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,is paper presents amathematical model for the analysis of reinforced concrete (RC) uniaxial and biaxial columns.,is proposed
model is a quick and faster approach for the analysis and design of reinforced concrete rectangular columns without going
through the interaction charts procedure as well as other iterative methods for the computation of required axial load capacity (Pc)
and moment capacity (Mc). A simplified flow chart has also been developed to find the required column capacity using this
mathematical model. Eight uniaxial columns (C-1 to C-8) and seven biaxial columns (CB-1 to CB-7) are analysed in this study.
Each column is analysed having different steel reinforcement ratios (ρ) with different loading conditions. In addition, the studied
columns are subjected to both tension and compression failures.,e detailed examples for both uniaxial and biaxial columns (one
for each case) are also presented in this study. ,e studied columns are also analysed using computer software spColumn. ,e
average variation of the mathematically computed values to the finite element software is not more than 10%, showing promising
computational results.

1. Introduction

Columns are the vertical compression members, which
transmit loads from the upper floors to the lower levels and
to the soil through the foundations [1]. Based on the po-
sition of the load on the cross section, columns are clas-
sified as concentrically loaded (Figure 1) or eccentrically
loaded columns (Figure 2). Eccentrically loaded columns
are subjected to moments, in addition to axial force. ,e
moments can be converted to a load P and eccentricities
eX and eY. ,emoments can be uniaxial, as in the case when
two adjacent panels are not similarly loaded, such as
columns A and B in Figure 3 [2]. A column is considered as
biaxially loaded when the bending occurs about the x- and
y-axis, such as in the case of corner column C in Figure 3. In
a recent study [3], Al-Ansari and Afzal also presented an
analytical model for generating interaction diagram charts
for biaxial columns.

,e strength of reinforced concrete columns is normally
expressed using interaction diagrams to relate the design

axial load 2∅Pn to the design bending moment∅Mn [4, 5].
Each control point on the column interaction curve (∅Pn −

∅Mn) represents one combination of design axial load,
∅Pn and design bending moment,∅Mn, corresponding to a
neutral-axis location (Figure 4) [6].

Extensive studies have been carried out on the inter-
action diagrams (uniaxial and biaxial columns) of reinforced
concrete (RC) rectangular columns [6–12]. Several studies
have also been performed on providing numerical ap-
proaches for the analysis and design of reinforced concrete
columns. Furlong et al. [13] provided an overview of the
analysis and design of reinforced concrete columns sub-
jected to biaxial bending. ,ey reviewed several methods of
analysis that use traditional design methods and compared
their results with the obtained data from physical tests of
normal strength concrete columns subjected to short-term
axial loads and biaxial bending’s. ,ey concluded that the
elliptic load contour equation [14] and the reciprocal
equation [15] are the simplest to use, as they do not require
complicated calculations.
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Chen et al. [16] proposed an iterative numerical method
for rapid section analysis and design of short concrete
composite columns subjected to biaxial bending. Wang and
Hsu [17] proposed the numerical method approach for the
determination of load-moment curvature relationship for
short and slender columns. ,is numerical method ap-
proach is also applicable for columns, made of different
materials, and shows good agreement with the different
experimental results obtained in their study.

Whitney [18] andHsu et al. [19] providedmajor research
studies on numerical method approaches. Whitney sug-
gested an approximate equation to estimate the nominal
compressive strength of columns subjected to compression
failure. Hsu in different research projects [10, 17, 20, 21] also
presented the results of experimental and analytical studies
on the strength and deformation of biaxially loaded short
and tied columns with L− , channel, and T-shaped cross
sections. In another study, Hsu [22] suggested a general
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Figure 1: Concentrically loaded columns.
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Figure 2: Eccentrically loaded column.
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Figure 3: Uniaxially and biaxially loaded column.
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equation for the analysis and design of reinforced concrete
short and tied rectangular columns.

