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Desert sand is one of the current research hotspots in alternative materials for concrete aggregates. In the process of practical
application, compressive strength is an essential prerequisite for studying other properties. Based on the current research
situation, a prediction technology of compressive strength of desert sand concrete (DSC) is proposed based on an artificial neural
network (ANN) and a particle swarm optimization (PSO). +e technology is a prediction model that adjusts the network
architecture by using the PSOmethod based on the ANN optimization model. Water-binder ratio, sand ratio, replacement rate of
desert sand, desert sand type, fly ash content, silica fume content, air content, and slump were selected as the neural network’s
inputs. +e compressive strength data of 118 different combinations of influencing variables were tested to establish the dataset.
+e results show that the PSO method is efficient for the ANN in DSC compressive strength research. Furthermore, referring to
this method, DSC is applied to the shotcrete of tunnels in construction engineering successfully, and the dust particle content
during construction is evaluated.

1. Introduction

Growing infrastructure needs worldwide have created an
unprecedented demand for concrete. Concrete produc-
tion outpaces any other material’s per capita production
and has become a significant contributor to the carbon
footprint [1]. As one of the necessary concrete compo-
nents, the stock of sufficient aggregate resources for
construction, mainly river sand, has sharply declined. Its
mining activity exerts a disastrous impact on the envi-
ronment [2, 3]. Meanwhile, desertification is one of the
most severe global eco-environmental degradation
problems, impacting 25% of the total terrestrial area and
more than 250 million people worldwide [4–7], especially
for some places at the edge of the desert and which lack
infrastructure. If desert sand is used to replace a portion
of the fine aggregate to prepare concrete, not only will the
desert resources be fully utilized, but also construction

costs can be massively reduced. +e replacement of
traditional sand with desert sand may catalyze a revo-
lution in the construction engineering industry because
of its significant environmental, economic, and social
benefits.

+e technical application of desert sand for the highway
sandy soil subgrade is relatively mature [8]. However, the
understanding and application of desert sand for concrete
are still limited. +e research on desert sand concrete (DSC)
is at the early stage, but many beneficial results have been
achieved.

+e current research on DSC mainly focuses on the
physical and chemical properties of desert sand [9–11], the
conventional properties of DSC [12–19], and ultra (very)-
fine aggregate concrete [20–22]. In these studies, the high-
frequency research variables include replacement rate of
desert sand, sand rate, etc. Although there are large dif-
ferences in these current research results, it can be
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determined that replacement rate of desert sand will have a
much smaller impact on strength compared to the water-
binder ratio.

Conventional concrete compressive strength prediction
methods are mainly based on statistical analysis, which can
be predicted by linear and nonlinear regression equations.
However, choosing the appropriate regression equation
requires skill and rich experience, and conventional re-
gression methods for complex multivariate problems are
even more difficult. To improve these research approaches
and reduce the cost of testing materials and testing time, the
model based on experimental data can predict the impact of
DSC variables on concrete performance within a specific
acceptable error range. Among the many prediction models,
there is a model based on an artificial neural network
(ANN), an artificial intelligence technology prediction
model that can use existing data to complete the ANN
model’s modeling study to achieve strength prediction. +e
model is used by using input and output variables to reach
the prediction goal without many input restrictions finally.
+e ANN can provide a feasible solution to difficult prob-
lems by conventional techniques, such as multiple linear
regression. Some published studies have shown that after
optimization, the ANN can find the complex and nonlinear
relationship between the parameters affecting concrete
properties, such as predicting the compressive strength of
high-performance concrete [23–27] and recycled aggregate
concrete [28–30] with a variety of complex components.

Technically, the ANN architecture is an expression of
experience. In the process of concrete strength prediction
simulation, any singular models such as BP or RBF network
are prone to produce a high mean squared error (MSE). If
there are too many variables, the accuracy of ANN pre-
diction would be significantly affected. +erefore, we pro-
posed an optimized ANN based on particle swarm
optimization (PSO). +e ANN and PSO can predict DSC’s
compressive strength under the combined action of 8 var-
iables. As a result, this study is a pioneering work for using
the ANN and PSO in predicting primary DSC performance
and trying to use DSC in tunnel shotcrete, which is of great
significance to more engineering applications.

