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Schedule management is an essential part of construction project management. In practical management affairs, many un-
certainties may lead to potential project delays and make the schedule risky. To quantify such risk, the Probabilistic Critical Path
Method (PCPM) is used to compute the overdue probability. Survey shows it could help project managers understand the
schedule better. However, two critical factors limited the application of PCPM: computational efficiency and timeliness. To solve
these constraints, we combined subset simulation and statistical learning to build a computationally efficient and dynamic
simulation system. Numerical experiment shows that this method can effectively improve the computation efficiency without
losing any accuracy and outperforms the other approaches with the same assumptions. Besides, we proposed a machine learning-
based way to estimate task duration distributions in PCPM automatically. It collects real-time progress data through user
interactions and learns the best PERT-Beta parameters based on these historical data. Our estimator provides our simulation
system the ability to handle dynamic assessment without laborious human work. -ese improvements reduce the limitations of
PCPM, making the application of PCPM in practical management affairs possible.

1. Introduction

Schedule management is a vital part of construction project
management. Overdue projects will bring potential eco-
nomic losses to the project. But, on the other hand,
groundless period reductions will inevitably bring risks to
the project. So, applying scientific management methods is
particularly important to evaluate the project schedule and
control the risk of delay.

Critical Path Method (CPM) is a widely accepted and
well-used tool in planning, controlling, and scheduling
construction projects. It can help the project manager to
identify the critical path in the schedule and determine the
project duration when all tasks’ durations are determined
[1]. However, in practice, there exists uncertainty and vol-
atility in projects. -ese will undermine classical deter-
ministic CPM. To deal with this situation, lots of
improvements were put forward to extend CPM to a
nondeterministic environment. Unlike classical CPM,

extended CPM computes the critical path on assumption
that the task duration is nondeterministic, and it has to
estimate the probability of project delay. -is feature pro-
vides the project manager a quantitative way to evaluate the
risk in project progress and makes extended CPM more
appealing. Generally, major existing methodologies used in
extended CPM could be classified into three types.

-e “most critical path” method was firstly proposed by
Soroush in 1994 [2]. -is method focuses on the “most
critical path” problem and provides a heuristic to identify the
near-optimal path to such a problem. Since this method only
uses the “most critical path,” rather than the entire schedule
network, to compute the delay probability, it runs very fast
and is more accurate than the classical CPM approach. -is
method provides a good perspective to understand critical
path [3] as well as an extensible solution framework. Some
researchers combined it with artificial intelligence to find the
optimal critical path [4, 5], and some extended it to fuzzy
domain [6].
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Unlike classical CPM, Fuzzy CPM (FCPM) represents an
activity duration by replacing a real number with a fuzzy
number and uses fuzzy operations to calculate the fuzzy
critical path and the fuzzy project duration. By combining
different kinds of fuzzy numbers and fuzzy operations, re-
searchers put forward many constructive and useful
methods. -ese contributions resolved some critical defects
of FCPM, like negative time and invalid fuzzy subtraction,
and provide an efficient way to resolve the fuzzy critical path
problem for a project network. Nowadays, many researchers
are still working on its variants and verifying its effectiveness
and practicability in practice [7–10].

Similar to Fuzzy CPM, Probabilistic CPM (PCPM)
represents an activity duration by a random variable. -is
makes the completion time also a random variable. -e
ultimate goal of PCPM is to find out the probability where
the completion time is higher than the given deadline and
identify the critical path in a probabilistic context. Re-
searches showed that because of its simple probabilistic
interpretation, this methodology could be easily understood
by project managers and help them to manage a project
better as well as minimizing delay risks [11–15].

It is worth noticing that, though formulated in a simple
way, PCPM is in fact hard to solve and is still under study.
Four key factors might explain such difficulty. First, PCPM is
a high-dimensional integral of the probability density
function on the failure domain defined by an implicit limit
state function. Second, this limit state function is composed
of several mutual-referenced and nested computation
blocks, making it behave like a black box system.-ird, since
there are lots of nonlinear logical operands, like max and
min, in nested blocks, the limit state function is also highly
nonlinear. -is fact makes some popular delegate models,
like First-Order Reliability Method and Response Surface,
fail to approximate the target function. Fourth, DirectMonte
Carlo Simulation (DMCS) is time-consuming to reach an
unbiased numerical estimation, which might be seemingly
unpromising in practice.

