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To evaluate the seismic performance of reinforced concrete (RC) columns strengthened with textile-reinforced concrete (TRC),
based on the ABAQUS numerical analysis results of 15 TRC-strengthened RC columns, the grey correlation theory was used to
determine the input variables of the model, and the accuracy of the numerical simulation results is verified by some experiments.
*en, according to FEM data, a neural network prediction model was established for the displacement ductility coefficients of
TRC-strengthened columns, and a formula was proposed for calculating the displacement ductility coefficient.*e results showed
that the BP (backpropagation) neural network model had good rationality and accuracy and that the ductility coefficients of the
strengthened columns calculated by the model agreed well with the experimental values. *erefore, the model can be applied for
predicting the displacement ductility coefficients of TRC-strengthened columns and can be used as a reference for
engineering design.

1. Introduction

Ductility is an important index for evaluating the seismic
performance of concrete structures, and good ductility could
avoid brittle failure of components and provide a certain
safety reserve for components under accidental overload [1].
Reinforced concrete (RC) has been widely used in structural
engineering applications all over the world [2], and as an
important load-bearing component of structures, RC col-
umns should provide sufficient strength, stiffness, and
ductility so that the building can withstand earthquakes [3].
*erefore, studying the ductility of RC columns and eval-
uating their seismic performance are very important topics.

*ere are still a large number of buildings around the
world that are not considered for seismic design and are
likely to be affected by earthquakes [4–6]. To reduce the
adverse effects of earthquakes on existing structures, several

strengthening methods have been proposed and widely
applied in practical projects over the past few decades.
Because these traditional strengthening methods adopt
concrete or steel [6, 7], these methods have shortcomings,
such as increasing the structural weight, easily developing
rust, and changing the structural appearance. In recent years,
with the development of composite materials, fibre-rein-
forced polymers (FRPs), a new type of reinforcement ma-
terial, have been used to strengthen and repair existing
structures. To evaluate the seismic performance of
strengthened structures, many scholars have conducted a
series of studies [8–12].*e results in the literature show that
FRPs can enhance the ductility and energy dissipation ca-
pacity of strengthened columns. Although FRPs have been
widely used for effective reinforcement, FRPs are not suit-
able for use in humid environments because of their poor
compatibility with concrete substrates and their lack of
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vapour permeability due to the use of epoxy resin as an
adhesive [13]. More importantly, it is difficult to examine
and evaluate the status of the repaired structures, as the
structures are obscured by the FRP reinforcement. To this
end, Triantafillou et al. [13] introduced the concept of
combining textile fibres with inorganic matrix (such as
cement mortar). Due to the different matrix strengths and
fibre types used by different scholars, this new type of ce-
ment-based material also has different names, such as tex-
tile-reinforced mortar (TRM) [13, 14], textile-reinforced
concrete (TRC) [15], basalt-reinforced mortar (BRM) [16],
and fabric-reinforced cementitious matrix (FRCM) [17].*e
significant difference between FRP and cement-based matrix
composites is the free edge stress concentration of FRP
confinement, which will cause premature failure of the re-
inforcement system [18].

Bournas et al. [19, 20] studied the seismic performance of
RC columns strengthened by TRM under earthquake action.
*eir results showed that TRM can improve the seismic
performance and deformation capacity of strengthened
columns. Yin et al. [21] explored the influence of different
factors on the seismic performance of TRC-strengthened
columns, and their results indicated that the ductility co-
efficient of strengthened columns increased with increasing
reinforcement layers and stirrup ratio or decreasing axial
compression ratio. Al-Salloum et al. [22] studied the effect of
TRM on the shear strength and ductility of beam-column
joints with deficient seismic performance. *eir results
showed that TRM can effectively improve the shear strength
and ductility of beam-column joints with defects. In addi-
tion, the results in [23, 24] indicate that although the
ductility coefficient of TRC-strengthened columns decreases
to some extent under environmental erosion, the overall
seismic performance of the strengthened columns is good.