2. Materials and Experiments

Here, 42.5 grade ordinary Portland cement and commer-
cially available fly ash were used as a cementitiousmaterial in
this study.+e properties of the cement are shown in Table 1.
+e 5–20mm continuous graded crushed limestone was
used as a coarse aggregate. Polycarboxylate superplasticizer
with a 28% water reduction rate, the rosin air-entraining
agent with a 4.0% air content, was used to achieve the ex-
pected slump flow and air content of DSC. According to the
needs of different specific scenarios, another target perfor-
mance (workability and mechanical) was selected.

Fine aggregates were manufactured sand (prewashing)
and desert sand, and the fineness modulus of manufactured
sand was 3.0.+emacroscopic appearance of all desert sands
is shown in Figure 1. Four desert grains of sand from the
Chinese areas of Kubuzi, Maowusu, Tengger, and Ulanbuh

were used, with fineness modulus values of 0.27, 0.30, 1.03,
and 0.57, respectively. +e gradation curves of the manu-
factured sand and the desert sand are shown in Figure 2(a)
(the horizontal axis is set as a logarithm). +e particle size of
the desert sand was smaller than that of the fine sand, and the
manufactured sand was medium sand. +e mineral com-
position, as analyzed by X-ray diffraction (XRD), is shown in
Figure 2(b). +e four types of desert sand’s main mineral
types and contents were almost the same as those of the river
sand. +ey were significantly different from the minerals in
the manufactured sand, consisting of calcium carbonate
calcite. All four types of desert sand met the primary con-
ditions of being chemically inert fillers.

According to the mix proportion in supplementary data,
solid materials such as cement, fly ash, silica fume, fine
aggregate (manufactured sand and desert sand), and coarse
aggregate were added to the forced mixer with a single
horizontal shaft and mixed for 30 seconds. +e chemical
additives and water were mixed until fresh concrete was
obtained (approximately 3minutes). A, B, C, and D present
desert sand of Kubuzi, Maowusu, Tengger, and Ulanbuh.
+e slump and air content of fresh concrete were tested
using the Chinese standard GB/T 50080-2016. LA-0316 was
used to measure air content, and a slump cylinder was
employed to measure slump. DSC compressive strength was
tested using the Chinese standard GB/T 50081-2019
(equivalent to ASTM-C39) at the curing age of 28 days. +e
DY-3000 electro-hydraulic servo press tested the com-
pressive strength. In these specimens, considering that
different research backgrounds used samples of different
sizes and shapes, all of the results (some examples are
100mm cubic) were converted into equivalent 150mm
cubic compressive strength using conversion coefficients
following guidelines of GB/T 50081-2019.

3. The ANN-PSO Prediction Model

+e compressive strength of DSC under 118 mix propor-
tions of 8 variables is summarized in a supplementary file.
From the test data, it can be visually concluded that the
water-binder ratio significantly affects the compressive
strength results compared with other variables. Fly ash and
silica fume can also serve active roles in DSC, as in other
ordinary concrete. However, most of the factors are not easy
to detect, and there may be more complex interactions
between the elements. If we comprehensively consider this,

Table 1: Performance of cement.

Performance Results
Density (g/cm3) 3.12
Water consumption for standard consistency (wt %) 27.3
Initial setting time (min) 184
Final setting time (min) 305
Volume stability Qualified
Ignition loss (wt %) 1.21
Compressive strength (MPa) (3 d) 26.2
Compressive strength (MPa) (28 d) 47.8
Flexural strength (MPa) (3 d) 5.2
Flexural strength (MPa) (28 d) 8.0
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even when using orthogonal testing, there will be vast
amounts of experimentation and data. +e conventional
regression calculation cannot accurately and quantitatively
describe the influence rules. Some of the test results are in
line with this expectation, but the effective strength pre-
diction cannot be achieved.

3.1. -e ANN Method. +e ANN is a mathematical or nu-
merical model that simulates the functional biological neural
aspects to obtain a computational paradigm that can map
input and output [31]. Each neuron is a basic unit of cal-
culation which performs the following equation:

y � max 0, 
i

wixi + b⎛⎝ ⎞⎠, (1)

where y is the neuron output, xi is the neuron inputs, wi is
the weight, and b is deviation.

Each neuron yields a single output (y) from all inputs
(xi). All neurons are connected in a layered architecture [32],
where themapping between inputs and outputs is conducted
using the following formula:

hi � max 0,Wi · hi−1 + bi( , (2)

y � max 0,V · hL( , (3)

where Wi and V are matrices, and bi is vectors that all
parameters learned from the dataset; L is the number of
layers; and 1≤ i≤ L, h0 � x.

