt)rpu
and Abs. (σt)rmu but higher than Abs. (σt)t. .e difference
between Abs. (σt)rpi, Abs. (σt)rmi, and Abs. (σt)t would also
increase with increasing Abs. (σt)rmu on the whole..us, it is
recommended to get more accurate (σt)r using (σt)t in
regression.

Similarly, in Figure 4(c), when (σt)t is not included in
regression, crpu is about equal to crmu, and it has a linear
relation with crmu. However, there is some difference be-
tween them in the higher part of crmu. When (σt)t is included
in regression, crpi and crmi are close to each other, and they
are both lower than the corresponding crpu and crmu. In
Figure 4(d), when (σt)t is not included in regression, φrpu is

Table 2: Summary of mechanical parameters of marble specimens.

Group Particle size (mm) Color UCS (MPa) Elastic modulus (GPa) Poisson’s
ratio Frictional angle (°) Cohesion (MPa) P wave (m/s)

PGM 0.2∼0.5 Grey 141.68 83.87 0.377 25.28 50.90 5854.56
FGM 0.5∼1 Pink 70.93 47.45 0.316 25.28 25.79 5235.98
MGM 1∼3 Pink 65.17 53.12 0.293 23.6 28.96 5270.34
CGM 3∼5 White 48.38 41.88 0.119 30.0 15.04 5414.74
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about equal to φrmu, and it has a linear relation with φrmu.
But there is some difference between them in the middle and
lower parts of φrmu. When (σt)t is included in regression, φrpi
and φrmi are close to each other, and they are mostly higher
than the corresponding φrpu and φrmu.

All in all, whether (σt)t is included in regression or not,
(σc)r, (σt)r, cr, and φr predicted by linear equation in the
principal stress space are similar to those obtained in the
Mohr stress space with the method of fitting CTPAC.
Consequently, the method of fitting CTPAC is completely
suitable to obtain conventional triaxial failure envelopes in
the Mohr stress space.

4. Regression Results of Nonlinear
Strength Criterion

4.1.TypicalRegressionCurves of SpecimenLG. In this section,
CTPAC was fitted with equations (1)–(6), respectively, to
obtain the conventional triaxial failure envelopes for 19
kinds of rock specimens when (σt)t is not included in re-
gression and for 7 kinds of rock specimens when (σt)t is
included in regression in the Mohr stress space.

Under the maximum normal stress σ of 139MPa in the
Mohr stress space, regression curves of specimen LG were
taken as examples to analyze the regression validities of all
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empirical equations as shown in Figure 5. (σt)t is not in-
cluded in regression in Figure 5(a), and (σt)t is included in
regression in Figure 5(b). Figure 5 shows that the regression
curves are close to each other in the middle range of the
tangent points, but they are divergent in the two ends, es-
pecially when the tangent points are lower. .e linear re-
gression curves (equation (1)) are below the tangent points
in the middle range of the tangent points, and they are above
the tangent points in two ends of the tangent points.
Moreover, the parabolic regression curves (equation (2))
also have larger deflections, but they are above the tangent
points in the middle of the tangent points and below the
tangent points in two ends of the tangent points. .us, R2 of
these two equations should be relatively lower. However, the
other nonlinear regression curves show good regression
validities, and most of them coincidently go through the
tangent points.

.e diverging characteristics in the lower range of the
tangent points are described as follows: in Figure 5(a), when
(σt)t is not included in regression, the logarithmic regression
(equation (4)), hyperbolic regression (equation (5)), and
exponential regression curves (equation (6)) are invariably
close to tangent points and achieve a good regression result.
However, the regression validities are better when (σt)t is
included in regression as shown in Figure 5(b); thus the
regression cohesions (cr) and the x-intercepts of these three
failure envelopes (equations (6), (8), and (10)) are more
accurate. Based on the method of uniaxial tension with
Mohr’s circles being tangent to the envelopes, the tensile
strengths predicted by regression envelopes from low to high
are, respectively, as follows: parabolic equation (equation
(2)), power equation (equation (3)), logarithmic equation
(equation (4)), hyperbolic equation (equation (5)), expo-
nential equation (equation (6)), and linear equation
(equation (1)).

