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In rock engineering of the cold region, there are a lot of rock joints.)e shear characteristics of joints play a decisive role in the
stability of rock engineering in the cold area. In this paper, based on the numerical simulation method of particle flow,
reasonable microscopic parameters are selected for the numerical simulation of the direct shear test of bolted joints. )e
results show that the shear stiffness and contact modulus are linearly and positively correlated. )e greater the contact
modulus, the greater the residual stress, the better the synergetic effect between rock and bolt, and the more developed the
microcrack. )e smaller the contact stiffness ratio, the greater the residual stress. )e shear stiffness decreases with the
increase in the contact stiffness ratio, and the larger the contact stiffness ratio, the slower the shear stiffness decreases, while
the shear strength does not change with the contact stiffness ratio. )e contact stiffness ratio has a weak effect on the number
of cracks in the model. )e shear stiffness increases with the increase in the parallel bond modulus, and the shear strength
decreases with the increase in the parallel bond modulus. )e binding stiffness is independent of the shear stiffness, and the
peak shear stress decreases with the increase in the binding stiffness ratio. )e greater the bond stiffness ratio, the greater the
number of cracks.

1. Introduction

)ere are various types of geological defects and disconti-
nuities, such as faults, joints, slices, and unconformities. To a
large extent, the movement and deformation of rock mass
are mainly subject to these discontinuities, which have a
controlling influence on the stability of rock mass engi-
neering [1–5]. For a long time, in order to facilitate the
research, rock mass is often idealized as a uniform con-
tinuous medium [6–11] in the research of exploring the
mechanical properties of rock mass, and the theory de-
scribing the deformation and failure process of rock mass is
the macroscopic elastic-plastic theory. Such a theoretical
model has a certain significance for the research on the
mechanical properties of rock mass [12–17]. )e laboratory
test is the main method to study jointed rock mass
[16, 18–21]. Based on mass shear tests, Barton [22] proposed
a JRC-JCS model for estimating the shear strength of rock

joints. Lee et al. [23] studied and discussed in depth the
characteristics of shear deformation, failure mechanism, and
attenuation law of strength of specimens subjected to cyclic
shearing. Jiang et al. [24] studied the influence of joint
roughness on shear mechanical characteristics. Ghazvinian
et al. [25] studied the variation rules of peak shear strength
and shear strength of different sawtooth joints. Jahanian and
Sadaghiani [26] studied joint shear curves and peak shear
strength at different undulation angles. With the develop-
ment of computer technology and the appearance of a large
computer, the numerical simulation method is more and
more abundantly used to study the mechanical properties of
the rock [27–31]. Numerical methods for studying the
mechanical properties of the rock mass, such as particle flow
code (PFC), have been widely used in the design and
construction of rock mass engineering [32–35]. Park and
Song [36] carried out a series of direct shear tests of joints
based on PFC3D and studied the effects of geometric

Hindawi
Advances in Civil Engineering
Volume 2020, Article ID 8869300, 8 pages
https://doi.org/10.1155/2020/8869300

mailto:yangjianyuhu@126.com
https://orcid.org/0000-0003-0485-3521
https://orcid.org/0000-0003-4253-1136
https://orcid.org/0000-0002-2549-9544
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8869300


characteristics and microscopic properties of joints on joint
shear performance.

)e relationship between shear mechanical character-
istics of jointed rock mass and normal stress and joint
surface topography has been studied from a variety of
perspectives [37–40]. However, it is not enough just to fit
the mechanical properties of the rock mass from the
macroscopic phenomenon without studying the intrinsic
nature of the mechanical properties produced by rock
mass. At present, there are few studies on the variation
rules of shear mechanical characteristics of bolted jointed
rock mass under different rock microscopic parameters
[41, 42]. Due to the difficulties in obtaining and researching
methods and means of bolted joint samples with different
microscopic parameters, this paper adopts the PFC nu-
merical calculation method to study in detail the effects of
different microscopic parameters on the macroscopic shear
mechanical behavior of jointed rock mass and the devel-
opment and evolution characteristics of microcracks. )e
research conclusion has a certain reference value for the
laboratory test.

2. Modelling and Parameter Calibration

2.1. Numerical Model. )e numerical model is composed of
homogeneous particles which are linked by parallel bonding
[43–46]. In the parallel bond contact model, the bond is
equivalent to a number of springs acting side by side, which
can transmit both force and torque and which is more in line
with themechanical properties of rockmaterials, and it is the
most widely used model to simulate the mechanical prop-
erties of the rock.)e final model is established in this paper.
)e direct shear boundary conditions and particle genera-
tion are shown in Figure 1.