In this case, the ANN input includes the normalized
values of 8 variables, such as water-binder ratio, sand ratio,
and replacement ratio of desert sand, and the output is the
DSC’s compressive strength value. All datasets are divided
into two parts: the training set and the testing set. Ten-fold
cross-validation is used as a verified method. In the

(a) (b) (c) (d)

Figure 1: Four types of desert sand from different areas: (a) Kubuzi; (b) Maowusu; (c) Tengger; and (d) Ulanbuh.
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Figure 2: Comparison of characteristics among four kinds of desert sand and traditional sand used in this experiment. (a) Grading curve
and (b) XRD.

Advances in Civil Engineering 3



beginning, the ANN architecture is optimized by PSO based
on a mean squared error (MSE), which is defined as

MSE �
1
N



N

i�1
y
∗
i − yi( 

2
, (4)

where N is the number of data samples; y∗i and yi are the
predicted value and test value of the data sample neural
network, respectively.

R is the correlation coefficient of the predicted value and
test value, which is defined as
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(5)

3.2. -e PSO Method. +e PSO algorithm is based on a
metaheuristic algorithm proposed by Eberhart [33]. It is a
powerful optimization technique that can be used to find the
optimal global value in a multidimensional search space
[34]. Combined with the PSO algorithm, the ANN has high
robustness and stability and can effectively realize the de-
mand for obtaining a panoramic view of data using fewer
data. +e MSE is used to evaluate the fitness of the particle
position on training and testing sets. +us, an ANN ar-
chitecture that achieves a lower MSE will be represented by a
particle with higher fitness. +e next particle swarm is
generated by updating the particle position. +e PSO al-
gorithm considers the best position of the particle swarm in
history and each particle’s best position in history. +e
particle swarm gradually moves to the best position until it
reaches the target, such as maximum iteration times.

In the process of searching for the optimal value of space
dimension D, a swarm is formed by m particles, and the
position of the i-th ion is recorded as Xi � (x1

i , x2
i , . . ., xD

i ).
Each particle is a possible potential solution; Xi is substituted
into the objective function to calculate the fitness value of the
particle, and the quality of the particle is measured according
to the size of the fitness value. +e best positions of particles
are recorded as pbest, i � (p1

best,i, p2
best,i, . . ., pD

best,i) and those of
swarms are recorded as gbest, i � (g1

best,i, g
2
best,i, . . ., gD

best,i), and
the velocity of particle i is recorded as vi � (v1i , v2i , . . ., vD

i ). In
this case, the formula used for the particle-position update is

V
t+1
i � wV

t
i + c1r1 p

t
best,i − X

t
i  + c2r2 g

t
best,i − X

t
i , (6)

X
t+1
i � X

t
i + X

t+1
i , (7)

where Vt+1
i andVt

i are the velocities of particle i at iterations t
to t + 1; Xt+1

i and Vt
i are positions of particle i; w is weight; c1

and c2 are parameters of cognitive influence and social
influence; and r1 and r2 are random values between 0 and 1.

3.3. Dataset Construction. +e experimental data collected
between March 2019 and June 2020 were selected. In this
term, raw materials such as cement, fly ash, and additives are
stable and controllable. +e mix proportion range is shown
in Table 2. A total of 118 groups of DSC samples of different

mix proportions were prepared. Each experiment was re-
peated three times, and the dataset of the ANN model was
constructed using the average compressive strength values as
the output. None of the test results are out of tolerance.
Water-binder ratio, sand ratio, replacement rate of desert
sand, desert sand type, fly ash content, silica fume content,
air content, and slump were selected as the ANN variables
(inputs). For the input variable of desert sand type, its
normalization is realized by transforming text values into
four-dimensional unit vectors, and its form is as follows:

desert sand of Kubuzi � 1, 0, 0, 0( ,

desert sand of Maowusu � 0, 1, 0, 0( ,

desert sand of Tengger � 0, 0, 1, 0( ,

desert sand of Ulanbuh � 0, 0, 0, 1( .

