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Soft marine soil which could be found widely at the coastal and offshore areas is usually associated with high settlement and
instability, especially under cyclic loading. Many research studies have been conducted on its deformation characteristics under
the cyclic loading with high frequency, whereas few works have been reported on that under the low-frequency cyclic loading
which largely existed in engineering. In this work, a comprehensive series of undrained triaxial tests under cyclic loading with low
frequency was conducted to investigate the deformation characteristics of soft marine soil. -e results demonstrate that soil
specimens accumulate plastic deformation and pore pressure under cyclic loading. Specimens tested under conditions such as
high confining stress, high-stress ratio, and long cyclic period generally reveal higher deformation and pore pressure. Meanwhile,
the rectangular wave presents the largest contribution to plastic strain and pore pressure, followed by the trapezoidal and
triangular waves, respectively, whereas the difference between the various waves decreased gradually with the increasing load level
and cyclic period.-e undisturbed specimens displayed lower deformations and pore pressures than the reconstructed specimens,
whereas the differences are not significant when the confining stress is much higher than the structural yield stress. Furthermore,
an empirical model for predicting the evolution of pore pressure is proposed and then validated against the experimental data in
both this work and the literature.

1. Introduction

Soft marine soil largely existed at the coastal corridors, low
lands, and offshore areas as well as other parts of the earth.
-is type of soil usually has a high void ratio, significant
compressibility, high water content, low permeability, high
structural effects, and notable sensitivity. In this marine
environment, the foundation design of nearshore and off-
shore structures is typically governed by the bearing capacity
and serviceability under cyclic loadings [1–4], as the cyclic
loading could induce reductions of strength [5, 6] and
bearing capacity [7, 8], unexpected settlement [3, 9], and
other geotechnical engineering problems [10, 11].

Investigations on soil behaviour under cyclic loading
have been conducted by many researchers, and the varia-
tions of cyclic axial strain and pore pressure have been

studied through a series of laboratory tests. Common results
have confirmed that the deformation and pore pressure
characteristics of soft marine soil are strongly dependent on
two aspects (i.e., soil properties, such as minerals, structure,
porosity, OCR, and loading parameters, such as stress ratio,
frequency, and loading history) [12–17]. Since Sangrey
et al.’s study [18], researchers begin to notice that the cyclic
deformation response of soft marine soil is greatly influ-
enced by the significant increase in pore pressure due to its
low permeability compared with that of sands [19, 20]. Tang
et al. [7] analysed the variation of cyclic deformation and
pore pressure with increasing stress ratio and cyclic number
of mucky clays in Shanghai and stated that it generates
greater recoverable elastic strain, accumulated plastic strain,
and residual pore pressure when subjected to the cyclic
loading with lower frequency under the same stress level in

Hindawi
Advances in Civil Engineering
Volume 2020, Article ID 8875315, 13 pages
https://doi.org/10.1155/2020/8875315

mailto:wenbinfu82@163.com
https://orcid.org/0000-0001-6512-8185
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/8875315


the frequency section of 0.5–2.5Hz. Gu et al. [21] studied the
undrained cyclic behaviour of saturated Wenzhou clays and
found that the cyclic response of the specimens is strongly
influenced by the variation of confining stress, in terms of
pore pressure, development speed of cyclic deformation, and
magnitude of cyclic strength, which is more appropriate for
the simulation of in situ stress fields than the conventional
cyclic triaxial tests with a constant confining pressure.
Meanwhile, a series of empirical models, including power
models [22–24] and hyperbolic models [25–27], have been
widely used in the literature for pore pressure prediction.
-ese excellent studies provide fundamental tools for further
understanding the cyclic behaviours of soft soils, which is of
significance in practical design methods for the stability of
nearshore and offshore structures.

However, some of the conclusions in the literature are
controversial or have strict application conditions. For ex-
ample, for the influence of loading frequency, some existing
works have indicated that both the accumulated deforma-
tion and pore pressure induced by cyclic loading increase
with decreasing frequency [7, 20, 28], whereas other re-
searchers have reported that the frequency has little or no
influence on the cyclic deformation and pore pressure
[29, 30]. Actually, soft soil behaviour under undrained cyclic
loading is complex for time- and rate-dependent charac-
teristics [6].