,is study proposes a mathematical model to analyse
and design the uniaxial and biaxial columns based on ACI
building code of design [23]. ,is model is a quick and
easy approach for analysing and designing the reinforced
rectangular columns without going through the interac-
tion charts for the computation of the required axial load
capacity (Pc) and moment capacity (Mcx,Mcy). A sim-
plified flow chart has also been developed to find the
required column capacity using the proposed model
approach. ,e previous research studies of the mathe-
matical model approach are limited to columns having
compression failure only. ,is study includes the nu-
merical examples of columns using the proposed math-
ematical model approach for both compression and
tension failure cases. ,is relatively new approach will
also be useful to the undergraduate and graduate students
as well as researchers to calculate the required column
capacities using this approach in their research-related
activities.

Numerical examples for the selected reinforced concrete
columns (uniaxial and biaxial columns) are also illustrated
to check the adequacy of this proposed model. Eight uniaxial
columns (C-1 to C-8) and seven biaxial columns (CB-1 to
CB-7) are analysed in this study.,ese columns are analysed
having different steel reinforcement ratios (ρ), different
values of steel yield strength (fy), concrete compressive
strength (fc

′) , and different load capacity conditions.
Moreover, the results obtained from this proposedmodel are
compared with computer software spColumn 2016 [24].

2. Mathematical Model Formulation: ACI
Code Design

,e stress and strain distribution of a rectangular column
section (uniaxial column) for the calculation of Pn andMn is
given in Figure 5.

,e resultant force PN is equal to the summation of all
internal forces:

PN � CCon − Ts + CS. (1)
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Figure 4: Control points for column interaction curve (∅Pn − ∅Mn).

Advances in Civil Engineering 3



Similarly, the resultant moment MN is equal to the
summation of all internal moments:

MN � Mconc + MT + MCS
. (2)

,e following steps revealed the calculation of the re-
quired internal forces and internal moments for a rectan-
gular uniaxial RC column.

2.1. Plain Concrete Section. ,e Internal concrete com-
pressive force (Cconc ) is computed as

Cconc � 0.85fc
′ba( ,

Cconc � 0.85fc
′ bβc,

(3)

where Cconc � internal concrete compression force,
fc′� compressive concrete strength, b � column width,
a � depth of the compression stress block,
β � 0.85 − 0.008(fc

′ − 30)≥ 0.65, and c � distance from ex-
treme compression fiber to the neutral axis.

Referring to Figure 5, the moment about the midpoint of
the section (Mconc) can be computed as

Mconc � Cc d −
a

2
− d″ ,

Mconc � 0.85fc
′ ba d −

a

2
− d″ ,

(4)

where h � column total depth, d″ � ((h/2) − d′), d � column
effective depth (h − d′), and d′ � distance from extreme
compression fiber to centroid of top reinforcing steel.

2.2. Tension Steel Section. ,e internal tensile force Ts is
computed as

Ts � Asfy, (5)

where As � area of tensile steel reinforcement and fy � yield
stress of reinforcing steel.,e internal moment MT is

MT � Asfy d″. (6)

2.3. Compression Steel Section. ,e internal compressive
force Cs is computed as [25]

Cs � As
′ fs
′( ,

Cs � As
′ fs
′ − 0.85fc

′( ,
(7)

where As
′ � area of compression steel reinforcement and

fs
′ � fy (if the compression steel yields).
,e internal moment MT is

MT � As
′ fs
′ − 0.85fc

′(  d − d′ − d″( . (8)

3. Mathematical Model Analysis

,e following steps should be revealed to calculate the design
axial load and moment capacity of the required rectangular
RC column section. Columns may be subjected to tension
failure or compression failure depends on the balanced
eccentricity value (eb):

Cs = As′ fs′

Cc = 0.85fc′ab

Ts = As fs

Pn

Mn

(d) (e)

h
d

b 0.85fc′

fs

a = β1c

d – a/2
P.C

c

d′

d″

εc = 0.003

εs′

c a/2

As

As′

εs = fs/Es

fs′

(a) (b) (c)

Figure 5: Calculation of Pn and Mn for a given strain distribution. (a) Section. (b) Strain. (c) Stress. (d) Internal forces. (e) Resultant forces.
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eb �
Mb

Pb

, (9)

Mb � Ccb d −
ab

2
− d″  + Cs d − d′ − d″(  + Ts × d″(   × 10− 3

,

(10)

Pb � Cs + Ccb − Ts, (11)

where ab � β × cb, cb � (600 × d/600 + fy),
Ccb � (0.85 × fc

′ × ab × b) × 10− 3, and Cs � As
′(fs
′ − 0.85fc

′)
× 10− 3 (if the compression steel yields, then fs

′ � fy).