Considering all the difficulties described above, we
suggest adopting a well-designed black box system reliability
algorithm, which could solve a reliability assessment
problem without caring about the details of our target
system. Subset simulation is such an algorithm. It is a nu-
merical method widely used in structural engineering
[16–18] and soil engineering [19, 20]. Existing research
studies showed that subset simulation is computationally
efficient in estimating small failure probabilities in high-
dimensional black box reliability problems. But this method
is rarely used in project management. Given the similarities
in implicity and nonlinearity between our system and
existing researches, we think subset simulation will also
work on the PCPM problem.

Apart from the computation efficiency problem, there is
another important issue to address. Most researches men-
tioned above did not consider the timeliness of assessment.
As a project goes on, the task duration estimations in the
schedule will change. A feasible solution is to reestimate
them manually, but it will bring lots of extra workloads,
which could be avoided. To realize an automated real-time

reliability assessment, we introduce statistical learning into
PCPM. -is method can handle the dynamic evaluation in
the construction life cycle without much extra work. Based
on historical progress data collected from management
software, the duration distribution of a task could be esti-
mated automatically using machine learning. -is feature
would make PCPM more useful in practical management
affairs.

In this study, we will provide a new method, combining
subset simulation and statistical learning to resolve the
project delay problem efficiently and dynamically. -e three
primary research objectives are described as follows:

(1) Introduce subset simulation-based PCPM and
demonstrate its working process as well as imple-
mentation details

(2) Illustrate how statistical learning can be plugged into
PCPM, propose the cost function of this learning
system, and derive the formula of task duration
distribution given collected data

(3) Verify the effectiveness of the proposed method and
compare it with other methods

-e organization of the rest of this paper is summarized
as follows. Section 2 provides a short introduction to Critical
Path Method (CPM) as well as a well-designed algorithm
solving Critical Path Problem and then formulates the
Schedule Reliability Problem. -is problem will be solved in
Section 3, using subset simulation. -is method is a com-
putation-efficient algorithm to estimate small failure prob-
ability. We will demonstrate how to use this method to solve
the Schedule Reliability Problem. After that, we will explain
how we can apply statistical learning in our PCPM system in
Section 4. By combining these parts, Section 5 will dem-
onstrate our method as a whole and display its design and
implementation. -en, we used a hypothetical test case to
compare our proposed method with other models in Section
6. Finally, Section 7 gives our concluding remarks.

2. Preliminaries

In this section, we will first formulate the Schedule Reli-
ability Problem we want to resolve.-en, we will introduce a
well-designed algorithm, solving the critical path problem.
-is algorithm will work as an implicit subexpression of the
Schedule Reliability Problem. Basics of Critical Path Method
and Schedule Network are omitted for conciseness.

2.1. ScheduleReliabilityProblem. A schedule does not always
work as project managers expect. Sometimes it might fail. In
other words, the real completion time of a project would
exceed the time limit given by the contract. -is is a di-
sastrous thing we need to avoid. To quantify delay risk, we
assume that the completion time of a project is a random
variable. Given a deadline, the delay probability could be
formulated as follows:

pf � 􏽚 I Tc(D)>Td( 􏼁dD, (1)
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where D � (D1, D2, . . . , Dn)T is a vector collecting the
duration variables Dk of every task; Tc(D) is an implicit
function transforming durations of tasks to the completion
time; I(x) is an indicator function which takes 1 if x is
positive; otherwise, it takes 0; p(D) is the joint probability
density function of the duration variables. -us, our goal is
to compute the delay probability and ensure it is less than a
given threshold, for example, 5%.

2.2. Modified Dijkstra Algorithm. To solve equation (1), we
need to solve the Critical Path Problem first. Since the critical
path is the longest in a schedule network, we could compute
the completion time Tc and get the Critical Path using the
Modified Dijkstra Algorithm (MDA). -is algorithm is
proposed by Ravi Shankar and Sireesha to find the Critical
Path in Schedule Network [21].

MDA uses Activity-On-Node (AoN) representation and
represents a schedule by a graph G, denoted as a tuple
G � (V, E). V are the vertices in the graph, representing the
tasks in the schedule. For each task vk, a vertex attribute dk is
assigned, defining task’s duration. E are the directed edges in
the graph, representing the work dependencies.