Furthermore, most of the previous researches, including
the experimental studies and model predictions, have relied
on high-frequency cyclic loadings, such as seismic loading
and traffic loading [3, 8, 14]. However, no much effort has
been done to investigate the deformation characteristics of
soft marine soil tested under cyclic loading with low fre-
quency, such as the tide, repeated changes in storage
structure levels, and even periodic draining and recharging
of the groundwater [31, 32].

-us, in this work, triaxial shear tests were conducted
under cyclic loading with different low frequencies on soft
marine soil. -e evolutions of the axial strain and pore
pressure were identified while considering the influences of
the soil structure, confining stress, stress ratio, cyclic period,
and waveform. Besides, an empirical model for predicting
the evolution of pore pressure (ratio) is proposed. -is
research contributes to providing information to the set-
tlement analysis of foundation soils in the nearshore and
offshore areas under cyclic loadings with low frequency.

2. Experimental Investigation

2.1. Material. -e representative soil tested in this work is a
type of soft marine soil in Guangzhou, China. -e soil
samples were extracted from about 15m deep marine strata,
and the basic physical and mechanical properties of the soil
are listed in Table 1. -e soil is classified as Elastic Silt (MH)
based on Unified Soil Classification System [33].

2.2. Specimen Preparation. According to Standard for
Geotechnical Testing Method GB/T 50123-2019 [34], the
specimens in this work were 39.1mm in diameter and

80.0mm in height, and this dimension was also adopted by
previous researches [35–37].

For the undisturbed specimens, the soil blocks were
obtained by the polished thin-walled sharp-edged
stainless steel core cutters (with a diameter of 150mm
and a length of 250mm) and then transported to the
laboratory. Before the cyclic loading tests, the specimens
for triaxial tests were trimmed from the cores of the soil
blocks by knife and wire saw [38]. For the reconstructed
specimens, the soil was obtained by damaging the
structure of undisturbed soil, without changing of water
content and density. Similar sampling methods have
been used and described by Moses et al. [14] and Liu et al.
[39].

2.3. Test Procedures. A computer-controlled triaxial testing
system by GDS Instruments Ltd. was adopted in this work
(Figure 1). In this apparatus, the vertical stress (or dis-
placement) is applied by a servo loading system range from 0
to 10 kN (or± 25mm), within a range of frequency between
0 and 5Hz.-e confining pressure is applied through a GDS
pressure/volume controller with a maximum value of 1MPa.
-e amplitudes of the cyclic deviatoric stress and confining
pressure can be controlled independently, and the phase
differences between them can also be controlled indepen-
dently of the amplitudes. -us, various stress paths can be
applied on the specimens using this apparatus.

In the present work, three different loading waves (i.e.,
trapezoidal, triangular, and rectangular waves, Figure 2)
were applied in the vertical direction while the cell pressure
was kept constant. Meanwhile, different confining stresses
(σ3), stress ratios (η� qmax/σ3), and cyclic periods (T) were
imposed. -e details of the testing conditions are sum-
marised in Table 2.

For each test, first of all, the soil specimen was placed
into the pressure chamber, and subsequently, a saturated
back pressure was applied until a minimum B-value of 0.95
was achieved [34, 40–42]. -en, the specimen was iso-
tropically consolidated with the particular confining pres-
sure, and the consolidation was assumed to be completed
when the rate of water discharge was less than 0.1 cm3/h [43].
Finally, one-way stress-controlled cyclic triaxial test was
performed under undrained condition.

All the triaxial tests were conducted at an ambient
temperature of 20± 0.5°C [34].

Table 1: Basic physical and mechanical properties of the soil.

Property Value
Sand (%) 4.6
Silt (%) 89.2
Clay (%) 6.2
Liquid limit, ωL (%) 81
Plasticity index, Ip 43
Specific gravity, Gs 2.65
Water content, ω (%) 87–90
Average density, ρ (g/cm3) 1.56
Structural yield stress, qsy (kPa) 38–45
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3. Results and Analysis

