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Under the triaxial compressive state, the compressive strain is supposed to happen in the direction of the maximum principal
stress, but tensile strain happens in the direction of the minimum principal stress. Moreover, as the intermediate principal stress is
not too high, the corresponding strain can also be tensile. If the brittle rock is assumed as linear elastic in the prefailure stage, a new
strength criterion based on the sum of the two tensile strains was presented. *e new criterion considers the differences in
mechanical parameters (i.e., elastic modulus and Poisson’s ratio) under tension and compression. *e parameters of the criterion
only include Poisson’s ratio and uniaxial strength. And the effect of the intermediate principal stress σ2 can be reflected. Certain
featured failure phenomenon of rockmaterial can be explained well by the proposed criterion.*e results of conventional and true
triaxial tests can verify the criterion well. Finally, the criterion is compared with the Mohr–Coulomb and Drucker–Prager criteria.

1. Introduction

Most of the common-used failure criteria for rock material
describe shear failure. Coulomb developed the first linear
failure criterion that reflects the shear failure feature [1]. *e
nonlinear shear failure criterion on the basis of the envelope
of all of the stress circles that correspond to the failure stress
state was proposed by Mohr [2]. *e Mohr–Coulomb cri-
terion is the most commonly used in practice. Some em-
pirical failure criteria that follow Mohr’s hypothesis can be
expressed in the functional form τ � f1(σ) or σ1 � f2(σ3)
[3]. *e Hoek–Brown criterion is one such failure law [4, 5].
Based on the Mohr–Coulomb criterion and Hoek–Brown
criterion, some criteria considering more influence factors
were presented. For example, Singh and Rao [6] presented
the modifiedMohr–Coulomb criterion for nonlinear triaxial
and polyaxial strength of intact rocks. Gong et al. [5, 7]
established a dynamic strength criterion and verified the
scope of application through experiments. Ma et al. [8]
proposed a new three-dimensional failure criterion com-
bining the Mogi criterion and the generalized Hoek–Brown
criterion.

Mohr’s theory of failure believes that failure is just re-
lated to the maximum and minimum principal stresses, σ1

and σ3, and has nothing to do with the intermediate
principal stress σ2, whereas most true-triaxial tests (σ2 ≠ σ3)
show that the intermediate principal stress σ2 does have a
significant influence on the value of σ1 at failure [9]. For the
true triaxial stress states (i.e., σ1 > σ2 > σ3), several failure
criteria have been developed to consider the influence of the
intermediate principal stress σ2 [9–13].

Under triaxial compression, the failure of brittle rock
includes the process of microcrack initiating, extending, and
coalescing. And the macrotension failure can usually be
observed during lateral extending deformation, especially as
the value of σ2 + σ3 is relatively small (Figure 1) [3, 14],
whereas this kind of extending tension failure can hardly be
reflected by the criteria used commonly.

Figure 1 illustrates the complete stress-strain curve for a
rock under compression, which can be divided conceptually
into four regions. In region AB, some visible microcracks
appear with the axes parallel (within± 10°) to the direction of
σ1. In region BC, the number of microcracks increases
rapidly. At the point of the ultimate specimen strength, a
macroscopic fracture plane develops in the central portion of
the specimen. With further compression, this fracture plane
grows towards one or both ends of the specimen by stepwise
joining at existing microcracks. At the end of region BC, the
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microcracks begin to coalesce along a plane and form a
macroscopic fracture “plane” at the failure point C. Finally,
in region CD, the fracture plane extends through the entire
specimen [3].

It can be observed from Figure 1 that, before the
macroscopic fracture “plane,” lateral extension failure has
occurred due to plenty of longitudinal microfractures. *e
criterion presented herein is developed for this situation. As
mentioned above, lateral tension strain is observed at failure.
So, can we use the maximum tensile strain to develop the
failure criterion? *e answer is Yes for conventional triaxial
condition, σ2 � σ3, but No for the true triaxial condition,
σ1 > σ2 > σ3. For the conventional triaxial test, Fujii et al.
found that the critical lateral tensile strain keeps as a con-
stant, relatively unaffected by the confining pressure at
failure [15]. *is kind of rock failure follows the maximum
tensile strain criterion. But for the true triaxial test, under a
certain value of σ3, the maximum tensile strain ε1 in the σ3
direction increases with increasing σ2 (Figure 2). If the
maximum tensile strain criterion is available here, that is, the
value of ε1 should be a constant, the value of σ1 at failure
should decrease with increasing σ2, which is not in line with
most test data. *us, the maximum tensile strain criterion
cannot be used for the condition of true triaxial compres-
sion. Under this background, this study tried to present a
new extension failure criterion for brittle rock. *is ex-
tension criterion can reflect the effect of the intermediate
principal stress. And certain featured failure phenomenon of
rock material, like yielding which will happen under the
hydrostatic tension but not under the hydrostatic com-
pression, can also be explained well by the proposed
criterion.