MDA improves the classic Dijkstra Algorithm by adding
a topological sorting [22] before computing the critical path.
-is improvement could improve efficiency significantly,
especially when repeat sampling is needed. After topo-
sorting, the forward pass is applied to get the earliest start
(ES) and earliest finish (EF) of each task. -e completion
time is the latest EF among all the tasks. Once completion
time is computed, the backward pass is applied to get the
latest start (LS) and latest finish (LF) of each task. Total Float
(TF) is the difference between the Earliest Start (ES) and the
Latest Start (LS) of an activity. A task is a critical task when
its total float is zero.

-e pseudocode of MDA is given as follows, and note
that the nodes in MDA are presorted in topological order,
which satisfies two indexing constraints i< j∀i ∈ Node[j] ·

predecessors and i< j∀j ∈ Node[i] · successors (Algorithms
1 and 2).

3. Subset Simulation

3.1. Basic Idea. Since Tc(D) is a nested and implicit func-
tion, it is hard to solve equation (1) analytically for most
schedules. Instead, Monte Carlo Simulation is used to get a
numerical solution, formulated as follows:

􏽢pf �
1
N

􏽘

N

k�1
I Tc D(k)

􏼐 􏼑>Td􏼐 􏼑. (2)

However, Direct Monte Carlo Simulation (DMCS) is
known to be computationally inefficient. To get a stable
estimation, lots of samples are required, making the com-
putation process time-consuming. To solve equation (2)
efficiently, subset simulation is applied in our study.

Subset simulation was first proposed by S. K. Au to
estimate the small failure probability of a structural system in
high dimensions. Because of its efficiency, this method was
widely used in structural engineering and soil engineering.

-e basic idea of subset simulation is to express a small
probability as a product of a series of larger conditional
probabilities by introducing intermediate failure events.
Since intermediate failure events are much easier to solve,
this decomposition could reduce unnecessary sampling and
accelerate the computation. -is process could be concep-
tually expressed as follows:

􏽢pf � p Tc >T
(0)
d􏼐 􏼑 􏽙

n

k�2
p Tc >T

(k)
d |Tc >T

(k− 1)
d􏼐 􏼑, (3)

where T
(i)
d is the generated time limit in ith iteration and

there is T
(n)
d � Td in final iteration. According to the defi-

nition above, two critical questions should be answered:

(1) How to choose the intermediate failure event
Tc >T

(k)
d , that is, the value of T

(k)
d ?

(2) How to generate samples D(k) from conditional
event Tc >T

(k)
d |Tc >T

(k− 1)
d ?

In the following parts, these questions will be answered
by Au’s standard subset simulation algorithm. And we will
illustrate how it could solve Schedule Reliability Problem.

3.2. Standard Subset Simulation Algorithm. For simplicity,
our study used S. K. Au’s standard algorithm. In this al-
gorithm, samples in each iteration are generated by Markov
Chain Monte Carlo (MCMC) using seeds, and intermediate
time limits and seed samples in iteration are chosen by a
fixed threshold percentile [16].

-ere are only two parameters used in standard algo-
rithm: batch size Nb which is the size of samples in each
iteration and seed ratio ps which is the ratio between seeds
and samples in each iteration.

3.2.1. Intermediate Event Selection. Suppose a batch of
samples D(k) is known; we could compute their corre-
sponding completion time T(k)

c � T
(k)
ci􏽮 􏽯 using Modified

Dijkstra Algorithm.-en, we sort these times in a decreasing
order. By selecting the samples with the top [psNb] longest
completion time, we can ensure that the intermediate events
Tc >T

(k)
d satisfy p(Tc >T

(k)
d |Tc >T

(k− 1)
d ) � ps.

T
(k)
d �

T
(k)
c(r) + T

(k)
c(r+1)

2
, (4)

where r � [psNb] and T(k)
cr is the rth largest completion time

among samples.

3.2.2. Conditional Batch Sampling. -e simplest sampling
policy is the Metropolis–Hastings sampling, which is based
on a symmetric proposal with q(D0)π(D0,D1) � q(D1)π
(D1, D0). In our study, transition π(D0,D1) ∼ N(0, σ) is
used. We accept the move on Markov chain with an ac-
ceptance probability of α � min 1, q(D1)/q(D1)􏼈 􏼉.

q(D) is the unnormalized conditional distribution.
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q(D) �
􏽙

i

p di( 􏼁, D ∈ F,

0, D ∉ F,

⎧⎪⎨

⎪⎩
(5)

where p(d) is PERT-Beta Distribution described in Section
4.1 and F is the intermediate failure event
F � D|Tc(D)>Td􏼈 􏼉.

3.2.3. Procedures. -e pseudocode of standard algorithm is
shown below (Algorithm 3).

-is process is illustrated in Figure 1.