3.1. Evolution of Deformation and Pore Pressure. Typical
evolutions of deformation (represented by axial strain εa)
and pore pressure μ with cyclic number N for the specimen
under the confining stress of 100 kPa (trapezoidal wave,
η� 0.6, and T� 60min) are plotted in Figure 3. Note that
only the maximum values in each cycle are presented. -e
curves in the figure demonstrate that the axial strain and
pore pressure increase sharply at the beginning of shearing,
which is different from the previous research under high-
frequency cyclic loading [6, 41]. -e main reason could be
that soft marine soil in this work primarily comprises plate-
shaped particles with “face-face,” “face-edge,” and “edge-
edge” contacts, presenting a flocculated structure as an
overall structure (Figure 4). Consequently, the dissipation of
pore water pressure is limited due to the small size of the
pore structure and the poor connectivity between them,
especially in the case under high-frequency cyclic loading
(i.e., 1Hz). Nevertheless, for the cyclic loading with low

frequency in this work, much more time is available for pore
water pressure dissipation. Some pores expanded and be-
came connected under hydraulic gradient action because
part of the free water in the soil discharged outwards
through the connected macropores. Moreover, the pore
space (interaggregate pores) of the soil is reduced, and the
aggregates have a tighter contact through a series of ad-
justments that consist of both elastic and plastic deformation
[44].

In addition, the results in Figure 3 also reveal that, after
several time cycles, the changes in the axial strain and pore
pressure become stable or slowly increase. -e threshold is
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Figure 3: Evolutions of axial strain and pore pressure with cyclic
number.
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Figure 1: GDS triaxial testing system.
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Figure 2: Schematic diagram of the loading waveform in this work.
(a) Trapezoidal wave. (b) Triangular wave. (c) Rectangular wave.

Table 2: Summary of the testing conditions.

State Waveform σ3 (kPa) η (—) T (min)

Undisturbed

Trapezoidal

20 0.6 60
40 0.6 60
100 0.2 60
100 0.4 60
100 0.6 60
100 0.8 60
200 0.6 20
200 0.6 40
200 0.6 60

Triangular

20 0.67 60
40 0.6 60
100 0.6 60
150 0.67 60
200 0.6 20
200 0.6 40
200 0.6 60

Rectangular

40 0.6 60
100 0.6 60
200 0.6 20
200 0.6 40
200 0.6 60

Reconstructed Triangular 20 0.67 60
150 0.67 60
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around five to six cycles, and the values corresponding to
N� 6 are both over 95% of the final values. -erefore, for
clarity, only six cycles were present in the following analysis.

3.2. Influence of Confining Stress. -e stress-strain curves of
undisturbed specimens under four different confining
stresses of 20, 40, 100, and 200 kPa are plotted in Figure 5(a).
-e evolutions of the pore pressure ratios (μ/σ0′, where σ0′ is
the initial effective stress) with dimensionless time (t/T) are
presented in Figure 5(b). Generally, plastic deformation
(Figure 5(a)) and the pore pressure ratio (Figure 5(b)) ac-
cumulate with decreased increments under cyclic loading,
and these phenomena agree with the previous research on
saturated soil under higher frequency cyclic loading [41, 45].

Furthermore, the curves in Figure 5(a) reveal that the
cumulative strain generally increases with increasing con-
fining stress. Meanwhile, the pore pressure ratio under
higher confining stress is a bit higher than that under a lower
confining stress, except for the case under the confining
stress of 20 kPa (Figure 5(b)). -ese observations are con-
sistent with that reported in the literature [35, 46].

-e deformation and pore pressure characteristics in the
macroscope are intrinsically determined by the micro-
structure and stress state of the specimen. For the specimen
tested under the confining stress of 20 kPa whose effective
stress is lower than the structural yield stress (over-
consolidation stage), the soil is primarily under a stage of
self-adjustment in structure with elastic deformation for a
long time. -us, the pore pressure presents a significant
hysteresis loop during the processes of loading and
unloading. Meanwhile, for the specimen tested under the
confining stress of 40 kPa or 100 kPa whose effective stress is
around or slightly greater than the structural yield stress, the
residual structural strength might still work to a certain
extent. However, the valid part (shadowed part in Figure 6)
of the effective stress, which is above the value of initial
effective stress (equal to confining stress), also increases
significantly. Hence, more plastic deformation occurs in-
stead of elastic deformation, leading to a significant increase
in strain.

In addition, due to the decrease in void ratio, the per-
meability coefficient decreases correspondingly [44],
resulting in notable decreases and increases in the peak and

residual values of the pore pressure ratio in each cycle,
respectively. Furthermore, for the specimen under the
confining stress of 200 kPa whose effective stress is well over
the structural yield stress, the structure of soil has almost
been damaged and further plastic deformation occurs. -en,
under the sustained cyclic loading, the soil structure softens,
and an increased deformation and higher pore pressure are
observed.