Under the triaxial compressive stress state, as the value of
σ1 is relatively small, the strains in the σ2 and σ3 directions
are both tensile, which differs from the tensile strain under
uniaxial tension. It is not suitable to use the maximum
tensile strain criterion in this case. It is believed herein that
the rock failure depends not only on the maximum tensile
strain ε1 but also on the intermediate principal tensile strain
ε2. *en a new strength criterion is established by the value

of ε1 + ε2. *e new criterion is actually the same as the
maximum tensile strain criterion just for the conventional
test (i.e., σ2 � σ3) (see Section 5.1). In the following section,
we know that, under the small deformation theory, ε1 + ε2
actually denotes the extension rate of the σ1-plane, that is,
the lateral deformation. For brittle rock, the theoretical
results by the new criterion agree with the test results well.

2. Theoretical Basis

2.1. Tensile Strain under Triaxial Compression. In under-
ground rock engineering, the three principal stresses in most
areas are compression. *us, the case of all three principal
compressive stresses is discussed here. Compressive stress is
considered positive, and compressive strain is taken as
positive. Under this sign convention, one has σ1 ≥ σ2 ≥
σ3 ≥ 0, and the corresponding strains are the maximum,
intermediate, and minimum principal strains, ε1, ε2, and ε3
(i.e., ε1 ≥ ε2 ≥ ε3). According to Figure 2, the three principal
strains can be given by

ε1 �
A′E′ − AE

AE
, (1)

ε2 �
B′C′ − BC

BC
, (2)

ε3 �
A′B′ − AB

AB
. (3)

Brittle rock material can be assumed as isotropic and
linear elastic in prefailure stage [16]. For the isotropic rock
material, the maximum principal strain ε1 must be in the σ1
direction, the intermediate principal strain ε2 in the σ2 di-
rection, and the minimum principal strain ε3 in the σ3 di-
rection. Based on the sign convention and Hooke’s law, one
has

ε1 �
1
Ec

σ1 − μc σ2 + σ3( 􏼁􏼂 􏼃, (4)

ε2 �
1
Ec

σ2 − μc σ1 + σ3( 􏼁􏼂 􏼃, (5)

ε3 �
1
Ec

σ3 − μc σ2 + σ1( 􏼁􏼂 􏼃, (6)
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Figure 1: *e stress-strain curve of argillaceous quartzite speci-
mens and cartoons of the state of microcracking observed on
specimens [14].
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Figure 2: Cubic specimen under true triaxial stress.
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where Ec and μc are Young’s modulus and Poisson’s ratio
under uniaxial compressive stress, respectively.*e values of
the two parameters can be tested by a uniaxial compressive
test.

It can be proved from equations (4)–(6) that,
as σ1 > σ3/μc − σ2, ε3 < 0, and as σ1 ≥ σ2/μc − σ3, ε3 < 0
and ε2 ≤ 0. *is shows that, even under the triaxial com-
pressive stress state, the tensile strain will still happen due to
the Poisson effect on the directions of the minimum and/or
intermediate principal stresses. One can say that tensile
strain is not always caused by tensile stress.

2.2. Elastic Parameters of Uniaxial Compression. *e case of
uniaxial compression means that the two smaller principal
stresses σ2 and σ3 equal zero, with just the nonzero maxi-
mum principal stress σ1. In this case, we usually use σc

denoting the uniaxial compressive stress. *en, one has

Ec �
σc

ε1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (7)

μc �
ε3
ε1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
ε2
ε1

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (8)

For the isotropic linear material, ε2 � ε3 and 0< μc < 0.5.
*e values of ε1, ε2, and ε3 in equations (7) and (8) can also
be calculated by equations (1)–(3), only with the lengths of
A’B’, AB, and so on, being determined by the uniaxial
compression test. *e strain ε1 in the σ direction must be
compressive (i.e., ε1 > 0), and the lateral strains in the
σ-plane must be tensile (ε2 � ε3 < 0).