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(8)

Other discounts are input after the min-max normali-
zation method.+e replacement of desert sand interval of 10
wt % is used, where 0 wt % is pure manufactured sand
concrete, and 100 wt % is pure desert sand concrete. Fly ash
is selected according to different water-binder ratios. Silica
fume is only mixed in the case of a low water-binder ratio.
+e suitable workability is achieved by adjusting water
consumption and admixtures, and the air content and slump
are used to characterize its effect. +e target data of air
content and slump are 4.0% and 195mm, and their actual
data are used as input variables. From these 118 groups of
DSC data, 15 groups of data are selected as a testing set, and
the rest are the training set.

4. Results of ANN-PSO

4.1. Selection of Model Parameters. +e numbers of hidden
layers (Num hidden) and neurons (Num neuron) need to be
adjusted in the PSO optimization algorithm. +ere is no
specific technique to evaluate the number of neurons in the
hidden layer of networks, and trial and error should be used.
According to experimental adjustment and experience, the
number of hidden layers is 1–3, the adjustment range of the
number of neurons is 2–15, and the maximum number of
iterations is selected as 1,200. Figure 3 shows the swarm
minimum MSE values (corresponding to best swarm po-
sitions) versus iteration when several parameter schemes
with stable iteration are chosen. +e iteration effect of the
No. G scheme is the best, including two hidden layers with
ten neurons in layer No. 1 and 2 neurons in layer No. 2.+us,
the values of parameters used in this research are as follows:

Number of input layer units� 11
Number of hidden layers� 2
Number of hidden layer 1 neurons� 10
Number of hidden layer 2 neurons� 2
Number of output layer units� 8
Number of particles in swarm� 40
Learning rate� 0.3
c1 � 1.49445
c2 �1.49445
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Number of iterations� 1,200

After iteration, the MSE decreases significantly, which
shows that PSO can realize the architecture optimization of
the ANN. +e MSE converges gradually as the number of
iterations approaches 1,200. +e optimum ANN architec-
ture used for further analysis is illustrated in Figure 4.

4.2. ANN Architecture Optimization Results. By comparing
the predicted value with the experimental value, it can be
seen that the ANN-PSO technology exerts a positive effect
on DSC’s strength prediction. In Figure 5, DSC’s com-
pressive strength values are predicted by the ANN-PSO
model versus the experimental values in training set and
testing set, respectively. By using the MSE (Figure 3) and the
correlation coefficient (R) (Figures 5(b) and 5(d)) to char-
acterize the performance of the ANN-PSO model, it can be
seen that the complicated simulated relationship between
input and output can be realized (MSE� 0.037). For the 103
data training, the correlation coefficient (R) between pre-
dicted and experimental values was 0.948, and it was 0.977

for the testing set of 15 data. Compared with the training set
and the testing set, the ANN-PSOmodel results confirm that
it was well-trained, and this parameter selection can properly
avoid underfitting and overfitting.

5. Application of DSC in the Tunnel with the
ANN-PSO Method

5.1. Background of Engineering Application. Bid TJ-1 of
Wuhua expressway is located between Wuqi County and
Zhidan County in Yan’an, Shaanxi Province, China, with a
total length of 10.165 km. +ere are three tunnels in this
project, all of which go straight through the old loess. +e
tunnels’ surrounding rock is mainly composed of clay
minerals such as illite and montmorillonite, mixed with
detrital minerals such as quartz, typical in the northwest of
China [35–37]. +ere are many layers of paleo soil in the
surrounding rock with scattered calcareous nodules, and the
earth is loosed. +e construction volume of C25 shotcrete in
all three tunnels reaches 43304m3, of which 15760m3 is
prepared with desert sand in testing. Due to the low strength
of design and preliminary study, at this strength level, the
replacement rate of desert sand could be selected as high as
possible based on the economic principle.

5.2. DSS with the ANN-PSO Method. Desert sand collected
from the natural desert of Maowusu (near the Jingbian
County) and other materials and experimental methods are
the same as “Materials and Experiments” mentioned above.
+e DSS is prepared with the preset water-binder ratio, sand
ratio, replacement rate of desert sand, desert sand type, and
fly ash content. In the actual test of shotcrete, the air content
is controlled between 2.0%–4.0% and the slump between
130mm–150mm by adjusting admixture proportion in
Section 2 using existing data as input data.

Four kinds of DSS proportions with high-content desert
sand and one contrast, ordinary sand shotcrete (DSS)
proportion of only manufactured sand but not desert sand
were selected. Input new data in Table 3 into the ANN-PSO
model deduced above, and predicting 28 d compressive
strength is the model calculation’s output value.