Moreover, a significant increase in the pore pressure
ratio is observed during the holding stage, which is pre-
dominantly because the measured pore pressure could be a
bit delayed because the sensor was installed on the bottom of
the specimen. -is phenomenon gradually fades as the pore
pressure redistributes during the cyclic period. -en, the
measured value is much closer to the real value, accom-
panied by the homogenisation and accumulation of the pore
pressure in the specimen [7].

3.3. Influence of Stress Ratio. -e stress-strain curves and the
evolution of the pore pressure for the undisturbed specimens
with different cyclic stress ratios are illustrated in Figure 7.
Only the values corresponding to the maximum and min-
imum strains in each cycle for the specimen with a low-stress
ratio (0.2 and 0.4) are presented in Figure 7(a) for clarity.-e
curves in the figure demonstrate that the stress-strain re-
lationship is sensitive to the cyclic stress ratio, as the
specimen that experienced a higher cyclic stress ratio
presents a higher plastic deformation and generally accu-
mulates a higher pore pressure. -is conclusion agrees with
those reported by Tang et al. [7] and Guo et al. [38].

For the case with a lower stress ratio, the specimen is
under the initial shear stage where the strain is relatively
small, and the migrated water due to the deviatoric stress is
primarily free water. With the increase in the stress ratio, the
effective stress increases significantly, causing a decrease in
the macro-/mesopores (Figure 4), resulting in a notable
deformation of the specimen in the macroscope. Meanwhile,
more particles change to “face-face” associations, and the
pores are primarily occupied by bound water, which exhibits
a stronger viscosity than free water [6]. If the increased
hydraulic gradient from the further increased deviatoric
stress is high enough to overcome the viscosity and shear
resistance of the loosely bound water, the loosely bound
water in the diffused layer could transform to free water,
leading to a further increase in deformation [44, 47, 48].

3.4. Influence of Cyclic Period. -e stress-strain curves and
the evolution of the pore pressure for the undisturbed
specimens under three different cyclic periods (T�1/f) are
depicted in Figure 8. -e results demonstrate that the strain
under a lower-frequency (higher cyclic period) shearing is
much higher than a higher frequency shearing, and this
phenomenon is consistent with the previous research with
high-frequency dynamic loading [24, 49, 50]. -e primary
reason is that the specimen under a lower frequency ex-
periences a longer period of action of effective stress, and the
pore pressure can adjust more sufficiently. Moreover, cyclic

Meso-pores

Macro-pores

10μm

Figure 4: SEM picture of the undisturbed specimen before
consolidation.
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creep might also occur during the long-term cyclic loading
process [51, 52].

3.5. Influence of LoadingWaveform. -e stress-strain curves
and evolution of the pore pressure for the undisturbed
specimens under different waveforms are displayed in
Figure 9. -e specimen tested under the rectangular wave
presents the largest axial strain, followed by the specimen
under the trapezoidal wave and then the triangular wave.
-e rectangular wave is applied to the specimen in one step
and then stays for a long period (e.g., 50min for T� 60min)

instead of gradually increasing from zero to the target value.
Consequently, the evolution of the pore pressure under the
rectangular wave is much quicker, especially at the begin-
ning of loading (Figure 9(b)). Compared with the trape-
zoidal and triangular waves, the averaged value of the valid
parts (shadowed parts in Figure 10) of the effective stress of
rectangular wave is much higher than the other two, con-
tributing to the deformation of the specimen. Similarly, for
the trapezoidal wave, a steady period occurs between the
loading and unloading stages; thus, the averaged value of the
valid parts of the effective stress in a cycle is much higher
than that of the triangular wave.

In addition, the evolution of the maximum axial strains
in six cycles for the specimens tested under different
waveforms with different confining stresses and cyclic pe-
riods is summarised in Figure 11. With the increase in the
load level (confining stress) and cyclic period, the difference
in maximum strain between the three waveforms gradually
becomes less obvious. -e interpretation could be from the
point of the relationship of the averaged effective stress with
the structural yield stress [53]. If the averaged effective stress
is around or just a bit higher than the yield stress, different
waveforms present various effects on the strains. -is is
because the axial stress upon loading and unloading for the
trapezoidal and triangular waves is sometimes much lower
than the structural yield stress, which is different from the
case for the rectangular wave. Nevertheless, with the increase
in deviatoric stress, the change rate of loading and unloading
for the trapezoidal and triangular wave is also increased.-is
results in the period in which the effective stress is higher
than the structural yield stress which is significantly in-
creased. As a result, the influence of waveforms is not as
obvious as before.