Although TRC has received much attention in the field
of seismic reinforcement, relatively few studies have focused
on the ductility and deformation capacity of specimens after
strengthening, and the relationships between various factors
and the ductility coefficient have not been quantified. In
addition, many problems in strengthening concrete column
structures are nonlinear. *e factors affecting the ductility of
concrete columns are very complex, and there are certain
coupling effects between the factors and the ductility of
components. However, artificial neural networks have the
ability to perform associative reasoning, simulation think-
ing, and self-adaptive recognition, which can be found in
input-output mapping through learning [25, 26]. *erefore,
artificial neural networks (ANN) are suitable for nonlinear
reasoning and prediction in structural engineering. Back-
propagation (BP) neural networks are the most widely used
artificial neural networks, as BP neural networks have low
requirements and limitations on known data and can make
full use of existing data to analyze and study the evolution,
development, and movement rules of objects [27, 28]. It has
been successfully applied in civil engineering, such as design
[29], prediction [30–33], optimization [34], and damage
detection and identification [35, 36].

*erefore, based on the team’s previous research results
[37, 38], a BP neural network is applied to obtain the

mapping relationship between ductility and various influ-
encing factors of TRC-strengthened RC columns. Based on
the mapping relationship, a ductility coefficient formula for
reinforced columns is deduced, which enables accurate and
efficient ductility calculations and provides a scientific basis
for the evaluation of seismic performance of components
and guidance for engineering design.

2. Grey Correlation Analysis

*e grey system theory is based on the sequence operator to
realize the law of things in the process of transformation.*e
original irregular data is generated into regular sequence,
and then the differential equation method is used to predict
and analyze the development trend of things objectively and
scientifically. As the core content of grey system theory, grey
correlation analysis is a method to predict the unknown
information by using the known information. *e grey
correlation analysis is used to calculate the grey correlation
degree of several factors. *e larger the value of the cor-
relation degree is, the greater the influence of the factor on
the evaluation index is.

2.1. Significance of Grey Correlation Analysis. In this paper,
grey system theory is applied to analyze the factors affecting
the displacement ductility coefficient of TRC-strengthened
columns, including the strength grade of existing concrete,
axial compression ratio, shear span ratio, stirrup space, and
number of textile layers. Finite element simulation results of
TRC-strengthened columns were adopted as the sample
data, and the following grey correlation analysis was carried
out to obtain the ranking results of the correlation degree of
various factors. *e dominant factors affecting the dis-
placement ductility coefficient of TRC-strengthened col-
umns reflect the deformation capacity and seismic
performance of TRC-strengthened columns to some extent.
*erefore, the results of this study can also provide im-
portant references for future theoretical research and design
applications of the displacement ductility coefficient of TRC-
strengthened columns.

2.2. Correlation Analysis. In this paper, all the relevant
correlation coefficients are gathered into one value, and the
calculated average value is used to process the information.
*e correlation coefficient of each factor is calculated (i.e.,
the average value of all corresponding correlation coeffi-
cients), which is a quantitative analysis of the correlation
degree between various factors and TRC-strengthened
columns.*e specific calculations and analyses are described
hereafter.

2.2.1. Determination of Correlation Factors. According to
the results of existing research, the main factors affecting the
displacement ductility coefficient of strengthened RC col-
umns are the strength grade of existing concrete, axial
compression ratio, shear span ratio, stirrup space, and
strengthening layers. *e main content of this paper is to
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determine the influence of strengthening layers, axial
compression ratio, shear span ratio, and other parameters on
the ductility coefficient. *erefore, the following correlation
factors are selected as the comparison parameter sequence of
the system: (1) reinforcement layers x1 (0, 1, 2, 3, 4), (2) axial
compression ratio x2 (0.2, 0.3, 0.4, 0.5), (3) shear span ratio
x3 (2, 3.8, 5.6), (4) stirrup space x4 (50mm, 100mm,
150mm), and (5) concrete strength grade x5 (C30, C40, C50,
C60), namely, {xi(k) | i� 1, 2, 3, 4, 5; k� 1, 2, 3, 4, 5}. *e
displacement ductility coefficient is obtained from 15 TRC-
strengthened columns based on ABAQUS earthquake
simulations in [37, 38] used as the generating sequence of the
system. *e specific geometric dimensions and reinforcing
bars of the specimens are shown in Figure 1. And according
to [37, 38], the numerical and experimental results match
well (shown in Figure 2 [38]), which shows that the
established model and the finite element analysis results are
rational and accurate. *e correlation factors and dis-
placement ductility coefficient involved in the numerical
analysis are shown in Table 1.