Different from other methods of continuum analysis, the
simulation of the macroscopic mechanical behavior of the
particle discrete element model must be constructed by
assigning values to a series of mesoscopic parameters related
to material properties [47–51]. )e selection of model
mesoscopic parameters is related to the accuracy of the final
simulation results. For the microscopic parameters of the
particle flow model of rock materials, it is usually necessary
to select the macroscopic mechanical parameters (shear
mechanical parameters and elastic modulus) and the stress-
strain relationship in the laboratory physical tests [52]. In
this paper, the macroscopic shear mechanical behavior of
jointed rock mass under different joint microparameters is
studied. Relevant physical and mechanical parameters ob-
tained through laboratory tests are shown in Table 1. )e
microscopic parameters of rock were obtained through
repeated debugging, as shown in Table 2. )e peak shear
strength of the rock and joints obtained by numerical cal-
culation and the laboratory test was further compared by
about 150 times, and the corresponding shear strength
parameters, adhesive force and friction angle, were obtained
through the Mohr–Coulomb criterion fitting [53–55], as
shown in Table 3, indicating that the values of the two are
relatively consistent.

3. Influence of Rock Mesoscopic Parameters on
Macroscopic Shear Mechanical Behavior

In order to study the influence of rock mesoscopic pa-
rameters on the macroscopic shear mechanical behavior of
bolted jointed rock mass, the control variable method was
adopted to conduct the direct shear test numerical simu-
lation and result analysis for the bolted jointed rock mass
specimens with different rock mesoscopic parameters.
Without changing other parameters, only the microscopic
parameters of the research object were changed to observe
the change of the shear mechanical response.

3.1. Contact Modulus. )e contact modulus E∗ is the pa-
rameter that controls the elastic modulus of the particle
contact. )e larger the E∗ is, the greater the elastic modulus
of the particle contact is. )e contact modulus E∗ can be
combined with the contact stiffness ratio k∗. By obtaining
the contact area conversion between the two particles, the
normal stiffness kn and tangential stiffness ks of the two
particles can be obtained, respectively. Only the contact
modulus E∗ was changed, which was set as 0.1, 0.3, 1, and 3
(GPa), respectively. )e shear deformation curve of the
bolted jointed rock mass was obtained, as shown in Figure 2.
By analyzing the elastic modulus corresponding to different
contact modulus, the shear stiffness and shear strength
corresponding to different contact modulus are obtained, as
shown in Table 4 and Figure 3. Although in general, the
contact modulus and the shear strength increase, the contact
modulus has a major impact on the stiffness of the model, so
only the relationship between the contact modulus and the
shear stiffness is emphatically analyzed.

Since the contact modulus E∗ mainly controls the elastic
modulus between particle contacts, the larger the E∗ is, the
harder the lithology is. It can be seen from Figure 2 that the
slope of the linear segment of the shear stress-shear dis-
placement curve increases with the increase in the contact
modulus. From Figure 3, it can be seen that the relationship
between shear stiffness and contact modulus is also basically
linear. )e larger the contact modulus, the greater the rock
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Figure 1: Numerical model.
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stiffness and the smaller the shear displacement corre-
sponding to the shear stress peak without changing the other
parameters. In addition, the larger the contact modulus E∗,
the greater the postpeak curve fluctuation, the greater the
postpeak residual stress, and the better the synergetic effect
between rock bolt and rock. )e smaller the contact

Table 1: Mechanical parameters of rock samples.

Uniaxial compressive strength
(MPa)

Tensile strength
(MPa)

Cohesion
(MPa)

Friction angle
(°)

Modulus of elasticity
(GPa)

Poisson’s
ratio

18.97 1.64 1.84 58.47 2.20 0.2

Table 2: Particle microscopic parameters.

Parameter types Mesoscopic parameters Value

Basic particle parameters

Grain density ρ(kg·m− 3) 2020
Porosity P 0.10

Particle size ratio Rmax/Rmin 1.6
Particle radius Rmax∼Rmin(mm) 0.4∼0.6

Contact modulus Ec(GPa) 3.0
Stiffness ratio kn/ks 1.5

Coefficient of friction μ 5.5

Parallel bonding parameter

Parallel bonding modulus Ec(MPa) 10
Parallel bonding stiffness ratio kn/ks 2.2

Normal strength of parallel bonding (MPa) 1.6
Parallel bonding force (MPa) 7.0

Parallel bonding friction angle (°) 55

Table 3: Comparison of shear strength parameters obtained from the laboratory test and numerical calculation.