Moreover, for the specimen tested under a short cyclic
period, the dissipation of pore water pressure is limited, and
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the deformation of the soil structure may be inadequate,
where the soil could maintain a certain degree of structure
[38]. However, for the specimen tested under a long cyclic
period, much more time is available for pore pressure ad-
justment and soil aggregate rearrangement. -us, the dif-
ference in maximum strain under the different loading
waveforms is decreased.

3.6. Difference between Undisturbed and Reconstructed
Specimens. -e representative stress-strain curves and
evolution of the pore pressure ratio for undisturbed and
reconstructed specimens are presented in Figures 12 and
13, respectively. -e results indicate that the undisturbed
specimen generally exhibits a higher strength and shear
modulus (reflected by the shape and slope of the curve),
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confirming the existence of a structural effect that also
exists in most natural soils [44, 54]. Specifically, in the case
in which the confining pressure is lower than the structural
yield stress (Figure 12(a)), the deformation of the over-
consolidated undisturbed specimen is dominated by elastic
deformation, and the internal structure of the specimen
could be self-adjusted to balance the external load. Sig-
nificant plastic deformation is found in the reconstructed
specimen, which indicates that the structure cannot bal-
ance the external load, and the deformation cannot be
restored in time. In the case in which the confining pressure

is much higher than the structural yield stress
(Figure 13(a)), the deformation is dominated by plastic
deformation. -is is because the structure is damaged for
both undisturbed and reconstructed specimens. -at is, the
bonds of soil particles are disrupted, and the effects of the
soil structure gradually vanish [38]. -is results in the
stress-strain curve of the undisturbed specimen
approaching the same value as the reconstructed specimen.

-e pore pressure of the undisturbed specimen is a bit
lower than the reconstructed specimen as shown in
Figure 12(b). -is phenomenon could be interpreted from
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the aspect of microstructures, as the flocculated structure in
the undisturbed soil could contribute to restraining the
seepage/adjustment of pore water [44]. Nevertheless, if the
confining stress is much higher than the structural yield
stress, the difference between the two specimens is no longer
significant because the structural effect is almost eliminated
for both specimens (Figure 13(b)).

4. Empirical Model for the Pore Pressure

Two types of empirical models for predicting the pore
pressure (ratio) upon cyclic loading are widely used in the

literature. Specifically, Hyde and Ward [22] proposed a
power model for silty clay under unstrained conditions
using monotonic strain-controlled cyclic triaxial tests. Af-
terward, a simplified power model was proposed by Huang
et al. [24] for Shanghai clay as follows:

μ
σ0′

� aN
b
, (1)

where μ is the pore pressure, σ0′ is the initial mean effective
stress, N is the cyclic number, and a and b are the model
parameters depending on the cyclic stress.
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Ohara and Matsuda [25] conducted a series of strain-
controlled cyclic simple shear tests on kaolinite clay under
undrained conditions and developed a hyperbolic model to
describe the pore pressure development with respect to the
cyclic numbers. On this basis, considering that it is difficult
to determine the model parameters by cyclic strain, a similar
hyperbolic model was suggested by Paul et al. [26], as
follows:

μ
σvc′

�
N

A + BN
, (2)

where σvc′ is the effective confining pressure, which is equal
to σ0′ in equation (1) for isotropic consolidation. In addition,
A and B are model parameters, which can be expressed as a
function of the stress state (confining stress), loading pa-
rameter (i.e., stress ratio and loading frequency), and soil
property (e.g., plasticity index). -us, Ren et al. [27]
modified equation (2) into the following:

μ
p0

�
N

B

A + CN
B
, (3)

where p0 is the initial mean effective stress, which is equal to
σvc′ in equation (2) for isotropic consolidation. Furthermore,
A, B, and C are model parameters that depend on the stress
state and physical properties of the soil, and setting B equal
to 0.5 is recommended by the authors.