2.3. Elastic Parameters of Uniaxial Tension. For the uniaxial
tension test, σt is the uniaxial tensile stress (see Figure 3).*e
values of ε1, ε2, and ε3 can, respectively, be given by

ε1 �
BC − B′C′

BC
> 0, (9)

ε2 �
AB − A′B′

AB
> 0, (10)

ε3 �
AE − A′E′

AE
< 0. (11)

Let Et and μt denote Young’s modulus and Poisson’s
ratio under uniaxial tension, respectively. From Figure 3,
one has

Et �
σt

ε3
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
, (12)

μt �
ε1
ε3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
�
ε2
ε3

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (13)

For the isotropic linear material, ε2 � ε3 and 0< μt < 0.5.
*e values of ε1, ε2, and ε3 in equations (12) and (13) can also
be calculated by equations (9)–(11). For this condition, the
strain ε3 in the σ direction must be tensile (i.e., ε3 < 0), and

the lateral strains in the σ-plane must be compressive
(ε2 � ε3 > 0).

3. A New Strength Criterion

3.1. Physical Meaning of ε1 + ε2. From Section 2.1, under
triaxial compression state, the strains in the σ2 and σ3 di-
rections should be ε2 and ε3, respectively. Moreover, ε2 and
ε3 are both tensile strains as σ1 is relatively great. For small
deformation theory, the value of ε2 + ε3 actually denotes the
extension rate of the σ1-plane (see Figure 4).

As shown in Figure 4, S is the initial area of the cross-
section ABCD before the load is applied. And ΔS denotes the
area increase after the load is applied. *en, the extension
rate of the σ1-plane can be calculated by

ΔS
S

�
l + Δl1( 􏼁 l + Δl2( 􏼁 − l

2

l
2

�
Δl1

l
+
Δl2

l
+
Δl1

l

Δl2
l

� ε2 + ε3 + ε2ε3

� ε2 + ε3.

(14)

3.2. Strength Criterion. *e uniaxial tensile strength (UTS)
of rock σt is the stress at failure under the uniaxial tensile
test. *e critical tensile strain corresponding to σt is εu. For
linear-elastic material in prefailure stage, one has

εu �
σt

Et

. (15)

Based on the maximum strain theory, the failure will
occur if one of the strains in the natural axes exceeds the
corresponding allowable strain εu. In this work, we consider
both strains occurring in the principal stress plane, that is,
ε2 + ε3. As proved in Section 3.1, the meaning of the sum of
ε2 and ε3 is the extension rate of the responding plane. In this
way, it is supposed that failure will occur as ε2 + ε3 reaches
twice the maximum uniaxial tensile strain; that is,
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Figure 3: Cubic specimen under uniaxial tensile stress.
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ε2 + ε3 � 2εu

� 2
σt

Et

.
(16)

Substituting equations (5) and (6) into equation (16)
gives

σ1 �
1 − μc

2μc

σ2 + σ3( 􏼁 −
Ecσt

Etμc

. (17)

Equation (17) is the general expression of the failure
criterion.

Many experimental data show that elastic parameters of
rock material are different in compression and tensile
condition [17–24]. *e ratio of the compressive elastic
modulus Ec to the tensile elastic modulus Et is mainly within
1–10 or even up to 18 for a special case. Poisson’s ratio μc

under the compression condition is bigger than μt under the
tension condition. *e value of μt is between 0.05 and 0.3,
mostly around 0.1 for rock materials.

For the uniaxial compressive state, σ1 � σc and
σ2 � σ3 � 0, where σc is the uniaxial compressive strength
(UCS). *e criterion equation (17) can be simplified as

σt � −
μcEt

Ec

σc. (18)

Equation (18) gives the relationship between the two
strengths σc and σt.

For most materials, the mechanical parameters mainly
obey the following relationship [25]:

μc

Ec

�
μt

Et

. (19)

*us, equation (18) becomes

σt � −μtσc. (20)

Substituting equations (19) and (20) into equation (17)
gives

σ1 � σc +
1 − μc

2μc

σ2 + σ3( 􏼁. (21)

*e proposed failure criterion is equation (21), in which
two mechanical parameters (i.e., UCS σc and Poisson’s ratio
μc) are contained. If we ignore equation (19), the criteria will
need one more parameter.