Rock Mohr–Coulomb parameters
c (MPa) Φ (°)

Laboratory test 1.84 58.47
Numerical calculation 2.08 56.31
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Figure 2: Shear stress deformation curves of bolted joints under
different contact modulus.

Table 4: Relationship between contact modulus and shear stiffness
and peak strength of specimens.

Contact modulus (GPa) Shear stiffness
(MN/m3) Peak strength (MPa)

0.1 1.71 3.63
0.3 2.55 3.47
1 5.07 3.59
3 10.63 3.85
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Figure 3: Point diagram of the relationship between contact
modulus and shear stiffness.
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modulus, the smaller the residual stress. )is is because the
bolt has a regulating effect on the comprehensive shear
stiffness of the structural plane. When the shear modulus of
the rock is small, the bolt can increase the comprehensive
shear stiffness of the structural plane. When the shear
modulus of the rock is large, the bolt can reduce the
comprehensive shear stiffness of the structural plane.

3.2. Contact Stiffness Ratio. )e contact stiffness ratio k∗ is
the ratio of the normal contact stiffness kn and the tan-
gential contact stiffness ks in the parallel bonding linear
group, namely, kn/ks, which is a dimensionless quantity.
)e contact stiffness ratio k∗ needs to be assigned only
when the contact method command is used, and kn and ks
can be directly assigned when the contact property
command is directly used, so it is not necessary to specify
the contact stiffness ratio k∗. )e PFC program uses the
contact stiffness ratio k∗ to automatically calculate the
normal stiffness kn and the tangential stiffness ks of two
contact particles in the software through formula (1) and
formula (2):

kn �
AE∗

L
, (1)

ks �
kn
k∗

, (2)

where A is the contact surface area and L is the distance
between the centers of the two particles.

)e contact stiffness ratio k∗ means that the contact
modulus E∗ is used to distribute the normal stiffness kn
and the tangential stiffness ks. )e larger the contact
modulus E∗, the larger the normal stiffness and the
smaller the ks. )e smaller the k∗ is, the smaller the
normal stiffness kn is and the larger the tangential stiffness
ks is. )rough the control variable method, only k∗ was
changed, and the contact stiffness ratio k∗ was set as 0.5,
1.0, 1.5, and 2.2. )e direct shear test was conducted on
the structural plane model with bolt and without bolt, and
the influence of the contact stiffness ratio k∗ on the
mechanical behavior of the structural plane was observed.
)e straight shear-simulated shear deformation curve of
rock mass with bolted joints is shown in Figure 4. )e
corresponding shear stiffness and shear strength of each
contact stiffness ratio were obtained as shown in Table 5.
)e relationship between contact stiffness ratio and shear
stiffness and shear strength was plotted as shown in
Figure 5.

According to the shear deformation curve of bolted joints
in Figure 4, the larger the contact stiffness ratio, the smaller
the slope of the linear segment before the peak of the curve,
that is, the smaller the shear stiffness. )e smaller the contact
stiffness ratio, the higher the slope of the linear section of the
stress deformation curve.)is is because the larger the contact
stiffness ratio is, the smaller the tangential stiffness ks of the
particles will be, and the decreasing tangential stiffness of the
particles will reflect the decreasing shear stiffness of the
structural plane on the macrolevel. )e smaller the contact

stiffness ratio, the greater the residual stress and the more
obvious the strain hardening characteristics.

It can be seen from Table 5 and Figure 5 that the shear
stiffness decreases with the increase in the contact
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Figure 4: Shear deformation curves of bolted and unbolted joints
under different contact stiffness ratios.

Table 5: Relationship between contact stiffness ratio and shear
stiffness.

Contact stiffness ratio Shear stiffness
(MN/m3) Shear strength (MPa)

0.5 10.92 4.38
1.0 10.09 4.36
1.5 9.59 4.22
2.2 9.08 4.29
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Figure 5: Relationship between contact stiffness ratio and shear
stiffness.
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stiffness ratio, and the model shear stiffness is negat-
ively correlated with the contact stiffness ratio. )e larger
the contact stiffness ratio, the slower the shear stiff-
ness decreases, which shows the nonlinear change. )e
shear strength does not change with the contact stiffness
ratio.