2.2.2. Dimensionless Data. *e original data are initialized
according to equation (1) [39], and the initialized data are
shown in Table 2.

xi′(k) �
xi(k)

xi(1)
, i � 0, 1, 2, 3, 4, 5; k � 1, 2, . . . , 15. (1)

2.2.3. Calculation of Absolute Difference. According to
equation (2), the absolute difference between the parent
sequence and subsequence in Table 2 (i.e., the absolute
difference value results for Δi(k)) is shown in Table 3.

Δi(k) � |x0′(k) − xi′(k)|, i′ � 1, 2, 3, 4, 5; k � 1, 2, . . . , 15,

(2)

where x0′(k) is for the parent sequence (dimensionless) and
xi′(k) is for the subsequence (dimensionless).

2.2.4. Calculation of the Correlation Coefficient. Equation
(3) is used to calculate the correlation coefficient c0i(k), and
the results are shown in Table 4.

c0i(k) �
m + ZM

Δi(k) + ZM
, Z ∈ (0, 1), i � 1, 2, 3, 4, 5; k � 1, 2, 3, . . . , 15,

(3)

where c0i(k) is the correlation coefficient; Z is the resolution
coefficient, which has a value that is generally between 0 and 1
and is typically taken as 0.5;m is the minimum second-order
difference, which is 0 according to m � miniminkΔi(k); and
M is the maximum second-order difference, which is 3.02
according to m � maximaxkΔi(k).

2.2.5. Calculation of the Correlation Degree. *e correlation
degree between the subsequence xi and the parent sequence
x0 is calculated according to equation (4), which is expressed
as follows:

ci �
1
n

􏽘

n

k�1
c0i(k), n � 15, i � 1, 2, 3, 4, 5; k � 1, 2, 3, . . . , 15.

(4)

*e calculated correlation degree is ci � 0.59, 0.85,{

0.88, 0.86, 0.86 | i � 1, 2, 3, 4, 5}.

2.2.6. Ranking of Correlation Degree. By sorting the cor-
relation degree obtained from the calculation, the results
show that the influence degree of each factor on the
displacement ductility coefficient of TRC-strengthened
columns is shear span ratio > (axial compression ratio,
stirrup ratio, concrete strength) > TRC layers. In addition,
combined with the value of the correlation degree, these
five factors have a great impact on the ductility perfor-
mance of TRC-strengthened columns. *erefore, based
on these five factors, a BP neural network model was
established by MATLAB to predict the ductility change
trend of the TRC-strengthened columns.

3. Establishment of Neural Network
Prediction Model

Based on MATLAB, the BP neural network model is
established to predict the displacement ductility coefficient
of TRC-strengthened columns. *e specific operation steps
are as follows.

3.1. BP Neural Network Construction. *e structure of BP
neural network mainly includes the number of neural
network layers and neurons in each layer. Because the
three-layer BP neural network has strong nonlinear
mapping ability and can approach any nonlinear function,
the three-layer BP neural network was used to model in
this paper.*e numbers of input layers, hidden layers, and
output layers are all one. Based on the analysis mentioned
above, BP neural network includes five input parameters,
i.e., concrete strength grade, axial compression ratio,
shear span ratio, stirrup space, and strengthening layers,
and the output parameter is displacement ductility co-
efficient. *e number of input layer and output layer
neurons in the corresponding model is 5 and 1, respec-
tively. *e number of hidden layer neurons is determined
by formula (5) [40] and multiple training calculations.*e
structure of BP neural network model is shown in
Figure 3.