3.1.TensionFailureAnalysis. Tension failure will occur when
the balanced eccentricity value (eb) is less than load ec-
centricity (e). Substituting the values of Cc, Cs, and Ts in
equation (1) and solving for (a) will be a second-degree
equation [14]:

PN � CCon − Ts + CS(Equation (1)),

Aa
2

+ Ba + C � 0,
(12)

where A � (0.85 × fc
′ × b/2) , B � 0.85 × fc

′ × b × (e′ − d),
C � As
′(fs
′ − 0.85fc

′)(e′ − d + d′) − fyAse′, and e′ � e + d″,
(e′ � e + d − (h/2)whenAs � As

′).
Solve for (a) to get

a �
− B ±

��������
B
2

− 4AC


2A
. (13)

Substitute the value of a in equation (3) to calculate Cc

and from equations (5) and (7) to compute Ts and Cs values.
,ese obtained values are substituted in equation (1) for
PN � CCon − Ts + CS,

PN �
1
e′

Cc d −
a

2
  + Cs d − d′(   , (14)

MN � PN × e. (15)

,e column axial load capacity andmoment capacity can
therefore be computed as

Pc � ∅PN, (16)

Mc � ∅MN, (17)

(where∅ is the column reduction factor having the value of
0.65).

3.2. Compression Failure Analysis. Compression failure will
occur when the balanced eccentricity value (eb) is bigger
than the load eccentricity (e). Substituting the values of
Cc, Cs, and Ts in equation (1) and solving for (a) will be a
cubic equation [14]:

Aa
3

+ Ba
2

+ Ca + D � 0, (18)

where A � (0.85 × fc
′ × b/2) , B � 0.85 × fc

′ × b × (e′ − d),
C � As
′(fs
′ − 0.85fc

′)(e′ − d + d′) + 600Ase′, and
D � − 600Ase′β′d,where e′ � e + d″ (e′ � e + d − (h/2)

whenAs � As
′).

Once the values of A, B, C, andD are calculated, the
value of a can be determined by the trial method or directly
by using MATLAB or any scientific calculator. Moreover,
the cubic equation can also be solved using different nu-
merical methods, for example, Newton Raphson Method.
After getting the required value of (a), similar equations
from (14) to (18) (as mentioned in the Tension Failure
Analysis) should be used to get the required value of column
axial load capacity (Pc) and moment capacity (Mc).

,e following flow chart (Figure 6) can be followed to
find the required capacity of the rectangular uniaxial column
section.

4. Numerical Examples for Uniaxial Columns

Eight reinforced rectangular columns (C-1 to C-8) having
different column sizes are analysed using the numerical
method approach. ,ese columns are having different re-
inforcement ratios (ρ) in addition to different failure types,
both tension and compression failures. ,e design input
load data for these columns are illustrated in Table 1.

,e above eight columns C1 to C8 are analysed using the
mathematical model approach to find the required values of
axial load capacity, Pc, and moment capacity, Mc. Moreover,
these values are also compared with the computer software
spColumn. ,e results obtained are depicted in Table 2.

,ese above columns are also analysed with different
available methods, Whitney’s 1st approximation method
[18], Whitney’s second approximation method [18], and the
method provided by HSU [19]. ,ese available methods are
only available for the columns having the compression
failure.,ere are no examples available for the columns with
the tension failure cases. ,e results comparison is men-
tioned in Table 3.

