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Granular soils usually serve as the filler material in geotechnical engineering.-is study presents the development and application
of a stress-fractional model for granular soils with different initial material states. To capture the plastic loading and flow
behaviors, a subloading surface with the fractional stress gradient is used.-e developed model contains twelve parameters which
can be determined through triaxial tests. To validate the developed model, the well-documented test results of Firoozkuh No. 161
sand and crushed basalt are simulated and discussed. It is found that the stress-fractional model can reasonably simulate the
undrained and drained behaviors of granular soils consolidated with different densities and mean effective pressures.

1. Introduction

Granular soils, e.g., ballast and sand, are often encountered
or used in engineering practice. For example, ballast usually
serves as an essential track construction layer to bear the
repeated moving load transmitted by the train. During the
whole operation period, a rail track usually experiences a
large number of repeated train loads. Sand can be used as a
filter material. Accurate prediction of the corresponding
maintenance periods necessitates the development of an
advanced constitutive model that captures ballast or sand
deformation [1]. Although traditional elastoplastic consti-
tutive models have been investigated widely and successfully
applied in many fields, more effort is required to realistically
describe the stress-strain relationship of granular soil, which
was observed to be state-dependent and nonassociated. In
classical plasticity theory, the dependence of associative or
nonassociative plastic flow of granular soil on the material
state can be mathematically elaborated by using a loading/
bounding/reference surface and a plastic potential surface
with frictional parameters dependent on the material state.
For example, a series of elegant constitutive models have
been developed for predicting the instability and flow

liquefaction behavior of Firoozkuh sand [2] as well as other
sands.

However, different from the modelling techniques of-
ten used in traditional plasticity, a new modelling frame-
work based on the fractional plasticity (FP) has been
developed and implemented recently [3–6], in which the
plastic potential was not necessarily used. However, the
previous FP approach was established based on granular
soil and the soil-structure interface [7], using the loading/
yielding surface. -is study attempts to develop a state-
dependent constitutive model for granular soil by using the
fractional plasticity and subloading surface concepts [8].
For simplicity, conventional stress and strain notations in
soil mechanics, with compression positive and extension
negative, are used. In addition, this study is limited to
homogenous materials under isotropic or anisotropic
consolidation.

2. Constitutive Model

In elastoplastic theory [3, 9], the tensorial incremental plastic
strain, εp

ij, shall be obtained by
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εp

ij � Lnij, (1)

L �
1

Kp

mklσkl
′ , (2)

where mkl, nij, and Kp are the plastic loading tensor, plastic
flow tensor, and plastic modulus, respectively, and i, j, k, and
l are indices running from 1 to 3. is theMacaulay bracket. σkl

′
is the tensorial incremental effective stress. In this study, mkl

defines a unit normal at the subloading surface (f ), and nij

defines the plastic strain rate direction. For the purpose of
obtaining the analytical solution, Sun et al. [9] suggested to
use the following fractional derivatives for modelling:
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where the fractional order, α, ranges between n and n − 1,
with the integer n> 0 [3]. D denotes partial differentiation. a
stands for the integral limit in equations (3a) and (3b).
Depending on the relative position of a with regard to σ′,
one should decide whether equation (3a) or (3b) should be
used. -en, mkl and nij can be expressed as follows [10]:
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where δij is the Kronecker delta; the tensorial deviatoric stress,
sij, can be defined as sij � σij

′ − p′δij; the mean effective stress
(p′) can be defined asp′ � σij

′ δij/3. q �
�������
3sijsij/2


is the

deviatoric stress. Although mkl and nij incorporate the
contributions from the deviatoric stress components,
(3skl/(2q) or 3sij/(2q)) and the volumetric parts (dfδkl/3 or
dgδij/3), equations (4) and (5) assume a Drucker–Prager
locus in the π− plane. df and dg can be defined as

df �
zf/zp′
zf/zq

, (6)

dg �
z
α
f/zp′α

z
α
f/zq

α/zq
α. (7)

In addition, using the consistency condition and
H � L H, Kp can be determined as

Kp � −
zf

zH
H, (8)

where H is the law for isotropic hardening. Combining
equations (1), (4), (5), and (8), the details of FP have now
been provided.