D �
�������
Di + D0

􏽰
+ a, (5)

where D is the number of nodes in the hidden layer,Di is the
number of input nodes, D0 is the number of output nodes,
and a is between 1 and 10.

In addition, the essence of BP learning algorithm is to get
the minimum value of error function. Because it uses the
steepest descent method in nonlinear programming to
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Table 1: Original data of the specimens.

Serial
number

Ductility
coefficient x0(k)

Reinforcement layer
x1(k)

Axial compression
ratio x2(k)

Shear span
ratio x3(k)

Stirrup reinforcement
ratio x4(k) (%)

Concrete
strength grade x5(k)

1 6.76 1 0.3 3.8 0.34 40
2 4.36 0 0.3 3.8 0.34 40
3 6.91 2 0.3 3.8 0.34 40
4 6.50 3 0.3 3.8 0.34 40
5 6.60 4 0.3 3.8 0.34 40
6 10.58 2 0.2 3.8 0.34 40
7 5.30 2 0.4 3.8 0.34 40
8 3.73 2 0.5 3.8 0.34 40
9 3.38 2 0.3 2.0 0.34 40
10 6.69 2 0.3 5.6 0.34 40
11 7.59 2 0.3 3.8 0.67 40
12 5.32 2 0.3 3.8 0.22 40
13 3.79 2 0.3 3.8 0.34 30
14 5.03 2 0.3 3.8 0.34 50
15 5.00 2 0.3 3.8 0.34 60
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Figure 1: Specimen size and reinforcement details.
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Figure 2: Hysteresis curves with different axial compression ratios of TRC-strengthened RC columns. (a) Axial compression ratios with
0.25. (b) Axial compression ratios with 0.15.
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Table 2: Initialized data of the specimens.

Serial
number

Ductility
coefficient x0′(k)

Reinforcement layer
x1′(k)

Axial compression
ratio x2′(k)

Shear span
ratio x3′(k)

Stirrup reinforcement
ratio x4′(k)

Concrete
strength grade x5′(k)

1 1.00 1.00 1.00 1.00 1.00 1.00
2 0.64 0.00 1.00 1.00 1.00 1.00
3 1.02 2.00 1.00 1.00 1.00 1.00
4 0.96 3.00 1.00 1.00 1.00 1.00
5 0.98 4.00 1.00 1.00 1.00 1.00
6 1.57 2.00 0.67 1.00 1.00 1.00
7 0.78 2.00 1.33 1.00 1.00 1.00
8 0.55 2.00 1.67 1.00 1.00 1.00
9 0.50 2.00 1.00 0.53 1.00 1.00
10 0.99 2.00 1.00 1.47 1.00 1.00
11 1.12 2.00 1.00 1.00 1.97 1.00
12 0.79 2.00 1.00 1.00 0.65 1.00
13 0.56 2.00 1.00 1.00 1.00 0.75
14 0.74 2.00 1.00 1.00 1.00 1.25
15 0.74 2.00 1.00 1.00 1.00 1.50

Table 3: Absolute difference of the specimens.

Serial
number

Ductility
coefficient Δ0(k)

Reinforcement layer
Δ1(k)

Axial compression
ratio Δ2(k)

Shear span
ratio Δ3(k)

Stirrup reinforcement
ratio Δ4(k)

Concrete
strength grade Δ5(k)

1 1 0 0 0 0 0
2 0.64 0.64 0.36 0.36 0.36 0.36
3 1.02 0.98 0.02 0.02 0.02 0.02
4 0.96 2.04 0.04 0.04 0.04 0.04
5 0.98 3.02 0.02 0.02 0.02 0.02
6 1.57 0.43 0.9 0.57 0.57 0.57
7 0.78 1.22 0.55 0.22 0.22 0.22
8 0.55 1.45 1.12 0.45 0.45 0.45
9 0.5 1.5 0.5 0.03 0.5 0.5
10 0.99 1.01 0.01 0.48 0.01 0.01
11 1.12 0.88 0.12 0.12 0.85 0.12
12 0.79 1.21 0.21 0.21 0.14 0.21
13 0.56 1.44 0.44 0.44 0.44 0.19
14 0.74 1.26 0.26 0.26 0.26 0.51
15 0.74 1.26 0.26 0.26 0.26 0.76

Table 4: Correlation coefficient data of the specimens.