4.1. Detailed Numerical Example for Column C-4 (400× 400)

Input Data: Figure 7

Pu� 400 kN
Mu� 100 kN·m
fc
′� 30MPa

fy � 415MPa
As� 1000mm2

As
′� 1000mm2

d′ � 80mm
ϕ� 0.65

Solution:

(1) Finding the value of e � (Mu/Pu) �

100/400� 250mm
(2) cb � (600 × d/600 + fy) � (600 × 320/600 + 415)

� 189.16mm
(3) ab � β × cb � 0.85 × 189.16� 160.788mm
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(4) Ccb � 0.85fc
′abb � 0.85 × 30 × 160.788 × 400

� 1.64×103 kN
(5) Cs � As

′(fy − 0.85fc
′) � 1000

(415 − 0.85(30)) � 3.895×102 kN
(6) Ts � As fy � 1000 × 415� 4.15×102 kN
(7) Pb � Cs + Ccb − Ts � 1.615×103 kN

(8) Mb � (Cc(d − (ab/2) − d″) + Cs(d − d′ − d″)+
(Ts × d″))
d″ � ((h/2) − d′) � 120mm
Mb � 2.927 × 102 kN·m

(9) eb � (Mb/Pb) � 181.3mm < e (250mm) (TEN-
SION Failure)

Start

cb = ((600 × d)/(600 + fy))

ab = β × cb

Ccb = 0.85f ′cabb
Cs = A′s ( f ′s  – 0.85f ′c)

(If the compression steel yields, then f ′s  = f y)
Ts = As fy

Pb = Cs + Cc – Ts
Mb = (Ccb (d – (ab/2) – d″) + Cs (d – d′ – d″) + (Ts × d″))

eb = (Mb/Pb)

e > eb
Yes

Tension failureCompression
failure

Aa3 + Ba2 + Ca + D = 0 Aa2 + Ba + C = 0

No

Finding
the value
of (a) for 

cubic
Equation

Finding
the value
of (a) for 
quadratic
equation

Check condition of steel yielding
εs > εy → fs = fy
εs < εy → fs ≠ fy

A = 0.425 × f c′ × b
B = 0.85 × f c′ × b × (e′ – d)
C = As′ (f s′ – 0.85f c′)(e′ – d + d′) + 600 Ase′
B = –600 Ase′β′d

A = 0.425 × f c′ × b
B = 0.85 × f c′ × b × (e′ – d)
C = As′ ( f s′ – 0.85fc′)(e′ – d + d′) + fyAse′)

d″ = ((h/2) – d′)

e′ = e + d″
Cc = 0.85fc′ab

PN = (1/e′)(Cc (d – (a/2)) + Cs (d – d′))
Pc = ØPN

MN = PN × e
Mc = ØMN

End

Figure 6: Flow chart of the mathematical model for the rectangular uniaxial rectangular column.
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Table 1: Uniaxial column input data.

Column identifier Pu (kN) Mu (kN·m) As (mm2) As′ (mm2) fc′ (MPa) fy (MPa) ϕ d′ (mm) e (mm)

C1 (200× 400) 300 60 400 400 30 300 0.7 80 200
C2 (200× 400) 200 50 400 400 20 300 0.7 60 250
C3 (300× 500) 800 200 1000 1000 30 415 0.7 75 250
C4 (400× 400) 400 100 1000 1000 30 415 0.65 80 250
C5 (300× 450) 1300 157.4 1530 1530 25 300 0.65 75 121
C6 (200× 400) 400 20 402 402 30 300 0.7 60 50
C7 (300× 500) 600 100 1500 1500 30 415 0.65 90 167
C8 (400× 800) 1000 200 2000 2000 30 415 0.65 80 200

Table 2: Uniaxial column design results.

Column identifier eb (mm) Failure condition
Mathematical model spColumn

Pc (kN) Mc (kN·m) Pc (kN) Mc (kN·m)

C1 140.7 Tension 377.6 75.5 378.3 75.6
C2 141.5 Tension 234.8 58.7 247.4 61.84
C3 233 Tension 1033 258 1036 259
C4 181.8 Tension 650.3 162.6 650 163
C5 222 Compression 1310 158 1425 172.5
C6 138 Compression 1191 59.5 1810 90.52
C7 276 Compression 1495 250 1677 279.5
C8 364 Compression 3606 722 3975 795

Table 3: Column design results comparison with different methods.