In this study, the modified subloading surface [11] is
used:

f � M
2
p′

2
+ q

2
− M

2
p′

1+c
p
′1− c
0 � 0, (9)

where c is the material constant.M is the slope of the critical
state line (CSL) in the p′ − q plane.M�Mc for compression,
and M�Me for extension. p0′ defines the location of the
subloading surface. Combining equation (9) with equations
(6) and (7), one has

df �
(1 − c)

2
M − (1 + c)η2

2η
, (10)

dg � M
1+α p′ − pc

′(  +(2 − α) pc
′ − p0′/2( 

q − qc(  +(2 − α)qc

, (11)

where pc
′ � pa[(eΓ − e)/λ]1/ξ is the stress at the critical state;

pa � 100 kPa is the atmospheric pressure; c� 0 is used when
developing equation (11). eΓ, λ, and ξ are material constants
describing the CSL in the e − p′ plane. e is the current void
ratio.

qc � q + tM p′ − pc
′( , (12)

where t�+1 for loading and t� − 1 for unloading.-e plastic
modulus can be obtained as

Kp � h0G
Mp − η
η − ηin



, (13)

where h0 � (h1 − h2e)(1 + e)exp(βψ), in which β, h1, and h2
are material constants, and ψ � e − eΓ + λ(pc

′/pa)ξ ; ηin is the
stress ratio at the last stress reversal; Mp � Mexp(− βψ) is
the stress ratio obtained at the peak state of granular soil
under shearing. Moreover, incremental elastic strain (εe

ij) is
considered using Hooke’s law:

εe
ij � C

e
ijklσkl
′ , (14)

with Ce
ijkl � [− ]δijδkl + (1 + ])/2(δikδjl + δilδjk)]/[2G (1+

])] being the tensorial elastic compliance and ] being
Poisson’s ratio. G � G0F(e)

����

p′pa



[12], where F(e) �

(2.97 − e)2/(1 + e) and G0 is a material constant. It is noted
that methods on how to determine the model constants from
laboratory tests can be found in Sun et al. [3]. -e values of
the model constants for simulating railroad ballast and sand
are shown in Table 1.

3. Numerical Implementation

In this section, the numerical methodology of the proposed
FP model is given. Strain-controlled loading and the sub-
sequent stress evolution are used in the numerical scheme,
where there are five main procedures:

(1) For step j (� 1, 2, 3, . . ., n), input the stress and strain
conditions (p′j, qj, ηj, ej, and ψj) and calculate the
jth plastic loading and flow directions by using
equations (4) and (5).
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(2) -en, calculate the hardening modulus (Hj) as well
as the elastoplastic compliance matrix (Cj) at step j
by using equations (1) and (11).

(3) Furthermore, compute the strain increments in-
duced by axial loading (εj) under drained loading.

(4) -e induced stress increments (σ′j) can then be
back-calculated using equation (14).

(5) Update the jth total stress and strain matrices after
obtaining the strain and stress increments by using
the following:

εj+1
� εj

+ εj
,

σj+1
� σj

+ σj
.

(15)

Loading and unloading are judged by the dot product of
the loading and incremental stress tensors, i.e., mijσij

′ ≥ 0 for
loading and mijσij

′ < 0 for unloading. For more details, one
can refer to Sun et al. [13]. Subroutines using the above
methodology are then implemented in MATLAB for model
simulation.

4. Model Application

-is section provides the model application in simulating
the real stress-strain behavior of ballast and sand subjected
to element tests. -e well-documented test data of crushed
basalt [14] and Firoozkuh sand [2] are simulated and
compared.

4.1. Ballast. Figure 1 shows the simulation results for the
monotonic behavior of ballast with different initial material
states [14]. All the laboratory tests were carried out on the

saturated crushed basalt with a specimen size of 300mm in
diameter and 600mm in height. For more details on test
materials and test setup, please refer to Salim and Indraratna
[14]. It is observed from Figure 1 that the proposed
mathematical approach can well capture the stress-strain
response of ballast, especially the stress dilation and strain
hardening/softening induced by different material states.