4.2. Regression Squared Correlation Coefficients. Figure 6
depicts the relationships between the squared correlation
coefficients R2 of the six equations, which are used to fit
conventional triaxial failure envelopes in the Mohr stress
space and maximum σ3/σc, in which (σt)t is not included in
regression as shown in Figure 6(a), while (σt)t is included in
regression as shown in Figure 6(b).

In Figure 6, compared to nonlinear equations, R2 of
linear equation (equation (1)) are lowest on the whole and
decrease with increasing maximum σ3/σc. When (σt)t is not
included in regression, R2 of parabolic equation (equation
(2) in Figure 6(a)) are also lower obviously and increase on
the whole with increasing maximum σ3/σc. .e fit accuracy
of other equations is all higher, and their minimums, av-
erages, and maximums of R2 are above 0.985, above 0.996,
and close to 1.000, respectively. When (σt)t is included in
regression, as for the average value, R2 of nonlinear equa-
tions used in the Mohr stress space become higher or remain
unchanged but R2 of linear equation (equation (1)) become
lower a little in Figure 6(b) compared with those in
Figure 6(a). All in all, the power equation (equation (3)), the
logarithmic equation (equation (4)), the hyperbolic equation

(equation (5)), and the exponential equation (equation (6))
are recommended to fit conventional triaxial failure enve-
lopes for their higher R2.

4.3. :e x-Intercepts of the Regression Curves of τ and σ in the
Mohr Stress Space. In the Mohr stress space, if the x-in-
tercept of the regression curve is positive, the y-intercept of
the regression curves must be negative. In this case, re-
gression cohesion cr, regression uniaxial compression
strength (σc)r, and regression tension strength (σt)r of
specimens cannot be predicted correctly by the failure en-
velopes. .erefore, these regression equations are not
suitable for fitting the failure envelopes in the Mohr stress
space if some x-intercepts of the regression curves are
positive. Figure 7 shows the x-intercepts of the regression
envelopes. .e x-intercepts of the regression nonlinear
envelopes are larger than those of the linear envelopes. No
matter (σt)t is included or not included in regression, some
x-intercepts of the parabolic envelope (equation (2)) and the
power envelopes (equation (3)) are positive, which show that
cr, (σc)r, and (σt)r may not be obtained when parabolic
equation (equation (2)) and power equation (equation (3))
are used in the Mohr stress space. .us, logarithmic
equation (equation (4)), hyperbolic equation (equation (5)),
and exponential equation (equation (6)) are optimal to fit the
failure envelopes in the Mohr stress space. Moreover, when
(σt)t is included in regression (Figure 7(b)), the x-intercepts
of the logarithmic regression (equation (4)), hyperbolic
regression (equation (5)), and exponential regression curves
(equation (6)) are more concentrated than those with (σt)t
being not included in regression. All in all, the logarithmic
equation (equation (4)), the hyperbolic equation (equation
(5)), and the exponential equation (6) are recommended to
fit conventional triaxial failure envelopes for they have no
positive x-intercepts.

4.4. cr Predicted by the Relationship between τ and σ in the
Mohr Stress Space. We know from Figure 6 that the squared
correlation coefficients of logarithmic equation (equation
(4)), hyperbolic equation (equation (5)), and exponential
equation (equation (6)) are higher, and their failure enve-
lopes go through nearly all tangent points in the Mohr stress
space when (σt)t is included in regression; thus the cohesion
cr predicted by the above three envelopes should be closer to
their true values, and the above three regression envelopes of
the same set of tangent points are relatively close to each
other. Besides, we know from Figure 7 that some x-inter-
cepts of two regression envelopes of parabolic equation
(equation (2)) and power equation (equation (3)) are pos-
itive, so some cr cannot get obtained; therefore, cr predicted
by power envelopes (equation (3)) and parabolic envelopes
(equation (2)) are not shown in Figure 8.