4. Dynamic Distribution Estimation

In this section, a historic data-based duration distribution
estimation method is proposed.-is method uses the PERT-
Beta distribution as the probabilistic model. And it takes
three assumptions to make the problem easier to solve.
Finally, it uses gradient descending, a widely used optimi-
zation tool in machine learning, to estimate observational
duration distribution.

4.1. PERT-Beta Distribution. To make PCPM work, the
duration of each task should be modelled properly. An
empirical distribution is usually used when there is a lack of
observational data. Some survey shows beta distribution is a
suitable one [23–25]. -is distribution requires three em-
pirical parameters: most likely duration b, optimistic du-
ration a, and pessimistic duration c of the activities. -e

process of defining these subjective values is called the PERT
three-point estimation method.

-e density function of PERT-Beta Distribution is given
by equation (6) and illustrated in Figure 2.

p(t) �
1

B(α, β)

(t − a)
α− 1

(c − t)
β− 1

(c − a)
α+β− 1 , (6)

where parameters in beta function are determined by

α �
4b + c − 5a

c − a
,

β �
5c − a − 4b

c − a
.

(7)

However, estimation is not a static thing. With the
project going on, time distribution should be corrected and
reestimated according to the status quo. -e project man-
ager could do these works but will spare lots of effort. It
would be time-saving if we could estimate the distribution
automatically.

4.2.Assumptions. Statistical learning could be applied in our
work to estimate distribution automatically. However, to
build such a learning system, we need some basic as-
sumptions to construct the cost function of this system. In
our study, we make three assumptions about task progress
and time distribution.

(1) Constant Working Rate. In project management, the
relationship between time and remaining works,

(1) Te � 0
(2) for each i ∈ Nodes
(3) E

(i)
S � 0

(4) for i � 1 toNodes · length
(5) E

(i)
F � E

(i)
S + D(i)

(6) if Node[i] · has Successor
(7) foreach j ∈ Node[i] · successor
(8) if E

(i)
F >E

(j)

S then E
(j)

S � E
(i)
F

(9) else
(10) if E

(i)
F >Te then Te � E

(i)
F

(11) return Te

ALGORITHM 1: MDA forward algorithm.

(1) for each i ∈ Nodes
(2) L

(i)
F � Te

(3) for j � Nodes · length to 1
(4) L

(i)
S � L

(i)
F − D(i)

(5) F(i) � L
(i)
F − E

(i)
F

(6) if Node[j] · has Predecessor
(7) for each i ∈ Node[i] · predecessor
(8) if L

(j)

S <L
(i)
F then L

(i)
F � L

(j)

S

ALGORITHM 2: MDA backward algorithm.
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burndown chart, a curve depicting is usually an S
shape curve. But to simplify the computation, we
assume that this curve is a straight line. -is

assumption works on optimistic, average, and pes-
simistic working rates ra, rb, and rc. Given any
remaining progress p, the parameters could be
computed using linear interpolation as follows:

ap � ra(1 − p),

bp � rb(1 − p),

cp � rc(1 − p).

(8)

(2) Fixed Risk Preference. Parameters α and β control the
shape of Standard Beta distribution, deciding its
skewness, or in another perspective, a likelihood of a
task finished in a short time. If a task is more likely to
be completed in a shorter time, α is greater and β is

(1) generate initial samples: D(0) � [D(0)
1 ,D(0)

2 , . . . ,D(0)
n ]

(2) repeat
(3) compute T

(k)
ci � MDA(D(k)

i ) in k -th batch samples
(4) compute p

(k)
f � 1/Nb 􏽐

Nb

i�1 I(T
(k)
ci >Td)

(5) if p
(k)
f <ps

(6) select seeds and intermediate failure event T
(k)
d using method in Section 3.2.1

(7) generate next batch of samples D(k+1) using method in Section 3.2.2
(8) else
(9) break
(10) return pf � pk

s p
(k)
f

ALGORITHM 3: Subset simulation-based PCPM.
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Figure 1: Illustration of subset simulation procedure. (a) Iteration 1: Direct Monte Carlo Sampling. (b) Iteration 1: Seed Selection.
(c) Iteration 2: MCMC Sampling using seeds. (d) Iteration 2: Seed Selection.
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Figure 2: Typical density function of the PERT-beta distribution.
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smaller. To some degree, they reflect an implicit risk
preference of a project manager. So, in our study,
once α and β are chosen, they do not change
anymore.