Serial number c01(k) c02(k) c03(k) c04(k) c05(k)

1 1.00 1.00 1.00 1.00 1.00
2 0.70 0.81 0.81 0.81 0.81
3 0.61 0.99 0.99 0.99 0.99
4 0.43 0.97 0.97 0.97 0.97
5 0.33 0.99 0.99 0.99 0.99
6 0.78 0.63 0.73 0.73 0.73
7 0.55 0.73 0.87 0.87 0.87
8 0.51 0.57 0.77 0.77 0.77
9 0.50 0.75 0.98 0.75 0.75
10 0.60 0.99 0.76 0.99 0.99
11 0.63 0.93 0.93 0.64 0.93
12 0.56 0.88 0.88 0.92 0.88
13 0.51 0.77 0.77 0.77 0.89
14 0.55 0.85 0.85 0.85 0.75
15 0.55 0.85 0.85 0.85 0.67
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modify the weights according to the negative gradient di-
rection of error function, it usually has shortcomings such as
low learning efficiency, slow convergence speed, and easy fall
into local minimum state. Several optimization techniques
are proposed to speed up the convergence of the BP learning
algorithm [41, 42]. *e results indicate that the Levenberg-
Marquardt (L-M) algorithm was very efficient when training
networks. *e flowchart of L-M algorithm is shown in
Figure 4.

3.2. Determine Sample Data. A small number of experiments
have been designed to prove the accuracy of the finite element
results. After verification, the finite element simulation results
are in good agreement with the test results, which proves that
the finite element simulation results are accurate. In order to
better perform parametric analysis, in this paper, the training
sample data (10 groups) and test sample data (5 groups) for the
model are determined according to the data obtained from
simulation calculations. Moreover, considering the calculation
efficiency and error of the model, all the sample data are
normalized according to equation (6) before the sample is
input into the model. *e relevant linear transformation al-
gorithm is expressed as follows:

y �
(x − min)

(max − min)
, (6)

where x is the input vector, min is the minimum value of x,
max is the maximum value of x, and y is the output vector.

At the same time, the parameter εi (weight coefficient) is
introduced to obtain the true correlation between the influ-
encing factors andTRC-strengthened columns, and the specific
formula is shown in equation (7). *e weight coefficient is
combined with the data in Table 5 to obtain the input data for
the final model. *e specific results are shown in Table 6.

εi �
ci

􏽐
5
k�1 c0i

, i � (1, 2, 3, 4, 5), (7)

where ci is the correlation value between each factor and
displacement ductility coefficient calculated in Section 1 and
Section 2 of this paper.

In this paper, the five associated values
ci � 0.59, 0.85, 0.88, 0.86, 0.86 | k � 1, 2, 3, 4, 5{ } obtained in
the previous section are substituted into (7), and the weight
coefficients of each factor are obtained as follows: 0.146,
0.210, 0.218, 0.213, and 0.213. *en, the weight coefficients
are multiplied by the normalized data to obtain the input
data. *e detailed results are shown in Table 6.

3.3. Simulation of the Neural Network. *e sample data
obtained above (shown in Table 6) were input into the
established and trained neural network model, and the
accuracy of the model was verified by comparing and an-
alyzing the results of the neural network model and the
simulated calculation.

3.4. Neural Network Predicted Value. Table 7 and Figure 5
show a comparison between the predicted value of the
displacement ductility coefficient calculated by the BP neural
network model and the displacement ductility coefficient of
the TRC reinforced column obtained by finite element
analysis in previous studies.