Column identifier Failure condition
Mathematical model Whitney 1st

approximation
Whitney 2nd

approximation HSU

Pc (kN) Mc (kN·m) Pc (kN) Mc (kN·m) Pc (kN) Mc (kN·m) Pc (kN) Mc (kN·m)
C1 Tension 377.6 75.5 — — — — — —
C2 Tension 234.8 58.7 — — — — — —
C3 Tension 1033 258 — — — — — —
C4 Tension 650 162 — — — — — —
C5 Comp. 1310 158 1580 191 1285 155 1580 191
C6 Comp. 1191 59.5 1877 94 1125 56 1878 94
C7 Comp. 1495 250 1677 280 1482 247 1677 280
C8 Comp. 3606 722 4300 860 3582 716 4300 860

400

320

400

As = 1000

P.C

As′ = 1000

80

120

Figure 7: Column C-4.
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(10) Finding the value of (a) using the Quadratic
Equation
Aa2 + Ba + C � 0
A � 0.425 × fc

′ × b � 5.1 × 103
B � 0.85 × fc

′ × b × (e′ − d), where; (e′ � e + d″
� 370mm)
B � 5.1 × 105
C � As
′(fy − 0.85fc

′)(e′ − d + d′) − fyAse′ �
− 1.029 × 108
a � (− B +

��������
B2 − 4AC

√
/2A)

a � 100.59mm
(11) Check if the tension steel has yielded;

c � (a/β) � 118.34mm
εs � ((d − c/c)) × 0.003 � 0.005 , εy � (fy/Es)

� 0.002
εs > εy, steel yields, ∴ (fs � fy)

(12) PN � (1/e′)(Cc(d − (a/2)) + Cs(d − d′) × 10− 3

Cc � 0.85fc
′ab � 1.026 × 106 kN

PN � 1000.55 kN
MN � PN × e � 250.1 kN·m

(13) Pc � ∅PN � 650.35 kN
(14) Mc � ∅MN � 162.56 kN·m

5. Numerical Examples for Biaxial Columns

Seven reinforced biaxial rectangular columns (CB-1 to CB-
7) having different column sizes are also analysed using the
proposed model. ,ese columns are also having different
reinforcement ratios (ρ) in addition to different failure
types, that is, tension-tension, compression-compression,
and tension-compression failures. ,e design input load
data for these columns are illustrated in Table 4. ,e
column cross section subjected to biaxial bending is shown
in Figure 8. A similar flow chart has to be adopted (as
discussed in the uniaxial column sections), once for the
case of eccentricity in the x-direction (ex) and later for the
eccentricity in the y-direction (ey) to obtain the required
values of load capacities in x- and y-direction (∅Px,∅Py).
,ese values are later used in Bresler’s formula [15]
(equation (19)) to find the value of Pc. Moreover, the Mcx
and Mcy values can be found by using equations (21) and
(22) accordingly:

Pc �
1

1/∅Px(  + 1/∅Py  − 1/∅PNmax( 
, (19)

∅PNmax � 0.8ϕ 0.85f′c(Ag − Ast) + fyAst( , (20)

where ∅PNmax �maximum permissible column load,
Ast� total area of steel, and Ag �

(Gross area of cross section) − (sectional area of concrete
member member).

,e moments in the x- and y-direction can be found as

Mcx � PC × euy, (21)

Mcy � PC × eux. (22)

,e above seven columns (CB-1 to CB-7) are analysed
with mathematical model approach to find the required
values of axial load capacity Pc, using reciprocal formula.
Moreover, the values of Pc are also compared with the
computer software spColumn. ,e results obtained are
depicted in Table 5.