(3) Two-Step Estimation. -ere is a growing uncertainty
when we want to predict the future, while with
progress going on, this uncertainty could be di-
minished. To depict this fact, we take a two-step
method to estimate observational distribution. We
first assume all the observations come from the
“future” and use them to estimate the working rate at
different conditions. -en, these working rates are
used to construct the final distribution using the
current state.

-ese assumptions are illustrated in Figure 3.

4.3. Statistical Learning. Based on the assumptions before,
we could derive the cost function of our learning system.
According to equation (9), the likelihood could be expressed
in

p(T) �
1

B(α, β)
􏽙

i

ti − ap􏼐 􏼑
α− 1

cp − ti􏼐 􏼑
β− 1

cp − ap􏼐 􏼑
α+β− 1 . (9)

Since α and β are assumed to be fixed and the working
rate is constant, by taking the negative log-likelihood of
observations, cost function L(T) could be derived as follows:

L(T)∝􏽘
i

(α + β − 1)log rc − ra( 􏼁

− (α − 1)log ti − ra 1 − pi( 􏼁( 􏼁 − (β − 1)log rc 1 − pi( 􏼁 − ti( 􏼁.

(10)

-us, our purpose is to optimize the loss function
minra,rc

L(T) and estimate three working rates ra, rb, and rc.
Taking the partial derivative of loss function, we will have

zL(T)

ra

� 􏽘
i

− (α + β − 1)
1

rc − ra

+(α − 1)
1 − pi

ti − ra 1 − pi( 􏼁
,

zL(T)

rc

� 􏽘
i

(α + β − 1)
1

rc − ra

− (β − 1)
1 − pi

rc 1 − pi( 􏼁 − ti

.

(11)

Using gradient descending, we could have numerical
optima r∗a , r∗c using the update rule as follows:

ra⟵ ra − η
zL(T)

ra

,

rc⟵ rc − η
zL(T)

rc

.

(12)

After determining r∗a and r∗c , rb could be computed using
the definition of α; see equation (7).

r
∗
b � r
∗
a +

α − 1
4

r
∗
c − r
∗
a( 􏼁. (13)

With all three working rates r∗a , r∗b , and r∗c computed, the
final estimation could be determined. Suppose the current
remaining progress is pc; then the updated range (a0, b0, c0)

could be given as follows:

a0 � r
∗
apc + r

∗
b 1 − pc( 􏼁,

b0 � r
∗
b ,

c0 � r
∗
c pc + r

∗
b 1 − pc( 􏼁.

(14)

5. System Implementation

5.1. Design of Simulation System. A detailed design of our
system and the relationship between major classes are de-
scribed in the class diagram in Figure 4. Some important
members and methods of major classes are presented, but
some trivial members or methods are omitted for lack of
space.

(1) -e class App is the entry class that handles all the
interactions from users: we could configure the
simulation using class Setting. -e Setting class
defines the time limit td, batch sizeNb, and candidate
ratio ps. And it affects the result and performance of
subset simulation. We use class RecordManager to
add a progress record to the database and estimate
the duration distribution of a task. We use class
SubsetSimulation to evaluate our schedule and get
some useful indicators.

(2) -e class RecordManager is the manager class that
takes in the record inputs and stores them. Besides, it
also provides the function to estimate the distribu-
tion of a task using historical data. -is process is
described in Section 4. And when a simulation be-
gins, the estimated beta distribution parameters
would be provided to samplers to construct a batch
of samples.

(3) -e class SubsetSimulation is the entry class where
our simulation happens. -is class computes the
failure probability and sets the average total float of
tasks respectively. We described this process thor-
oughly in Section 3. SubsetSimulation will use MDA
class to compute the Critical Path and completion
time of the schedule. You can find the theory about
MDA in preliminaries.

(4) -e class Graph is a helper class that represents a
schedule network using an adjacency list. It contains
the topological structure of the schedule network and
could be used to find the successors or predecessors
of any given task. -e structure is stored in database
separately, using class Task and Dependency. -ese
two classes correspond to two tables, respectively,
using Object Relation Mapping (ORM).

-ese classes will generate three kinds of data:
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Figure 3: Assumptions in our two-step estimation. (a) Step 1: working rate estimation. (b) Step 2: final distribution estimation.