3.3. Parallel BondingModulus. Parallel bond modulus is the
cementation between two particles in each parallel bonding
model; the parallel bond modulus is set to be 0.01 GPa, 0.3
GPa, 3 GPa, and 5 GPa while other mesoscopic parameters
are kept the same, then the shear deformation of the bolted
joint is shown in Figure 6. By analyzing the elastic modulus
corresponding to different parallel bond modulus, the shear
stiffness corresponding to different contact modulus is
obtained, and the relationship between the parallel contact
bond modulus, shear stiffness, and shear strength is ob-
tained, as shown in Figure 7.

According to the shear deformation curve of bolted
joints in Figure 6, the smaller the parallel bonding
modulus is, the smaller the slope of the linear segment
before the curve peak is, and the higher the peak strength
is, the sharper the curve peak is. )e higher the parallel
bonding modulus, the higher the slope of the linear
segment before the curve peak and the lower the peak
strength. )e strain hardening occurred after the peak,
and the parallel bond modulus increased. When the shear
displacement reaches to the vicinity of 4 mm, the four
curves experience a sudden decrease in stress of different
degrees, which is caused by the sudden embrittlement of
the rock bite. )e greater the parallel bonding modulus,
the greater the stress reduction degree, and the shear
displacement corresponding to the stress reduction de-
creases with the increase in the bonding modulus. It
shows that the bond strength remains unchanged; the
greater the parallel bond modulus, the smaller the dis-
placement generated by the contact fracture, and the
brittleness of the contact bond increases. According to
Figure 7, the relationship between the parallel bonding
modulus and shear stiffness and shear strength and the
shear stiffness increases with the increase in the parallel
bonding modulus, but the increase in the rate of the shear
stiffness decreases with the increase in the parallel
bonding modulus. )e shear strength decreases with the
increase in the parallel bond modulus, and the rate of
shear strength decreases with the increase in the parallel
bond modulus.

3.4. Parallel Bonding Stiffness Ratio. )e meaning of parallel
bond stiffness ratio k

∗ and contact stiffness is similar, the
parallel bond stiffness ratio k

∗is the ratio of the stiffness
kntothe caking tangential stiffness ks, namely kn/ks,. When
the contact method is used, it is needed to assign value for
the parallel bond stiffness ratio k

∗, PFC software uses for-
mulas (3) and (4) to calculate the bonding stiffness and the
tangential stiffness:

kn �
E
∗

L
, (3)

ks �
kn

k∗
, (4)

where L is the distance between the centers of two particles.
By using the method of control variable to control other

mesoscopic parameters as the same, only the parallel bond
stiffness ratio k

∗ is changed and is, respectively, set to 0.5,
1.0, 1.5, and 2.2. )e peak shear stress corresponding to
different bond stiffness ratios is obtained, and the rela-
tionship between the bond stiffness ratio and peak shear
stress is shown in Table 6. Figure 8 shows that the bond
stiffness ratio does not have much effect on the deformation
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Figure 6: Shear stress deformation curves of bolted joints with
different parallel bonding modulus.
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and stress curve, namely, binder modulus has effect on
bonding and tangential stiffness, but almost has no effect on
the overall shear stiffness of the model, the stress defor-
mation curves are similar at the elastic stage basic coinci-
dence. As can be seen from the relationship between the

bond stiffness ratio and peak shear stress in Figure 9, the
peak shear stress decreases with the increase in the bond
stiffness ratio, and the decreasing rate of peak shear stress
decreases with the increase in the bond stiffness ratio, which
tends to be flat. If the bond modulus remains the same, the
bond stiffness ratio decreases, that is, the bond tangential
stiffness increases. It shows that increasing the tangential
stiffness of the bond can affect the shear strength and in-
crease the shear strength.

4. Conclusions

(1) Shear stiffness and contact modulus are linearly and
positively correlated.)e smaller the contact stiffness
ratio of bolted joints, the greater the residual stress
and the more obvious the strain hardening charac-
teristics. )e shear stiffness decreases with the in-
crease in the contact stiffness ratio. )e influence of
the contact stiffness ratio on the number of cracks in
the model is positive, but the correlation is weak.

(2) )e shear stiffness increases with the increase in the
parallel bond modulus, but the increased rate of the
shear stiffness decreases with the increase in the
parallel bond modulus. )e strain hardening char-
acteristic is enhanced with the increase in the parallel
bond modulus.

(3) )e peak shear stress decreases with the increase in
the bond stiffness ratio, and the reduction rate de-
creases with the increase in the bond stiffness ratio.
)e bond stiffness ratio also has an effect on the
number of cracks, but the effect is far less than that of
the parallel bond modulus.
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