From Section 3.1, the criterion indicates that tensile
failure in rock will happen as the extension rate of the
σ1-plane reaches a critical value. Moreover, the mechanism
of tensile failure can be explained as the σ1-plane extension is
the result of the microcracks distributed in mineral grains,
and as mineral grains get separated from each other,
macroscopic failure happens.

4. Analysis and Discussion

4.1. Application Condition. *e criterion equation (21) is
obtained based on equation (16). Equation (16) shows that
ε2 + ε3 should be smaller than zero. Combining equations (5)
and (6), one has

σ2 + σ3 <
2μc

1 − μc

σ1. (22)

Equation (22) is the application condition of the crite-
rion equation (21). *e physical meaning of the application
condition can be explained as follows. As the lateral pressure
is relatively small (i.e., σ2 + σ3 < 2μcσ1/(1 − μc)), the cross
section in the σ1-plane will extend outwards, and as the
extension reaches a critical value, tensile failure will happen,
while as the lateral pressure is relatively great (i.e.,
σ2 + σ3 < 2μcσ1/(1 − μc)), the lateral cross section will shrink
inwards and the volume of the cubic will contract conse-
quently; in this condition, tensile failure will not happen. It
may be the other failure modes like a shear failure, which
cannot be described by this criterion anymore.

4.2. Uniaxial Tensile Strength (UTS). *e tensile strength is
an important mechanical parameter in rock mechanics.
However, it is difficult to conduct the uniaxial tensile test on
rock materials, and the obtained data always show signifi-
cant discreteness [26]. *e experimental data and conclu-
sions in the literature are so contrasting that some authors
have even suggested that the tensile strength should not be
considered as a material property [27]. Numerous indirect
tests have been devised as an alternative to the direct pull test
to study the tensile strength.

It can be seen from equation (20) that the uniaxial tensile
strength of rock can be estimated by μt and σc. Asmentioned
earlier, for rock material, the values of μt are between 0.05
and 0.3, mostly around 0.1. So the uniaxial compressive
strength is 3 to 20 times of the uniaxial tensile strength,
mostly about 10 times, which is consistent with the actual
appearance [28]. It is easier to test tensile Poisson’s ratio and
uniaxial compressive strength; thus, the uniaxial tensile
strength can be obtained by equation (20). Furthermore, for
the given elastic modulus (i.e., Ec and Et) and tensile
Poisson’s ratio, the more accurate uniaxial tensile strength
can be obtained by equation (18).

4.3. Hydrostatic Stress. Will rock failure occur under the
hydrostatic compression?We assumed the answer is Yes and
the value of yield compressive stress is σ0c (i.e.,
σ1 � σ2 � σ3 � σ0c (σ0c > 0)). From equation (21), we have
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Figure 4: Cross-section deformation.
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σ0c �
μc

2μc − 1
σc. (23)

Considering that 2μc − 1< 0, so σ0c < 0, which is in
contradiction with the assumption. It indicates that rock
material will not fail under the hydrostatic compressive
stress, because no tensile strain occurs under hydrostatic
compression. *is conclusion agrees with the test results.

As for the hydrostatic tension state, the value of ε2 + ε3
will increase with increasing hydrostatic tension σ0t . From
Hooke’s law and equation (16), it can be proved that failure
will occur in rockmaterial as σ0t � σt/(1 − 2μt), meaning that
hydrostatic tension can cause a failure which has been
verified by the test as well.

4.4. Yield Curve inDeviatoric Plane. In this section, the yield
curve of equation (21) on the π′-plane is to be discussed.*e
π′-plane can be expressed by

σ1 + σ2 + σ3 � σc. (24)

*e π′-plane is parallel to the π-plane (i.e., σ1+
σ2 + σ3 � 0), with the same intercepts σc in three axes.
Combining equations (21) and (24), equations

x �
1
�
2

√ σ1 − σ3( 􏼁

y �
1
�
6

√ 2σ2 − σ1 − σ3( 􏼁

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, (25)

and the symmetry of the yield curves, the three yield curves/
lines on the π′-plane, respectively, are

y �
�
3

√
x − 2

�
2
3

􏽲

σc, (26)

y � −
�
3

√
x − 2

�
2
3

􏽲

σc, (27)

y �

�
2
3

􏽲

σc. (28)

*e yield curve by equations (26)–(28) is a regular tri-
angle with the side of

�
2

√
σc (see Figure 5).*e shape and size

of the yield curves are only related to the UCS σc, having
nothing to do with μc. Moreover, the shape of equation (21)
in principal stress space is a triangular pyramid.