5.1. Detailed Numerical Example for Column CB-7
(400×1200)

Input Data: Figure 9

Pu� 1500 kN
Mux� 300 kN·m
Muy� 300 kN·m
fc
′� 20MPa

fy� 300MPa
As� 3080mm2

As
′� 3080mm2

d′ � 60mm
ϕ� 0.65

Solution: (Solving for the X-direction)

(1) Finding the value of ey � (Mux/Pu) � 200mm
(2) cb � (600 × d/600 + fy) �

(600 × 1140/600 + 300) � 760mm
(3) ab � β × cb � 0.93 × 760� 706.8mm
(4) Ccb � 0.85fc

′abb �

0.85 × 20 × 706.8 × 400� 4.81× 103 kN
(5) Cs � As

′(fy − 0.85fc
′) � 3080

(300 − 0.85(20)) � 8.71× 102 kN
(6) Ts � As fy � 3080 × 300� 9.24×102 kN
(7) Pbx � Cs + Ccb − Ts � 4,754 kN
(8) Mbx � (Cc(d − (ab/2) − d″) + Cs(d − d′ − d″)+

(Ts × d″))
d″ � ((h/2) − d′) � 540mm
Mbx � 2.155 × 103 kN·m

(9) eby � (Mbx/Pbx) � 453mm > ey (200mm)

(COMPRESSION Failure)
(10) Finding the value of (a) using the Cubic Equation

Aa3+Ba2 + Ca + D � 0
A � 0.425 × fc

′ × b × 10− 3 � 3.4
B � 0.85 × fc

′ × b × (e′ − d) × 105, where;
(e′ � e + d″ � 740mm)
B � − 2.72 × 103
C � As
′(fs
′ − 0.85fc

′)(e′ − d + d′) + 600Ase′ �
1.071 × 106
D � − 600Ase′

β′
d � − 1.45 × 109

a � 944.47mm
(11) Check if the tension steel has yielded;

c � (a/β) � 1016mm
εs � (d − c/c) × 0.003 � 0.0028, εy � (fy/Es)

� 0.0015
εs > εy, steel yields, ∴ (fs � fy)

(12) PNX � (1/e′)(Cc(d − (a/2)) + Cs(d − d′) × 10− 3

Cc � 0.85fc
′ab � 6.422 × 103 kN

PNX � 7068 kN
MNX � PNX × ex � 1414 kN·m

(13) PCX � ∅PNX � 4594 kN
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(14) MCX � ∅MNX � 918.79 kN·m

(Solving for the Y-direction) (Figure 10)

(1) Finding the value of ex � (Muy/Pu) � 200mm
(2) cb � (600 × d/600 + fy) �

(600 × 1140/600 + 300) � 226.67mm
(3) ab � β × cb � 0.93 × 226.67� 210.8mm
(4) Ccb � 0.85fc

′abb � 0.85 × 20×

210.8 × 1200� 4.3×103 kN
(5) Cs � As

′(fy − 0.85fc
′) � 3080

(300 − 0.85(20)) � 8.71× 102 kN

(6) Ts � As fy � 3080 × 300� 9.24×102 kN
(7) Pby � Cs + Ccb − Ts � 4.248×103 kN
(8) Mby � (Cc(d − (ab/2) − d″) + Cs(d − d′ − d″)+

(Ts × d″))
d″ � ((h/2) − d′) � 140mm
Mby � 6.582 × 102 kN·m

(9) ebx � (Mby/Pby) � 154.94mm > ex (200mm)

(TENSION Failure)
(10) Finding the value of (a) using the Quadratic

Equation
Aa2 + Ba + C � 0

Table 4: Biaxial column input data.

Column identifier Pu (kN) Mux (kN·m) Muy
(kN·m) As (mm2) As

′ (mm2) fc
′ (MPa) fy (MPa) ϕ d′ (mm) ex (mm) ey (mm)

CB-1 (300× 600) 300 100 80 1232 1232 30 400 0.65 80 267 333
CB-2 (200× 400) 200 40 20 628.4 628.4 20 300 0.7 40 100 200
CB-3 (300× 300) 2500 250 120 1225 1225 30 400 0.65 70 48 100
CB-4 (375× 500) 1700 200 100 2100 2100 30 415 0.65 60 59 118
CB-5 (400× 500) 800 200 50 1413.8 1413.8 30 415 0.65 60 62.5 250
CB-6 (350× 700) 400 60 40 1638 1638 20 300 0.65 45 100 150
CB-7 (400×1200) 1500 300 300 3080 3080 20 300 0.65 60 200 200

(x-axis)

(y
-a

xi
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bx = hy

hx = by

Muy

Mux

Figure 8: Biaxial column cross section.