In addition, data analysis software, Statistical Product
and Service Solutions (SPSS) [43], was used to compare the
predicted value of displacement ductility coefficient calcu-
lated in the above BP neural network model with the ex-
perimental value obtained by numerical analysis, and the
correlation between the value predicted by the BP neural
network and the experimental value was obtained. *e
specific parameters are shown in Table 8.

Table 8 shows that the R2 of the fitting degree between
the predicted value of displacement ductility coefficient
calculated based on the BP neural network model and the
measured value calculated by the above simulation is 0.83.
*erefore, the results show that the BP neural network
model based on the grey correlation analysis method has a
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Figure 3: Architecture of three-layer backpropagation (BP) neural network model.
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good prediction effect on the displacement ductility coef-
ficient of TRC-strengthened RC columns.

4. Ductility Formula

*e displacement ductility coefficient reflects the plastic
deformation capacity of the structural member. It is the ratio
of the failure displacement of the specimen to the yield
displacement, namely,

μ �
Δu

Δy

, (8)

where Δu is the ultimate displacement of the specimen,
which is the horizontal displacement when the horizontal
load drops to 85% of the peak load; Δy is the yield dis-
placement of the specimen, which is the corresponding
horizontal displacement when the specimen reaches the
initial yield point.

According to the correlation analysis and grey correla-
tion analysis of the factors influencing the seismic perfor-
mance of TRC-strengthened RC column mentioned in
Section 1 and Section 2, the displacement ductility coeffi-
cient of the TRC-strengthened RC column changes with
changes in the shear span ratio, axial compression ratio,
stirrup space, and concrete strength grade and TRC layers.

Table 5: Normalized data of the specimens.

Serial number Reinforcement layer Axial compression ratio Shear span ratio Stirrup reinforcement ratio Concrete strength grade
1 0.00 0.33 0.50 0.27 0.33
2 0.25 0.33 0.50 0.27 0.33
3 0.50 0.33 0.50 0.27 0.33
4 0.75 0.33 0.50 0.27 0.33
5 1.00 0.33 0.50 0.27 0.33
6 0.50 0.00 0.50 0.27 0.33
7 0.50 0.67 0.50 0.27 0.33
8 0.50 1.00 0.50 0.27 0.33
9 0.50 0.33 0.00 0.27 0.33
10 0.50 0.33 1.00 0.27 0.33
11 0.50 0.33 0.50 1.00 0.33
12 0.50 0.33 0.50 0.00 0.33
13 0.50 0.33 0.50 0.27 0.00
14 0.50 0.33 0.50 0.27 0.67
15 0.50 0.33 0.50 0.27 1.00

Start

Batch input learning samples,
and normalize input and output samples

Set initialization parameters, including maximum training times, learning accuracy,
number of hidden nodes, initial weight and threshold

Calculate the input layer and output layer of each layer

Calculate output layer error E (y)

Correct weights and thresholds

End

Yes

Yes

No
Note: λi is the adjustment of the gradient

λi (y) < ε

Figure 4: A flowchart of Levenberg-Marquardt algorithm.
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*erefore, the influences of the shear span ratio, axial
compression ratio, stirrup space, and concrete strength
grade are considered when deducing the displacement
ductility coefficient of the reinforced column.

In this section, the influence of the shear span ratio, axial
compression ratio, stirrup ratio, fibre braided mesh layout
layers, concrete strength grade, and TRC layers on the
displacement ductility coefficient of TRC-strengthened RC
columns is considered to establish a function according to
[44]. *e function form is expressed in the following
equation:

μ �
a + c(λ − d)

��
λv

􏽰
+ eλs/(g + λ)

in + j
, (9)

where μ is the displacement ductility coefficient, λs is the
characteristic value of the fibre volume, and λ is the shear
span ratio.*e a, c, d, e, g, i, j are regression coefficients to be
determined.