App RecordManager

HistoryData
GraphSetting

return Float

SubsetSimulation

simulate(graph, setting):

tasks: List<Task>
dependencies: List<Dependency>

return List<Task>

simulate(graph):

MDA Dependency

BetaParams

Sampler

Task

graph: Graph
recMgr: RecordManager
setting: Setting

readHistory(taskld):
return List<HistroryData>

addHistory(taskld, date, progress)
estimate(taskld):

return BetaParamsuploadHistryRecord(taskld, date, progress)
simulate():

pf: Float
pb: Float
batchSize: Float

a: Float
b: Float
c: Float

params: BetaParams

refresh(params)
sample():

return Float

id: String
Prev: String
next: String

sample():
return Float

id: String
name: String
sampler: Sampler
totalFloat: Float = 0

id: String
task: String
date: date
progress: Float

return Float

return Float

Runtime
Interaction
Has A

Relation
Use A

Relation

getSuccessors(taskld):
return List<Task>

getPredecessors(taskld):
return List<Task>

topoSort():

Figure 4: UML class diagram of simulation system.
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(1) Persistent constant: these data cannot be changed
and stored persistently in memory, like graph
structure and history records

(2) User-defined variable: these data are generated by
user interactions, like configuration parameters of
simulation

(3) Intermediate variable: these data are generated by
program and will only be used once, like beta dis-
tribution parameters and sample

-e data flow diagram explaining how data are passed
between classes is shown in Figure 5.

5.2. Process of Simulation System. -e following process
describes all the steps in our simulation system, including
the creation of the schedule network, distribution estima-
tion, and estimation for failure probability.

(1) Schedule Network Construction. Construct the
schedule network using an adjacency list, and presort
the network using Khan’s algorithm to get the to-
pological order [22]. In this step, the network could
be validated; for example, circular working depen-
dency could be detected. Besides, precomputed topo-
order could save unnecessary computing time in
subset simulation sampling.

(2) Task Duration Distribution Estimation. Use empir-
ical parameters and observational data to estimate
the time distribution for each task. -is step is
thoroughly described in the previous section.

(3) Failure Probability Estimation. Estimate the failure
probability of a given schedule network using subset
simulation and check whether the answer is ac-
ceptable. Usually, a criterion is chosen (e.g., 1% or
5%). If the estimation is higher than this criterion, we
have to consider adjusting our plan.

(4) Schedule Adjustment. If failure probability is unac-
ceptable, we have to find out the critical activities in
the schedule like in classical CPM. By averaging the
total float in samples, we could find those critical
activities with small floats. We could allocate more
resources to these activities to reduce the completion
time and further reduce the failure probability.

5.3. Features and Limitations. -ere are three practical
features in our proposed simulation system:

(1) Schedule Evaluation. Using the algorithm in Section
3, we could use a failure probability to quantize the
delay risk. If this probability is too high, a project
manager needs to change the schedule or extend the
deadline. To modify the plan, we have to find critical
activities and lower their duration. To prolong the
deadline, we can use the empirical distribution of
completion time to select a proper deadline.

(2) Critical Activities Detection. When there is a high
possibility for a schedule to be late, critical activities
could be located using a threshold of total float. If the

total float of a task is lower than this threshold, it is a
critical activity. -is threshold describes the flexi-
bility we can manage. A lower threshold will sift out
fewer activities and usually requires a better man-
agement capability.

(3) Task Duration Prediction. When the records are
stored, the estimation of task duration will also tell us
the most likely finish date. We could compare this
date to the planned finish date. If there is an un-
acceptable lag, this activity would be marked. And
the system will alert the project manager. -is
process is automatic and data-driven and could
improve project manager’s efficiency and provide
more information.

All these three features are implemented through two
web pages, one for collecting progress data and one for
visualizing and analyzing project progress; see Figure 6.

-ough there are some practical features in our method,
there are still some limitations we are striving to solve. First,
the threshold may not be a proper way of finding critical
activities. Since there is a possibility that an improper
threshold may select all or none of the tasks, such a threshold
would be unhelpful.-is fact maymake threshold selection a
potential problem. Besides, the total float threshold only
captures the average behaviour of a task. It could help reduce
the risk of schedule while reducing the variance of task
duration will also work. Currently, there is no indicator
describing the relationship between the variance of task
durations and the risk of schedule in our method.

6. Illustrative Examples and
Computational Results

-is section will verify the performance of our proposed
method and compare it with DMCS, Soroush’s LUBE [2],
and Chen’s FCPM [10] in terms of precision, efficiency, and
stability.