Figure 8 depicts that cr predicted by nonlinear envelopes
are all lower than those predicted by linear envelope
(equation (1)). .us, cr predicted by linear regression en-
velope (equation (1)) is significantly larger and is far from
the true values. In particular, cr predicted by logarithmic
(equation (4)), hyperbolic (equation (5)), and exponential

Advances in Civil Engineering 7



(equation (6)) envelopes with (σt)t being included in re-
gression are more focused than those predicted by the above
three regression strength envelopes with (σt)t being not
included in regression. .us, using (σt)t in regression could
improve the regression validities of logarithmic (equation
(4)), hyperbolic (equation (5)), and exponential equations
(equation (6)). (σt)t are advised to be included in fitting
nonlinear failure envelopes to get more accurate conven-
tional triaxial strength parameters. .e logarithmic equation
(equation (4)), the hyperbolic equation (equation (5)), and
the exponential equation (equation (6)) are all recom-
mended to fit conventional triaxial failure envelopes for they
have relatively close cr.

5. Friction and Cohesion Bearing
Characteristics of a Rock Specimen

5.1. Negative Friction Bearing Capacity. In order to explain
the existence of negative friction bearing capacity, the stress
diagram of potential failure plane of a specimen under
triaxial compression is shown in Figure 9. When the axial
pressure σ1 and the confining pressure σ3 are positive
(Figure 9(a)), their components in the potential failure plane
are the normal compressive stress component σ3n in the
downward vertical direction of the potential failure plane
and the shear stress component σ3τ in the upward parallel
direction of potential failure plane. .e components of axial
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pressure σ1 in the potential failure plane are the normal
compressive stress component σ1n in the downward vertical
direction of the potential failure plane and the shear stress
component σ1τ in the downward parallel direction of the
potential failure plane. .us, the composition of the total
bearing capacity Q can be expressed as

Q � Qs � Qf + Qc, (8)

Qs � B
Σ

σ1τ − σ3τ(  dS, (9)

Qf � k1 B
Σ

σ1n + σ3n(  dS, (10)

Qc � B
Σ

c dS, (11)

where S is the failure fracture surface area, both the friction
bearing capacity Qf and cohesion bearing capacity Qc are
positive, so that the total bearing capacityQ is larger than the
cohesion bearing capacity Qc, and the friction bearing
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capacity Qf> 0 and can be named as a positive one
(Figure 9(d)). Besides, the directions of the above two shear
stress components are contrary; therefore, when the spec-
imen fails and slides down along the fracture surface, the
shear force produced by the confining pressure σ3 in the
opposite direction is not conducive to the failure of the
potential failure plane and will increase the axial pressure σ1
at failure.

When the axial pressure σ1 is positive and the confining
pressure σ3 is negative (Figure 9(b)), the component di-
rections of the confining pressure σ3 in the potential failure
plane will be opposite to the condition that it is positive..at
is to say, when the axial pressure σ1> 0 and the confining
tensile stress σ3< 0, these two shear stress components are
both in the downward parallel direction of potential failure
plane; therefore, when the specimen fails and slides down
along the fracture surface, the shear force produced by the
confining pressure σ3 in the same direction is conducive to
the failure of the potential failure plane and will decrease the
axial pressure σ1 at failure. Under these circumstances, the
cohesion bearing capacity Qc is a positive constant, while the
friction bearing capacity Qf may be positive or negative
according to the value of σ1n+ σ3n, so that the total bearing
capacityQmay be higher or lower than the cohesion bearing
capacity Qc, and the friction bearing capacity Qf can be
named as a negative one when Qf< 0 (Figure 9(f)).

When the confining pressure σ3 and the axial pressure σ1
are both negative (Figure 9(c)), the cohesion bearing ca-
pacityQc is still a positive constant, while the friction bearing
capacity Qf is negative according to the value of σ1n+ σ3n, so
that the total bearing capacity Q is lower than the cohesion
bearing capacity Qc, and the friction bearing capacity Qf is a
negative one (Figure 9(f )).