Using the aforementioned empirical equations (equa-
tions (1)–(3)) to simulate the pore pressure (ratio) in this
work (Figure 14), the results reveal that equations (2) and (3)
could fit the tested results but are not accurate enough for the
cycles at initial shearing. In contrast, equation (1) seems
unsuitable for predicting such low-frequency conditions.
-e reason could be that the above models were proposed on
the basis of experiments conducted under the loading

condition with high cyclic stress with high frequency, where
the pore pressure would accumulate and increase steeply,
even resulting in a failure of soil within a few cycles. Under
lower cyclic stress level with low frequency, however, the
pore pressure would accumulate at a smaller rate, and the
increment of pore pressure will decrease over loading cycles.
When the increment of pore pressure is small enough and
equal to its dissipation over a long time, the generated pore
pressure will finally tend to be plateaued without leading to a
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Figure 13: Stress-strain curve and evolution of the pore pressure ratio of the undisturbed and reconstructed specimens (triangular wave,
σ3 �150 kPa, η� 0.67, and T� 60min). (a) Stress-strain curve. (b) Evolution of the pore pressure ratio.
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Figure 15: Evolutions of the pore pressure ratio/deviatoric stress with dimensionless time (σ3 � 200 kPa, η� 0.6, and T� 60min). (a) Under
trapezoidal wave. (b) Under triangular wave. (c) Under rectangular wave.
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failure of soil. -is has been experimentally confirmed by
many researchers (e.g., Zhou and Gong [35], Moses and Rao
[55], Cui et al. [36], and Ren et al. [27]).

-erefore, to accurately predict the undrained pore
pressure under low-frequency cyclic loading conditions, a
new model is proposed as follows:

μ
σ0′

� η −
η

1 + a(t/T)
m, (4)

where μ is the pore pressure, σ0′ is the initial effective stress, t/
T is the dimensionless time, η is the stress ratio, and a andm
are model parameters corresponding to the confining stress,
frequency, waveform, and soil properties, respectively.

-e fitting resulting from equation (4) was also included
in Figure 14 for comparison. Moreover, the tested and fitting
results of the pore pressure ratio with dimensionless time
under three different loading waveforms (deviatoric stress is
also included) are illustrated in Figure 15. -e results
demonstrate that the proposed model equation (4) in this
work could accurately fit the evolution of the pore pressure
ratios in terms of both the mean value (mesh line) and the
upper and lower limits (blue and red solid lines).

Furthermore, to further verify the proposed model, the
fitting results and the measured results in the literature
(Zhou and Gong [35], Ni et al. [56], Matsuda et al. [41], and
Nhan et al. [57]) of the pore pressure ratio for soft soil under
higher frequency (i.e., 0.1–1Hz) are displayed in Figure 16.
-e results reveal that the proposed model could fit the
testing results effectively.

5. Conclusions

Using the triaxial test system, the deformation character-
istics of soft marine soil under cyclic loading with low
frequency were determined, considering the influences of
the confining stress, stress ratio, cyclic period, waveform,
and structural effect. -e results allow the following con-
clusions to be drawn:

(1) -e specimens tested under low confining stresses
(overconsolidated state) mainly reveal elastic de-
formation and hysteretic phenomenon of pore
pressure, while the specimens tested under high
confining stresses (normal consolidated state) gen-
erally accumulate plastic deformation and pore
pressure, and the increments decrease with the cyclic
number significantly.

(2) Specimen tested under higher stress ratio with longer
cyclic period generally presents higher deformation
and pore pressure, due to the fact that the specimen
had experienced an effective stress with higher level
and longer period, especially for the case that the
effective stress was higher than the structural yield
stress.

(3) -e rectangular wave contributes most to the axial
deformation, cumulated strain, and pore pressure,
followed by the trapezoidal wave and then the tri-
angular wave. However, with the increase in the load

level and cyclic period, the influence of the waveform
declined gradually.

(4) -e undisturbed specimen generally exhibits higher
resistance to deformation with a lower measured
pore pressure than the reconstructed specimen.
Nevertheless, the difference is not significant if the
confining stress is much greater than the structural
yield stress.

(5) On the basis of experimental tests, a new empirical
model for predicting pore pressure is proposed. -e
fitting results present a satisfactory agreement be-
tween the measured and predicted values.
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