4.5. Effect of Intermediate Principal Stress. For a long time,
there has been no clear understanding of the effect of the
intermediate principal stress on rock strength. Some sug-
gested that the effect can be ignored. While some others had
the opposite view, they believe that the intermediate prin-
cipal stress has a great impact on strength of rock material.
To solve this problem, many true triaxial tests of rocks have
been conducted.

From equations (21) and (22), for the case of
σ2 + σ3 < 2μcσ1/(1 − μc), one has σ1 � σc + (1 − μc/2μc)

(σ2 + σ3). Obviously, the stress σ1 at failure (i.e., the

strength) is proportional to the intermediate principal stress
σ2, with the influence coefficient being 1 − μc/2μc, which is in
line with the experimental data as the value of is σ2 not too
great, whereas the strength σ1 decreases instead under
greater σ2, which cannot be explained using the criterion.
*e reason behind this may be that the failure mode under
greater σ2 is not tensile. *us, the proposed criterion is not
applicable anymore.

4.6. Comparison with Other Criteria. *e Mohr–Coulomb
(M-C) and Drucker–Prager (D-P) criteria are commonly
used in geotechnical engineering. *us, we compare the
proposed criterion (hereafter, referred to as LU criterion)
with the two classical criteria.

M-C criterion can be given as

σ1 �
1 + sin φ
1 − sin φ

σ3 +
2c cos φ
1 − sin φ

�
1 + sin φ
1 − sin φ

σ3 + σc,

(29)
where c,φ are the cohesion and angle of internal friction of
rock, respectively.

On the π′-plane, the M-C criterion has six yield curves/
lines. And the three on the right-hand side of the y-axis are

y �
1 − sin φ
3 + sin φ

�
3

√
x −

3 − sin φ
3 + sin φ

�
2
3

􏽲

σc,

y � −
1

sin φ
�
3

√
x +

3 − sin φ
2 sin φ

�
2
3

􏽲

σc,

y � −
1 + sin φ
3 − sin φ

�
3

√
x +

�
2
3

􏽲

σc,

(30)

which are symmetric with the other three on the left-hand
side.

*e yield curves of M-C and D-P criteria on the π′-plane
are hexagon and circle, respectively. As the three curves of
uniaxial compression tests coincide with each other on the
π′-plane, the three yield surfaces in principal stress space are
plotted in Figure 6. *e LU curve encircles the Druck-
er–Prager curve, while the Drucker–Prager curve encircles
the Mohr–Coulomb curve, reflecting that the Mohr–Coulomb
criterion is the most conservative one, the Drucker–Prager
criterion is less, and the LU criterion is the least one among
them.

5. Experimental Verification

5.1. Conventional Triaxial Test. *e failure behavior of rock
materials has been intensely studied under triaxial com-
pression with two of the principal stresses being equal (i.e.,
σ2 � σ3, confining pressure) on cylindrical specimens, which
is known as the conventional triaxial test.

From equations (4) and (5), if σ2 � σ3, one has ε2 � ε3,
and as σ1 > (σ2/μc) − σ3, ε2 and ε3 are both the maximum
tensile strains. For a cylinder specimen, ε2 and ε32 are the
radial and tangential strains, respectively. *us, for the
conventional triaxial test, the radial strain is the same as the
tangential strain.
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As σ2 � σ3, the criterion equation (21) can be rewritten
as

σ1 � σc +
1 − μc

μc

σ3. (31)

Equation (31) is actually the maximum tensile strain
criterion. *e maximum tensile strain ε3max can be obtained
from equation (6). For the uniaxial tensile test, ε3max � εu.
Combining equation (15), one has

ε3max �
1
Ec

σ3 − μc σ1 + σ2( 􏼁􏼂 􏼃 �
σt

Et

. (32)

Substituting equation (18) into equation (32) gives the
same result as equation (31). *us, as σ2 � σ3, equation (31)
is the maximum tensile strain criterion. *e data of con-
ventional triaxial tests by Fujii can verify the criterion in-
directly [15].