.e above analysis expresses the possibility of the ex-
istence of negative friction bearing capacity Qf ; in order to

understand the above analysis more clearly in the Mohr
stress space as shown in Figure 10, a further explanation is
made here.

.e tangent point P of circle O1 and linear strength
envelope is on the vertical axis, and the value of P at the
vertical coordinate is the cohesion c of a rock. When the
ultimate stress circle is on the right side of circle O1, the
friction bearing capacity Qf is positive, and the total bearing
capacity is higher than the cohesion bearing capacity Qc;
when the ultimate stress circle is on the left side of circle O1,
the friction bearing capacity Qf is negative, and the total
bearing capacity Q is lower than the cohesion bearing ca-
pacity Qc.

5.2. Friction and Cohesion Bearing Characteristics of Rock in
Linear Strength Criterion. Friction and cohesion will not
work for one point at the same time in a rock specimen [8].
.at is to say, every point on the potential failure plane
cannot provide friction and cohesion at the same time.
When the point is not damaged, it provides bearing capacity
with cohesion; when the point is damaged, it provides
bearing capacity with friction. Evolution schematic diagram
of rock bearing capacity composition is shown in Figure 11,
in which total bearing capacity Q is the sum of the cohesion
bearing capacity Qf and the friction bearing capacity Qc. As
shown in Figure 11(a), when a linear equation is used in
regression, the friction coefficient of rock k� tanφ is a
constant, and the cohesion bearing capacity Qc is also a
constant, but the total bearing capacity Q and friction
bearing capacity Qf increase linearly as the normal stress σ
increases. .e contribution proportion of cohesion bearing
capacity Qc to increment of total bearing capacity ΔQ is 0,
while the increment of friction bearing capacity ΔQf is equal
to the increment of total bearing capacity ΔQ with the
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Figure 9: Stress diagram of potential failure plane of a specimen under triaxial compression.
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normal stress increasing, and the ratio of friction bearing
capacity Qf to total bearing capacity Q approaches 100%
finally. When the normal stress σ is less than 0, there is a
negative friction bearing capacity Qf that counteracts a same
value of cohesion bearing capacityQc, thus reducing the total
bearing capacity Q.

5.3. Friction and Cohesion Bearing Characteristics of Rock in
Nonlinear StrengthCriterion. When nonlinear equations are
used in regression, friction coefficients are all reducing
variables that decrease with the increase of normal stress. It
means that the frictional coefficient is larger when the
normal stress is lower, and it is lower when the normal stress
is larger. So, the contribution proportion of friction bearing
capacity ΔQf to the increment of total bearing capacity ΔQ
gradually reduces and even disappears in the end with in-
creasing normal stress. Barton [20] divided shear strength
envelope of rock joint under different normal stress into two
parts by a critical normal stress. When the normal stress is
lower than the critical normal stress, the friction coefficient
is large as it is the tangent value of two angles: a friction angle
and a climbing angle; when the normal stress exceeds the
critical value, the frictional coefficient is small as it is only the
tangent value of the friction angle. .ere is a similar
viewpoint here, but the friction coefficient decreases grad-
ually with normal stress increasing. However, the difference
is that the friction coefficient in nonlinear strength criteria is
always a nonlinear curve but is not only two constants as in
Barton’s method [17].

As normal stress increases, total bearing capacity Q
increases with a reducing increasing rate as shown in
Figure 11(b), the friction coefficient k decreases gradually,
the cohesion bearing capacity Qc decreases firstly and then
increases before and after the normal stress is 0MPa, and the
friction bearing capacity Qf increases firstly and then de-
creases. It needs to be explained that the cohesion bearing
capacity Qc of the rock specimen under each normal stress is
the intercept of the tangent line of each corresponding point
on the total bearing capacity curve on the longitudinal axis,
the friction coefficient k of the rock specimen under each
normal stress is the tangent slope value of each corre-
sponding point on the total bearing capacity curve, and the
friction bearing capacity Qf of the rock specimen under each
normal stress is the product of the normal stress σ and its
corresponding friction coefficient k.