*e characteristic values of stirrup volume and fibre
volume can be calculated according to equations (10) and
(11), respectively:

λv � ρv

fyv

fc

�
nAsl

Acors

fyv

fc

�
Asvlg

l1l2sg

×
fyv

fc

, (10)

λs � ρs

fs

fc

�
τsls

bh
×

fsu

fc

, (11)

where λv is the characteristic value of the stirrup volume; fc is
the compressive strength of the concrete; ρv is the volume
matching rate; n is the axial compression ratio; s the sectional
area of tensile steel bars; l is the length of the stirrup; Acor is the
concrete core area; As is the stirrup space; fyv is the stirrup
design strength;Asv is the cross-sectional area of stirrup; lg is the
perimeter of the stirrups; l1 and l2 are the lengths of two sides of
the rectangular stirrups; sg is the stirrup spacing; λs is the
characteristic value of the fibre volume; τs and ls are the section
thickness and total perimeter of the carbon fibres, respectively; b
and h are the cross-sectional width and height of the column;
and fsu is the ultimate tensile strength of the carbon fibres.

Relevant parameters of TRC-strengthened columns that
consider the shear span ratio, axial compression ratio, stirrup
ratio, TRC layers, and concrete strength grade in Table 9 and

Table 6: Sample input sample data.

Serial number Reinforcement layer Axial compression ratio Shear span ratio Stirrup reinforcement ratio Concrete strength grade
1 0.00 0.07 0.11 0.06 0.07
2 0.04 0.07 0.11 0.06 0.07
3 0.07 0.07 0.11 0.06 0.07
4 0.11 0.07 0.11 0.06 0.07
5 0.15 0.07 0.11 0.06 0.07
6 0.07 0.00 0.11 0.06 0.07
7 0.07 0.14 0.11 0.06 0.07
8 0.07 0.21 0.11 0.06 0.07
9 0.07 0.07 0.00 0.06 0.07
10 0.07 0.07 0.22 0.06 0.07
11 0.07 0.07 0.11 0.21 0.07
12 0.07 0.07 0.11 0.00 0.07
13 0.07 0.07 0.11 0.06 0.00
14 0.07 0.07 0.11 0.06 0.14
15 0.07 0.07 0.11 0.06 0.21

Table 7: Comparison of measured and predicted values.

Serial number
Displacement ductility coefficient

Measured value Predicted value Measured/predicted value
1 4.36 4.52 0.964
2 6.76 5.91 1.144
3 6.91 6.42 1.076
4 6.5 6.40 1.016
5 6.6 6.49 1.016
6 10.58 10.62 0.996
7 5.3 5.23 1.014
8 3.73 5.69 0.656
9 3.38 3.39 0.998
10 6.69 6.77 0.989
11 7.59 7.56 1.004
12 5.32 5.27 1.009
13 3.79 5.74 0.661
14 5.03 5.12 0.982
15 5 4.99 1.002
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the displacement ductility coefficient obtained by numerical
calculation are used as the input sample (ten sets of sample data
and five sets of test data). *en, the data are substituted into
MATLAB software for nonlinear regression to obtain the value
of the regression coefficient. *en the regression coefficient is
substituted into equation (9) to obtain equation (12). *e
results of the calculation and analysis are compared as shown in
Table 10.

μ �
0.66 + 1.24(λ − 1.49)

��
λv

􏽰
+ 3.16λs/(0.65 + λ)

n − 0.07
. (12)

A further comparison between the calculated and exper-
imental displacement ductility coefficient was performed with
the data analysis software SPSS, and the predictive value fit of
the proposed formula was assessed, as shown in Table 10 and
Figure 6. Table 11 shows that the R2 is 0.805, the adjusted R2

value after considering the number of independent variables is
0.790, and most of the errors between the predicted and
simulated values calculated by the formula are within 15%.
*erefore, the calculated and experimental results are in good
agreement, indicating that the proposed equation can provide a
reference for engineering design and seismic performance
evaluation.
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Figure 5: Ratio of measured value and predicted value of displacement ductility coefficient (Table 7).