For most of the previous rock strength tests, one mainly
focused on the yield strength σ1 under different confining

pressure σ3. Poisson’s ratio of uniaxial compression was
seldom measured. *erefore, to verify the criterion of
equation (31), the best-fit values of Poisson’s ratio μ∗c and
UCS σ∗c were applied in the following process based on the
experiment results (σ1i, σ3i) (i � 1, 2, . . . , n). *e least-
square methods were used herein to obtain the two fitting
values:

μ∗c �
􏽐

n
i�1 σ

2
3i − 1/n 􏽐

n
i�1 σ3i( 􏼁

2

􏽐
n
i�1 σ1iσ3i − 1/n 􏽐

n
i�1 σ1i 􏽐

n
i�1 σ3i + 􏽐

n
i�1 σ

2
3i − 1/n 􏽐

n
i�1 σ3i( 􏼁

2,

(33)

σ∗c � 1/n 􏽘
n

i�1
σ1i −

1 − μ∗c
nμ∗c

􏽘

n

i�1
σ3i. (34)

In equation (31), substituting μ∗c and σ∗c for μc and σc,
respectively, we have

􏽢σ1 � σ∗c +
1 − μ∗c
μ∗c

σ3, (35)

where 􏽢σ1 is the theoretical results, also known as the esti-
mated value. *e coefficient of determination R2 describes
the “goodness of fit” between the testing data and estimated
values:

R
2

� 1 −
􏽐

n
i�1 σ1i − 􏽢σ1i( 􏼁

2

􏽐
n
i�1 σ1i − σ1( 􏼁

2, (36)

where σ1 � (1/n) 􏽐
n
i�1 σ1i and 􏽢σ1i can be determined by

equation (33).
*e closer the value of R2 is to 1, the better the estimated

􏽢σ1 fits the testing data σ1. *us, if the value of R2 by equation
(36) is to 1 and the value of μ∗c is within the range of rock
material, we can say that the criterion is applicable to the
conventional triaxial test.

Figures 7–10 illustrate the conventional triaxial test re-
sults of different rocks and the corresponding theoretical
results of the criterion.

For the testing data of the 11 conventional triaxial tests,
the values of R2 are all close to 1, with the minimum value of
0.9433 and the average value of 0.9745. Moreover, calcu-
lations show that, for brittle rock, when the confining
pressure is not very large, the mean relative error between
the optimized σ∗c and the measured σc is about 14.3%, and
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Figure 6: Yield curves of different criteria on π′-plane.
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Figure 5: Yield curves on π′-plane.
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most values of the optimized μ∗c are between 0.16 and 0.3, in
the range of rock materials [35].

When the confining pressure is very large (see
Figure 8(c)), the theoretical results do not fit the testing data
very well with the relative error around 18.2%.Moreover, the
optimized value of μ∗c is 0.4388, differing significantly from
the value 0.2714 (see Figure 8(d)) and beyond the reasonable
range of 0.16–0.3. *e reason may be that, under relatively
high confining pressure, the application condition
σ2 + σ3 < 2μc(σ1/(1 − μc)) cannot be satisfied anymore, such

as the last data in Figure 8(c) (σ2 � σ3 � 304MPa;
σ1 � 709MPa).*us, the optimized value of μ∗c 0.2714 under
lower confining pressure should be more reasonable.

Except the case of Figure 8(c), all the other 10 tests can be
well explained by the criterion.

5.2. True Triaxial Tests. *e triaxial test, in which all three
principal stresses are different, is known as the true triaxial
test. Similarly, as in Section 5.1, Poisson’s ratio and UCS can
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Figure 7: Conventional triaxial test data and theoretical results of (a) Tennessee marble [29, 30], (b) Daye marble [6, 30], and (c) Indiana
limestone [30, 31].
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Figure 8: Conventional triaxial test data and theoretical results of (a) Westerly granite, (b) Dunham dolomite, (c) Solnhofen limestone, and
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be determined using the testing data (σ1i, σ2i, σ3i) (i � 1,

2, · · · , n). *e optimized values of μ∗c and σ∗c in equation (21)
can be obtained by substituting σ3i into (σ2i + σ3i)/2 in
equations (35) and (36). Substituting μc and σc into μ∗c and
σ∗c , respectively, we have

􏽢σ1 � σ∗c +
1 − μ∗c
2μ∗c

σ2 + σ3( 􏼁. (37)

*e coefficient of determination R2 is still calculated
using equation (36), in which 􏽢σ1i should be calculated using
equation (37). *e values of R2 and μ∗c are used to measure

whether the proposed criterion is applicable to the true
triaxial tests.