According to the above assumption, when the normal
stress is less than 0, there is a negative friction bearing
capacity Qf and a larger positive cohesion bearing capacity
Qc; when the normal stress is 0, friction bearing capacity Qf
is 0 and the cohesion bearing capacity Qc reaches its lowest
value; when the normal stress is larger than 0, as the normal
stress increases, the friction bearing capacity Qf increases
firstly and then decreases to approach 0 gradually, while the
cohesion bearing capacity Qc increases to approach the total
bearing capacity Q gradually. When the normal stress rises
to infinity, the frictional angle will tend to be zero and the
increment of friction bearing capacity ΔQf also tends to be
zero with increasing normal stress, and the friction bearing
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Figure 10: Relationship between rock bearing capacity composi-
tion and ultimate stress circles.
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capacity Qc is close to the total bearing capacity Q under this
condition; thus the total bearing capacity Q and its incre-
ment ΔQ will be provided by only the cohesion bearing
capacity Qc and its increment ΔQc. .erefore, if the incre-
ment of cohesion bearing capacity ΔQc has a limit, the total
bearing capacity Q also has a limit; otherwise, the total
bearing capacity Q of rock will increase with the increment
of cohesion bearing capacity ΔQc in a same quantity. If the
former is in existence, the hyperbolic equation and the
exponential equation are more suitable for fitting triaxial
compression strengths in a higher maximum confining
pressure range in the Mohr stress space.

If used to evaluate the strength characteristics of rock in
high-stress state at deep or extra deep depts, the applicability
of the empirical equations obtained from the test data with a
lower maximum confining pressure needs a further study.
Only by determining the strength characteristics of rock in
the high confining pressure range can a more reasonable
rock strength criterion be determined in the lower confining
pressure range, and the rock strength criterion can be used
without confining pressure range restriction. If a reasonable
strength criterion and its parameters are determined only
based on the test data in a lower confining pressure range,
the applicability of the criterion and parameters under high
confining pressure will be more questioned. .erefore, the
next step should be to improve the rock mechanical
equipment and test methods, obtain the strength test data of
higher confining pressure range, determine the character-
istics of rock bearing capacity limit, and then determine a
more reasonable rock strength criterion.

6. Conclusions

.e following conclusions were reached in this research
study:

(1) Whether (σt)t is included or not included in re-
gression, (σc)r, (σt)r, cr, and φr predicted by linear
equation in the principal stress space are similar to
those obtained in the Mohr stress space with the
method of fitting CTPAC, and thus the method of
fitting CTPAC is completely suitable to obtain
conventional triaxial failure envelopes in the Mohr
stress space.

(2) .e squared correlation coefficients of linear equa-
tion are generally lower than those of nonlinear
equations and would further reduce when (σt)t is
included in regression. (σc)t are lower than all the
corresponding predicted values and have an expo-
nential relation with (σc)rpu when (σt)t is not in-
cluded in regression. (σc)r and Abs. (σt)r are more
closer to their test values, respectively, when (σt)t is
included in regression.

(3) In the Mohr stress space, logarithmic equation,
hyperbolic equation, and exponential equation are
recommended to fit conventional triaxial failure
envelopes because some x-intercepts of the regres-
sion curve of power equation and parabolic equation

are positive. Using (σt)t in regression can further
improve the regression validities.

(4) According to the assumption that the cohesion is
constant, the negative friction bearing capacity exists
when the ultimate stress circle is on the left side of
the critical ultimate stress circle whose tangent point
and strength envelope are on the longitudinal axis.
.rough the analysis of the evolution process of the
nonlinear strength envelope, it is considered that
when the normal stress is infinite, the total bearing
capacity of a rock is about equal to the cohesive
bearing capacity, while the friction no longer pro-
vides the bearing capacity. It is concluded that the
hyperbolic equation and the exponential equation
are more suitable to fit triaxial compression strength
under higher maximum confining pressures for they
have limit values.
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