Figure 6 shows the ANN-PSOmodel predicted value and
real test value for the DSS mix proportion. Here, the data of
the real test are mean± s.e.m. of the indicated number of
independent experiments. One-sample t-tests are used to
test for difference between the value of ANN-PSO simula-
tion and the real test.+e discreteness of DSS strength values
has interference to judgment initially. However, where nine
groups (27 repeated tests) of specimens are selected for each
mix proportion, strength trend and model prediction have a
certain degree of similarity. +ree of the five groups have
P> 0.05, and the predicted values of the other two groups’
predicted values also fell into the extreme value range. At this
strength level, even when the accelerator is added; the 28 d
strength of DSS still has a large surplus and meets the
strength requirements of shotcrete. +is result provides a
fundamental guarantee for the application of DSS. DSS-3
mix proportion is selected as the DSS application eventually.
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Figure 3: Selection of modeling parameter schemes.

Table 2: Range of input and output parameters in the database.

Input parameters Minimum Maximum
Water-binder ratio 0.24 0.50
Sand ratio (wt %) 24 46
+e replacement rate of desert sand
(wt %) 0 100

Desert sand type — —
Fly ash content (wt %) 10 25
Silica fume content (wt %) 0 10
Air content (vol%) 2.8 6.3
Slump (mm) 125 235
Output value (MPa) (28 d) 32.8 86.2
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Desert sand of Kubuzi = (1, 0, 0, 0)T

Desert sand of Maowusu = (0, 1, 0, 0)T

Desert sand of Tengger = (0, 0, 1, 0)T

Desert sand of Ulanbuh = (0, 0, 0, 1)T

Normalized value Input layer
Hidden layer 1

Hidden
layer 2 Output
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Compressive

strength of DSC

Water-binder ratio

Sand ratio

Desert sand replacement rate
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0 or 1

Fly ash content

Silica fume content
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Figure 4: Architecture of the model.
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With suggestions based on being environment friendly [38],
the wet shotcrete construction method is the only method in
this study. Alkali accelerator was added in DSS proportion
according to 5% of the total cementitious material. +e
design strength is C25, and the 1 d strength is≥ 10MPa in
this construction engineering.

+e standard cross section of the testing tunnel is shown
in Figure 7(a). After the construction of DSS shotcrete
(Figures 7(b) and 7(c)) and the curing age of 24h, the tests
followed up. Figure 7(d) shows a rapid and straightforward
method to determine the strength of shotcrete using the nail
shooting method as the Chinese standard TB 10426,
equivalent to the method of Hilti gun/bolt driving [39]. Still,
the result of 13.6MPa is only for preliminary reference.
Furthermore, the 1 d strength of cutting specimens of a
shotcrete slab is 14.1MPa and 32.9MPa for 28 d (testing
method as the Chinese standard JGJ/T 372). +e results fully
meet the design requirements and even have high residual
strength.

5.3. Environmental Evaluation in the Construction Site. In
some working areas, respirable dust concentrations of
shotcrete construction with poor conditions are far more
than any environmental standard [40–42]. Dust poses a risk
to the human respiratory system, which needs to be

controlled to fulfill health and safety standards and provide a
safe work environment [38, 43–45]. In DSS, it might have
some unknown effects between desert sand of small particle
size and cement slurry, resulting in the change of dust
amount in the construction environment. +erefore, re-
spirable dust concentration detection is required.

+e change of dust particles during DSS operation was
detected to evaluate the impact of the working environment
on workers’ health in the DSS construction site. +e OSS
(100% manufactured sand as fine aggregate) and DSS-3
(100% desert sand as fine aggregate) mix proportion in
Table 3 were selected. With 5% of the total amount of
cementitious materials, an alkali accelerator was added in
two mix proportions. +e comparative environmental tests
were carried out on the shotcrete with two mixed ratios.
PM1.0, PM2.5, and PM10 values for the shotcrete working
face were measured by Dark Eagle 9600 type dust particle
counters.

Firstly, 5–8meters were chosen as the distance between
the nozzle and ten dust particle counters (the number of
repetitions is 10), and automatic detection was set [42].
Secondly, we detected the number of environmental dust
particles in the working face before and during construction.
When shotcrete operation reached a stable condition, the
current readings of PM1.0, PM2.5, and PM10 were recorded.
Finally, the difference of the dust particle number of the two
proportions under the different tunnels was compared (two
different tunnels with the same size as the working face,
Figure 7(a)).