Figures 2 and 3 provide the model simulations of the
cyclic behavior of ballast with different initial states. In
Figure 2, an initial void ratio (e0) of 0.65 and a confining
pressure (σ3′) of 50 kPa are used for simulation. It can be
observed that the shearing strain amplitude (δε1) influences
the cyclic behavior of ballast. If a small strain amplitude with
higher frequency was applied, ballast would exhibit much
more volumetric contraction and arrive at a higher strength
more quickly, which indicates that a proper previbration
with small strain amplitude and higher frequency can be a
benefit for accelerating the ballast settlement.

In Figure 3, e0 of 0.65 and δε1 of 6% are used for
simulation. It can be observed that the initial confining
pressure has a significant influence on the cyclic behavior of
ballast. If a weak confinement (lower σ3′) was applied, the
material would exhibit much higher volumetric dilation and
lower strength, which indicates the instability of the ballast
layer. However, if a stronger confinement was applied,
higher strength and enhanced densification of ballast can be
achieved.

4.2. Sand. Figures 4–6 show the model simulations of the
undrained behavior of Firoozkuh No. 161 sand with different
initial material states provided by Lashkari et al. [2]. -e
Firoozkuh No. 161 sand was reported to have a coefficient of
uniformity of 1.9 and a mean particle size of 0.24. Test
samples were 5 cm in diameter and 10 cm in height. Figure 4

Table 1: Model parameters.

Item eΓ λ ξ Mc Me β α c h1 h2 G0 ]

Ballast 1 0.129 0.6 1.9 1.3 2.1 1.02 0 1.8 1.8 73 0.25
Sand 0.923 0.057 0.5 1.22 0.87 4.0 1.02 0.75 3.5 3.5 100 0.11
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Figure 1: Observed and predicted monotonic behavior of crushed basalt [14].
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shows the model simulations of the loose Firoozkuh No. 161
sand under different initial confining pressures, where it can
be found that the stress-fractional model can capture the
undrained liquefaction behavior of loose Firoozkuh No. 161
sand. -e effective stress paths are reasonably simulated.
Figure 5 shows the model simulations of the undrained
behavior of medium-dense Firoozkuh No. 161 sand, where a
good agreement between the model simulations and the test

results is observed. -e predicted effective stresses first ar-
rived at the phase transformation states and then mobilised
towards the critical state. In addition to the test results under
isotropic consolidation, Figure 6 shows the model simula-
tion of the Firoozkuh No. 161 sand subjected to initially
anisotropic consolidation. It can be found that the lique-
faction and partial liquefaction behaviors of Firoozkuh No.
161 sand are well simulated.
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Figure 2: Predicted cyclic behavior of ballast under different strain increments.
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Figure 3: Predicted cyclic behavior of ballast under different initial pressures.
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Figure 4: Simulations of the undrained behavior of loose Firoozkuh sand.
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5. Conclusions

-is study presented an application of a stress-fractional
model to simulate the constitutive behavior of granular soils,
i.e., railroad ballast and Firoozkuh sand, under undrained or
drained loads. Details of the model development and model
implementation were provided. -e main findings can be
summarized as follows:

(1) -e developed model contained twelve parameters,
which can be identified through laboratory tests.

(2) Validation against the test results of crushed basalt
revealed that the model can simulate the drained
stress-strain response, including strain hardening,
strain softening, volumetric dilation, and volumetric
contraction, of railroad ballast. Small strain incre-
mental loading can densify the material more
quickly.

(3) Validation against the test results of Firoozkuh No.
161 sand showed that the model can simulate the
undrained responses, e.g., liquefaction, partial liq-
uefaction, and steady state, of sand with different
initial material states and consolidation states.
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Figure 5: Simulations of the undrained behavior of medium-dense Firoozkuh sand.
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