Example 1. Coarse-grained dense marble.
In Table 1, 30 datasets of true triaxial tests are listed, 4 of

which are special with σ1 and σ2 in negative correlation
(highlighted in bold). As discussed above, for the criterion,
only those positive related data of {σ1, σ2} can be used as
calculating the optimized values of μ∗c and σ∗c . Moreover, the
rest 26 datasets can satisfy the application requirement (i.e.,
σ2 + σ3 < 2((μ∗c σ1)/1 − μ∗c )). *us, based on the 26 valid
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Figure 9: Conventional triaxial test data and theoretical results of (a) red sandstone [32], (b) Jinping marble [33], and (c) marble with
medium and coarse grains [34].
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Figure 10: True triaxial tests data and theoretical results of coarse-grained dense marble [36]. (a) σ3 � 3.45MPa. (b) σ3 � 6.89MPa.
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datasets, we have μ∗c � 0.2167, σ∗c � 66.41MPa, and R2 �

0.9877. *e experimental and theoretical results of coarse-
grained dense marble are illustrated in Figure 10.

Example 2. Laxiwa marble [37] and trachyte [9].
*e experimental and theoretical results of Laxiwa

marble [37] and trachyte [9] are illustrated in Figure 11.
For Laxiwa marble, all five testing data are valid, with σ2

and σ1 in positive correlation, and μ∗c � 0.2256,
σ∗c � 165.8MPa, and R2 � 0.9891. For trachyte, only the seven
datasets as σ3 ≤ 45MPa are valid, and the corresponding
results are μ∗c � 0.2213, σ∗c � 129.5MPa, and R2 � 0.9445.

*e comparisons of the two examples indicate that the
testing and theoretical results are in good agreement (see
Figures 9 and 11) with R2 � 0.9877 and 0.9445, respectively.

6. Conclusions

A new extension failure criterion was proposed based on the
extension rate of the plane of the maximum principal stress.
It is different from the maximum strain criterion which
cannot reflect the main properties of rock failure. Although
the maximum strain criterion is seldom using for rock
material, it can well explain the phenomenon in the con-
ventional triaxial test that the critical lateral tensile strain for
brittle rock almost keeps as a constant at failure [15]. For the
special conventional triaxial tests, the proposed criterion is
exactly the same as the maximum strain criterion.

*e proposed criterion, σ1 � σc + (1 − μc/2μc)(σ2 + σ3),
can reflect the phenomenon that the stress σ1 at failure
increases with the other two principal stresses σ2 and σ3. But
the criterion is only suitable as σ2 + σ3 < 2(μcσ1/(1 − μc)). As
the lateral pressure is relatively great (i.e., σ2 + σ3 >
2(μcσ1/1 − μc)), the specimen will be in the state of volume
shrinkage and the failure is not tensile anymore, so the
criterion is not applicable anymore either.

*e criterion expressed by the principal stresses has
concise expressions and clear physical background. *e
fitting results based on this criterion agree with the test data
well. It was also compared with the Mohr–Coulomb and
Drucker–Prager criteria.

*e paper only discussed the triaxial compressive
condition. For this case, two parameters are contained in
the new criterion, that is, the compressive Poisson’s
ratio and uniaxial compression strength. In geotechnical
engineering, the principal stresses may be tensile, and
the criterion of that can also be given based on a similar
way.
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σ1: Maximum principal compressive stress
σ2: Intermediate principal compressive stress
σ3: Minimum principal compressive stress
σ: Normal stress on a certain plane
τ: Shear stress on a certain plane
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Figure 11: True triaxial test data and theoretical results of (a) Laxiwa marble [37] and (b) trachyte [9].
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σ1i, σ2i, σ3i (i � 1, 2, . . . , n) : Experiment data
μ∗c : Best-fit values of Poisson’s

ratio
σ∗c : Best-fit values of uniaxial

compressive strength
􏽢σ1: Estimated value of σ1
R2: Coefficient of determination.
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