6.1. Soroush’s Benchmark Example. In this part, we will use
an illustrative example from Soroush’s work. -is hypo-
thetical test case consists of 21 activities shown in Figure 7.
Our experiment also takes the assumptions in Soroush’s
work. -e activity times are assumed to be beta distributed,
and events v1 and v14 are the starting and terminal events,
respectively.-e optimistic time ak, most likely time mk, and
pessimistic time bk for each activity are given in the pa-
rentheses beside that activity. To compare our work to Fuzzy
CPM (FCPM), each activity’s fuzzy duration is formulated in
a triangular fuzzy number dk � (ak, mk, bk) using the same
parameters in PCPM.

For each method, we repeat simulations 20 times to get
the mean estimation 􏽢pf and its average running time t. And
to compare the stability of numerical results, variation co-
efficients cv � σpf

/􏽢pf are also computed. As for the setting
of sampling-based methods, 50,000 samples were used in
DMCS, and a batch size of Nb � 5000 and selection ratio
ps � 0.1 were used to configure the Subset Simulation. Our
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Figure 6: Screenshot of our simulation system. (a) Task Kanban: this page is used to display and submit current working progress; project
manager could drag the slider to update the progress of a task. (b) Schedule evaluation: this page is used to visualize current working progress
and evaluate the reliability of schedule. Project manager could find the dangerous tasksmarked by a red exclamation in a circle from analysis.
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experiments were conducted on a PC with an 8-core Intel
Core i7-0700K 3.6 GHz CPU. All the programs were coded
in Python 3.7.3 and NumPy 1.20.1.

Computation results are shown in Table 1. Since Direct
MCS and our method are based on sampling, generally they
are slower than the one-pass method, like LUBE and FCPM.
-is is a common shorthand of sampling-based PCPM, but
subset simulation accelerates this process while nearly
retaining the same precision and stability. -is makes the
application of PCPM possible. On the other hand, compared
to the one-pass method, subset simulation-based PCPM
reaches the lowest error compared to DirectMCS.-is result
shows that subset simulation could provide a more reliable
solution. In all, subset simulation combines computation
performance and efficiency. -ese make it a probably good
way to solve the probabilistic CPM problem.

By drawing the relationship between completion time
limit and failure probability in Figure 8, we also find that the
curve given by subset simulation is the closest one to the
DMCS one, while there exists a systematic error in LUBE
and FCPM. -is observation could be explained by the fact
that LUBE only focuses on one most critical path, while
other paths may also lead to failure, leading to a higher
failure probability. Fuzzy numbers and fuzzy operations
cannot capture all the natural complexity of probabilistic
modelling. -us, deviation will occur. In contrast, subset
simulation could depict this relationship very well. -is
would provide the project manager a reliable decision basis.

Another important indicator, total float, is also com-
puted. A precise estimation of float would help the project
manager identifying important tasks and allocate resources
to them. Figure 9 shows that the total float estimation given
by FCPM is lower than the ones given by PCPM, which may
lead to more resource demand and hurried plans, while
subset simulation gives a similar result to DMCS, and nu-
merical errors are acceptable.

6.2.AScheduleNetwork inReal Project. In order to verify the
performance of our algorithm in real practice, a schedule
network from a real project containing 173 activities and 195
work dependencies is used. -is project is a multifunctional
building, including three parts: the main tower for office
usage, the auxiliary building for business, and the basement
for parking. -e construction work is broken down in the
following way: the basement is divided into 24 individual

working segments each floor and auxiliary building is di-
vided into 3 individual working segments each floor. Each
segment is constructed floor by floor, which creates working
dependencies. -e division of our project and schedule
network are illustrated in Figure 10.
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Figure 7: Hypothetical schedule network.

Table 1: Schedule network failure evaluation comparison (dead-
line� 85 days).

Methods Failure
probability (%)

Variation
coefficient

Running
time (sec.)

MCPM LUBE 1.93 N/A 0.00
FCPM Triangular 19.57 N/A 0.00

PCPM Direct MCS 2.25 2.45% 2.58
Our method 2.24 3.11% 0.35
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-e activity times of each working segment are given in
Table 2.

-e hardware and software environments of this ex-
periment are consistent with those of the previous one. As
we can see in Table 3, comparing with other methods, our
estimation is the most closet to the DMCS result. And LUBE
is still lower than ours, which will be explained in the fol-
lowing discussion. Another point worth noting is that with
the growth of the schedule network’s size, our method’s
computational efficiency advantage becomes more obvious
compared with DMCS. And its running time is acceptable in
real practice. Project managers can get more accurate esti-
mates while waiting less time.