Before shotcrete construction, the DSS-3 mix proportion
always has fewer dust particles than OSS. Considering that
dust particle accumulation may be caused by other factors
such as continuous construction, the difference between
dust particles before and during construction is selected as
the comparison factor. Figure 8 shows that desert sand has a
significant impact on the dust concentration difference of
shotcrete construction. Before and during construction, the
dust particle concentration is significantly affected. During
construction, the dust particle concentration is considerably
higher than before, irrespective of DSS-3 or OSS mix pro-
portion. Additionally, both DSS-3 andOSS have a significant
increase in all types of dust particles, and the rise of PM10 is
more significant than that of PM2.5 and PM1.0.

Although desert sand significantly reduces the particle
concentration in the shotcrete construction environment,
the construction site still has a very high particle concen-
tration. It is suggested that the construction personnel

Table 3: Mix proportion of shotcrete for testing.

Number
Water-
binder
ratio

Sand
ratio
(wt %)

+e replacement
rate of desert sand

(wt %)

Desert
and type

Fly ash
content
(wt %)

Silica fume
content
(wt %)

Air
content
(vol %)

Slump
(mm)

Predicting of 28d
compressive

strength (MPa)
OSS 0.42 46 0 B 10 0 2.8 140 43.4
DSS-1 0.42 40 80 B 10 0 2.3 135 39.5
DSS-2 0.42 40 80 B 10 0 3.1 140 42.8
DSS-3 0.42 40 100 B 10 0 3.4 140 40.9
DSS-4 0.44 40 100 B 10 0 3.7 140 40.3
Note. +e desert sand type B means desert sand of Maowusu.
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should ensure that the protective equipment is worn during
DSS construction to prevent health hazards.

5.4. Advantages and Limitations of theModel. +e research’s
main aim is to verify the correctness of the prediction of the
DSC’s compressive strength by the ANN and PSO method.
Compared with ordinary methods, the ANN and PSO offer
the advantages of conserving workforce and material re-
sources, reducing time consumption, and providing non-
destructive testing. Compared with conventional multiple
linear regression and traditional ANN algorithms, PSO and
ANN methods exhibit higher robustness and stability, ef-
fectively satisfying the demand for obtaining the data
panorama with less information. It is more convenient to

establish and update the general model. Meanwhile, DSC’s
successful application in shotcrete in tunnel shows that
desert sand, a neglected material, has an extraordinary value
and is of great significance to infrastructure construction.

However, due to experimental conditions’ limitations,
complete and quantitative physicochemical characteristics
of desert sand cannot be obtained in this study. +erefore,
this paper uses converting text into vectors to simplify the
input of desert sand characteristics. An ANN model with a
more remarkable inductive ability can be obtained after
clarifying the materialized factors.

In terms of application, the durability of DSC for
shotcrete construction needs to be tested in time. We will
follow up with further research and publish valuable in-
formation at the right time and try to apply DSC in more
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Figure 8: Comparison of dust particles before and during shotcrete construction with two mix proportions. (a) PM1.0 concentration; (b)
PM2.5 concentration; (c) PM10 concentration; (d) concentration difference of dust particles before and during shotcrete construction. Data
are mean± s.e.m. of the indicated number of independent experiments. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. One-way ANOVA de-
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scenarios. Besides, the application of DSC is still a very
challenging task. We hope that this pioneering work can
inspire more peer researchers to carry out more detailed and
in-depth research in this direction.

6. Conclusion

(1) +e technology based on ANN and PSO was utilized
to predict DSC’s compressive strength with 118
experimental datasets. Eight variables were selected
as the inputs of the ANN. +e maximum number of
iterations was 1,200. +e correlation coefficient be-
tween the predicted test value and the training set is
0.948. +e correlation coefficient with the test set is
0.977, both of which exhibit high correlation, indi-
cating that the ANN-PSO prediction model achieves
high accuracy in predicting desert sand concrete
strength. Based on a certain amount of learning data,
the results show that the ANN-PSO method pro-
posed in this paper can be used to intelligently and
quickly predict the compressive strength of DSC.

(2) When DSC is applied in shotcrete, even the re-
placement rate reaches 100%; it still achieves sound
initial and medium-term effects, and DSC dramat-
ically reduces the content of dust particles in the
construction environment under the wet shotcrete
construction technology. However, it is still neces-
sary to wear protective equipment at the construc-
tion site.
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