Table 5: Biaxial column design results.

Column identifier Failure condition Mathematical model spColumn
Pc (kN) Pc (kN)

CB-1 Tension and tension 280 343
CB-2 Tension and tension 262 228
CB-3 Compression and compression 480 415
CB-4 Compression and compression 2132 2035
CB-5 Tension and compression 1291 1142
CB-6 Compression and compression 2852 2805
CB-7 Compression and tension 1993 2081
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A � 0.425 × fc
′ × b × 10− 3 � 10200

B � 0.85 × fc
′ × b × (e′ − d) × 105, where;

(e′ � e + d″ � 340mm)
B � 0
C � As
′(fs
′ − 0.85fc

′)(e′ − d + d′) − fy Ase′ �
− 2.62 × 108
a � 160.227mm

(11) Check if the tension steel has yielded;
c � (a/β) � 172.287mm
εs � (d − c/c) × 0.003 � 0.00292, εy � (fy/Es) �

0.0015
εs > εy, steel yields, ∴ (fs � fy)

(12) PNY � (1/e′)(Cc(d − (a/2)) + Cs(d − d′) × 10− 3

Cc � 0.85fc
′ab � 3.27 × 106 kN

PNY � 3216 kN
MNX � PNY × ey � 643.25 kN·m

(13) PCY � ∅PNY � 2091 kN
(14) MCY � ∅MNY � 418.12 kN·m

Finding the value of Pc using Bresler’s equation (19):

Pc �
1

1/∅Px(  + 1/∅Py  − 1/∅PNmax( 
, (23)

where ∅PNmax � 0.8 ϕ( 0.85f′c (Ag − Ast) + fyAst) �

5150 kN, Pc � (1/(1/4594) + (1/2091) − (1/5150)) �

1993 kN.

6. Validation of the Mathematical Model

In order to validate the proposed mathematical model ap-
proach, the model is validated with the existing experimental

results of columns subjected to uniaxial and biaxial loadings.
,e experimental results data has been extracted from the
test results provided by HSU [22]. Two uniaxial columns as
provided by Bresler (B-1 and B-2) and one biaxial column as
provided by Anderson and Lee (SC-4) are selected from the
research article [22] to compare the results with the
mathematical model.

Table 6 illustrates the experimental testing data provided
by HSU. ,e data and the results are provided in imperial
units (Kips-ft) units. ,erefore, they are converted to metric
units accordingly to compare the values with our results.

Table 7 provides the experimental test results as well as
the validation of the test data with the proposed mathe-
matical model. ,e column capacity (Pc) results obtained
from the experimental data are quite close to the mathe-
matical model results, showing satisfactory computational
results.

7. Results and Discussions

,e results obtained from the mathematical model approach
for both uniaxial and biaxial columns showed a safe and
conservative column design method. ,e results of eight
uniaxial column sections (C-1 to C-8) using the proposed
model are also compared with different available mathe-
matical models, provided by Whitney’s 1st approximation
method, Whitney’s second approximation method, and the
method provided by HSU. Columns C1 to C-4 were sub-
jected to tension failure, whereas columns C-5 to C-8 were
the compression failure cases. ,e other three mathematical
studies (Whitney’s 1st approximation, Whitney’s second
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Figure 9: Column CB-7 (X-X axis).

As = 3080

P.C
As′ = 3080

400 340
140

1200

Figure 10: Column CB-7(Y-Y axis).
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Table 6: Experimental testing data [22].