Table 8: BP neural network predicted value fit.

Model R R2 Adjusted R2 Standard deviation error
1 0.911 0.830 0.817 0.696

Table 9: Raw sample data.

Serial number Ductility
coefficient μ

Reinforcement
layer λs

Axial
compression ratio

n

Shear span ratio
λ

Stirrup reinforcement ratio
λv

Concrete
strength grade

1 4.36 0.00 0.3 3.8 0.037 40
2 6.76 0.08 0.3 3.8 0.037 40
3 6.91 0.15 0.3 3.8 0.037 40
4 6.50 0.23 0.3 3.8 0.037 40
5 6.60 0.30 0.3 3.8 0.037 40
6 10.58 0.15 0.2 3.8 0.037 40
7 5.30 0.15 0.4 3.8 0.037 40
8 3.73 0.15 0.5 3.8 0.037 40
9 3.38 0.15 0.3 2.0 0.037 40
10 6.69 0.15 0.3 5.6 0.037 40
11 7.59 0.15 0.3 3.8 0.074 40
12 5.32 0.15 0.3 3.8 0.024 40
13 3.79 0.20 0.3 3.8 0.050 30
14 5.03 0.12 0.3 3.8 0.031 50
15 5.00 0.10 0.3 3.8 0.026 60
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5. Conclusions

Based on the numerical analysis results, the correlation
degree between the TRC layers, axial compression ratio,
shear span ratio, stirrup space, concrete strength grade, and
ductility of TRC-strengthened columns was analyzed.
Furthermore, a BP neural network prediction model based
on grey system theory was established inMATLAB, and then
a formula was proposed for the displacement ductility co-
efficient of TRC-strengthened columns. *e specific con-
clusions of this study are as follows:

(1) *e influence of various factors on the ductility
coefficient of reinforced columns is ranked as

follows: shear span ratio > (axial compression ratio,
stirrup space, and concrete strength grade)>TRC
layers. *is ranking was obtained by calculating the
correlation value between the displacement ductility
coefficient and various factors of TRC-strengthened
columns. *ese results indicate that the factors se-
lected in this paper have a substantial impact on the
ductility of reinforced columns, and the correlations
of these factors are strong.

(2) A BP neural network model with three layers was
established to predict the displacement ductility
coefficient of TRC-strengthened columns. *e re-
sults show that the model can be used to predict the
ductility coefficient of TRC-strengthened columns.

(3) Based on the developed BP neural network predic-
tion model, which is based on grey system theory, a
formula for calculating the displacement ductility
coefficients of TRC-strengthened columns is

Table 10: Comparison of the measured and predicted value.

Serial number
Displacement ductility coefficient

Measured value Predicted value Measured/predicted value
1 4.36 5.27 0.83
2 6.76 5.51 1.23
3 6.91 5.73 1.21
4 6.5 5.98 1.09
5 6.6 6.19 1.07
6 10.58 10.13 1.04
7 5.3 3.99 1.33
8 3.73 3.06 1.22
9 3.38 4.18 0.81
10 6.69 7.46 0.90
11 7.59 6.72 1.13
12 5.32 5.26 1.01
13 5.64 6.27 0.90
14 5.03 5.43 0.93
15 5 5.19 0.96
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Figure 6: Ratio of measured value and predicted value of displacement ductility coefficient (Table 10).

Table 11: Predicted value fit of the proposed formula.

Model R R2 Adjusted R2 Standard deviation error
1 0.897 0.805 0.790 0.810
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established by considering the influences of the shear
span ratio, axial compression ratio, stirrup space,
textile layers, and concrete strength grade on the
displacement ductility coefficient. A verification
process with relevant data shows that the calculated
values are in good agreement with the experimental
values, which indicates that the proposed ductility
formula has a certain accuracy and rationality and
that the formula can be used for predicting dis-
placement ductility coefficients of TRC-strengthened
columns and can provide a certain reference for
engineering design.
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