By drawing the relationship between completion time
limit and failure probability in Figure 11, we also find that
curve given by our method is the closest one to the DMCS
one. Still, LUBE curve is under DMCS curve, which means it
underestimates the overdue risk. -is fact is caused by the
inherent flaw of LUBE and would mislead project managers
to make an excessively optimistic estimation, which may
cause potential overdue risks. But our method solved this
problem well: since our method will traverse the whole
schedule network, rather than one path, our PCPMwill give a
comprehensive consideration which depicts the risk of the
network as a whole, rather than only one “most critical” path.
-is mechanism makes our method work well for the full
range of time limit.

6.3. Discussions. From the experiments above, we can see
that although those one-pass algorithms could give results
quickly, due to the inherent deficiencies of algorithm design,
there will be systematic errors. For example, LUBE fails
when the failure probability is relatively high. -is could be
explained easily by a very simple example. Supposing there is

Basement Segmentation Basement

Main
Tower

Auxiliary
Building

(a)
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B3

B2

B2

B1
check
point

1 2 18
end
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B3 B2

Part 24 Main Tower (F1~F45)

Part 2
...

...

Part 1

Basement (B3~B1)
Auxiliary building (F1~F18)
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start

1 2
Part 1

Part 2

Part 3

18

1 2 18

1 2 ...
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...

44 45

(b)

Figure 10: A schedule network of a real project. (a) Illustration of working segments: each segment is composed of several working packages
and constructed floor by floor. (b) Illustration of working dependencies: there are three special nodes which are a starting point, an ending
point, and a midway checkpoint. -eir durations are assigned with zero day.

Table 2: Schedule network failure evaluation comparison.

Part Floors Working
segment

Duration
(days/floor/segment)

Basement B3∼B1
1, 5∼9, 21 30
2∼4, 10∼20,

22∼24 25

Auxiliary
building F1∼F18 1, 2, 3 30

Main tower F1∼F45 12

Table 3: Schedule network failure evaluation comparison (dead-
line� 690 days).

Methods Failure
probability (%)

Variation
coefficient

Running
time (sec.)

MCPM LUBE 2.83 N/A 0.54
FCPM Triangular 31.13 N/A 0.26

PCPM Direct MCS 3.11 2.17% 26.32
Our method 3.13 5.27% 1.32
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a project containing N identical paths. And each path has an
independent failure probability qf. -us, we can easily get
the failure probability of this project using some basic
probability theory. -e right answer should be
pf � 1 − (1 − qf)N. However, according to LUBE, the
failure probability is defined by the “most critical” path.
Since all the paths are identical, LUBE estimation is qf.
Notice that

pf � 1 − 1 − qf􏼐 􏼑
N
> qf

� 1 − 1 − qf􏼐 􏼑
1
∀N> 1.

(15)

So, LUBE estimation is always lower than the failure
probability of the whole schedule. -is difference is espe-
cially obvious when the time limit is relatively tight. In this
situation, the failure probability of each path will increase.
For 0< a< 1, aN ≈ a only works when a ≈ 1, which means
qf shall be very small. However, with a tight time limit, qf

cannot be small, which makes LUBE fail to approximate.
Besides if there is more than one critical path, according to
equation (15), the difference between pf and qf will become
obvious. But this situation is common in those projects
where parallel construction is needed. Besides, in most cases,
paths are inherently correlated. If a node is overdue, all the
paths containing this node will be affected.

-ese observations tell us when dealing with the
schedule network, it will be better to treat the schedule as a
whole, rather than a group of single paths. -ough we have
to admit sampling-based PCPM takes time during sampling,
it is still worth doing it, since it can provide a more accurate
estimation. From the experiments above, we can find that
subset simulation can accelerate the sampling process
greatly, making the running time of PCPM acceptable.

7. Conclusions

-is paper proposed a new PCPM based on a data-driven
subset simulation to solve the Schedule Network Failure
Problem in a dynamic way. -is method could compute the
failure probability efficiently and effectively without loss of
any result accuracy and outperforms the other approaches
with the same assumptions. Besides, another important

contribution of our study is to plug a data-based task du-
ration distribution estimation into PCPM. -is finding
provides a more objective way to estimate task duration
distribution, reducing the variance in project managers’
experience and improving the knowledge sharing between
teams. -ese key features would provide a good foundation
for applying PCPM in practical management affairs.
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