Experimental
investigator

Column identifier with size (in
x in) b (mm x mm)

As (In2)
(mm2)

fc
′ (Ksi)
(MPa)

fy (Ksi)
(MPa)

d′(In)
(mm)

ex (in)
(mm)

ey (in)
(mm)

Bresler (uniaxial
column) B-1 (6× 8) (152× 203) 1.24 (800) 3.7 (25.6) 53.5 (369) 1.75 (44.5) 6 (152.4) 0

Bresler (uniaxial
column) B-2 (6× 8) (152× 203) 1.24 (800) 3.9 (27) 53.5 (369) 1.75 (44.5) 3 (76.2) 0

Anderson and Lee
(biaxial column) SC-4 (4× 4) (102×102) 0.8 (516) 5.435 (37.5) 45.6 (314.6) 0.75 (19) 2.82 (71.63) 2.82 (71.63)

Table 7: Validation of experimental data [22].

Experimental
investigator

Column identifier with
size (in x in) (mm x mm) ϕc

eb (in)
(mm) Failure condition

Experimental
results

Mathematical
model (Pexp/PMath)

Pc (kips) (kN) Pc (kips) (kN)

Bresler (uniaxial
column) B-1 (6× 8) (152× 203) 0.65 4.67

(118.5) eb< ex (tension) 24 (107) 29 (132) 0.83

Bresler (uniaxial
column) B-2 (6× 8) (152× 203) 0.65 4.6 (117) eb> ex

(compression) 60 (267) 59 (263) 1.01

Anderson and Lee
(biaxial column) SC-4 (4× 4) (102×102) 0.65 2.7 (69) eb< ex (tension) 13.5 (60) 11 (49) 1.22
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Figure 11: Axial load capacity comparison for uniaxial columns (C1–C8).
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approximation, and the method provided by HSU) are only
limited to the case where the columns are subjected to the
compression failure only.

,ese studied columns (C-1 to C-8) are also analysed
using the computer software spColumn and the comparison
results for axial load capacities (Pc) and moment capacities
(Mc) are displayed in bar charts (Figures 11 and 12).

For the biaxial columns (CB-1 to CB-7), the axial load
capacity results for mathematical model approach using
Bresler’s formula and the computer software spColumn are
displayed in the bar chart (Figure 13).

,e values of Pc obtained using the mathematical model
are quite close to the computer software results, showing
relatively satisfactory computational results.

8. Conclusion

In this study, the mathematical model is presented to
analyse and design the uniaxial and biaxial columns
without going through the column interaction charts to
find the required axial load capacities and moment ca-
pacities. A simplified flow chart has also been developed to
solve the required column section following the mathe-
matical model steps.

Eight (RC) uniaxial columns (C-1 to C-8) and seven
(RC) biaxial columns (CB-1 to CB-7) are analysed in this
study. ,ese columns are analysed having different steel
reinforcement ratios (ρ), different values of steel yield
strength (fy), concrete compressive strength (fc

′), and
different load capacity conditions. Moreover, the studied
columns are subjected to both tension and compression
failures.

For the uniaxial columns, the proposed mathematical
model results are also compared with the different available
numerical approaches done byWhitney’s 1st approximation,
Whitney’s 2nd approximation, and the method provided by
HSU. All of these three methods were formulated based on
the case of compression failure only. ,ese uniaxial columns
are also analysed using the computer software spColumn.
,e results obtained showed that this proposed mathe-
matical approach showed good agreement with the com-
puter software spColumn showing relatively satisfactory
results.

,e studied biaxial columns are subjected to different
failure conditions, that is, tension-tension failure, com-
pression-compression failure, and tension-compression
failure. Bresler’s formula was used to find the required ca-
pacity (Pc) after finding the (Px)and(Py) from the math-
ematical model approach. ,e biaxial columns were also
analysed with the computer software. ,e average variation
of the mathematically computed values for biaxial columns
to the finite element software was not more than 10%.
Moreover, the results obtained for the columns subjected to
tension failure are quite close with the computer software
spColumn. Moreover, this mathematical model has also
been validated with the existing experimental results con-
ducted by HSU.

In short, this newly proposed mathematical model is a
good and quick approach to analyse the reinforced concrete
uniaxial and biaxial columns. ,is model can also help the
students and the academic researchers to find the column
capacities without going through the column interaction
charts and other long iterative approaches.
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