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Liquefaction evaluation on the sands induced by earthquake is of significance for engineers in seismic design. In this study, the
random forest (RF) method is introduced and adopted to evaluate the seismic liquefaction potential of soils based on the shear
wave velocity. -e RF model was developed using the Andrus database as a training dataset comprising 225 sets of liquefaction
performance and shear wave velocity measurements. Five training parameters are selected for RF model including seismic
magnitude (Mw), peak horizontal ground surface acceleration (amax), stress-corrected shear wave velocity of soil (Vs1), sandy-
layer buried depth (ds), and a new introduced parameter, stress ratio (k). In addition, the optimal hyperparameters for the random
forest model are determined based on the minimum error rate for the out-of-bag dataset (ERROOB) such as the number of
classification trees, maximum depth of trees, and maximum number of features. -e established random forest model was
validated using the Kayen database as testing dataset and compared with the Chinese code and the Andrus methods. -e results
indicated that the random forest method established based on the training dataset was credible. -e random forest method gave a
success rate for liquefied sites and even a total success rate for all cases higher than 80%, which is completely acceptable. By
contrast, the Chinese code method and the Andrus methods gave a high success rate for liquefaction but very low for non-
liquefaction which led to the increase of engineering cost. -e developed RF model can provide references for engineers to
evaluate liquefaction potential.

1. Introduction

Soil liquefaction occurs if saturated sand suffers loss of
strength and modulus due to the increase of excess pore
pressure when subjected to strong earthquake loading. It was
not until the 1964 Niigata earthquake in Japan and the
Alaska earthquake in the United States that people fully
realized the harm of sand liquefaction. -ese two earth-
quakes caused the damage of many buildings and the loss of
people’s lives and property, which highlighted the need to
study the liquefaction potential of saturated sand.

Many scholars have presented different methods for
liquefaction evaluation based on in-situ tests such as shear
wave velocity (Vs) [1–5], standard penetration test (SPT)
[6–9], and cone penetration test (CPT) [10–13]. Compared

with SPT-based and CPT-based liquefaction evaluation
methods, the advantage of Vs-based methods is that they are
less sensitive to soil characteristics [4]. In addition, shear
wave velocity tests can be easily performed in soils while SPT
and CPT tests are limited by the soil type such as gravelly
sands. -ese advantages make the Vs-based method irre-
placeable and have a bright development prospect for liq-
uefaction evaluation. At present, the most widely accepted
liquefaction evaluation method based on shear wave velocity
is proposed by Andrus and Stokoe [1] by establishing the
liquefaction assessment curves based on the correlation
between CRR (liquefaction resistance) and Vs. Kayen et al.
[2] further presented updated Vs-based liquefaction as-
sessment curves based on 422 case histories and concluded
that the correlation developed between CRR and Vs is
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insensitive to fines content (FC). Shen et al. [14] established
an updated liquefaction assessment curves based on 261
cases histories combining the Andrus database with new
collected cases from Canterbury earthquake. However, these
Vs-basedmethods are commonly empirical or semiempirical
and are easily limited by local data. In addition, there are
several factors influencing the liquefaction evaluation such
as sandy-layer buried depth (ds), ground water table (dw),
and peak horizontal ground surface acceleration (amax).
Unfortunately, the existing Vs-based methods cannot clearly
explain the relationship between influencing factors and
liquefaction potential.

With the continuous development of computer tech-
nology, machine learning methods such as adaptive neuro
fuzzy inference system (ANFIS), artificial neural network
(ANN), and support vector machine (SVM) make it possible
to solve the above problems. -e advantage of machine
learning method is that it is not necessary to consider the
relationship between input and output variables and can
obtain the accurate prediction by relying on the collected
data itself. Xue and Yang [15] adopted the ANFIS model for
the assessment of liquefaction potential, which provided
more accurate results than traditional empirical methods
including seed simplified methods [16] and CPT-based
method proposed by Stark and Olson [17]. Hanna et al. [18]
established an ANN model for liquefaction evaluation uti-
lizing 12 parameters related to soil and seismic character-
istics. Zhao et al. [19] employed the SVM method to assess
the soil liquefaction based on SPTand CPTdata through the
particle swarm optimization (PSO) [20], for searching the
kernel functions and training parameters.-ese methods get
a satisfactory result compared with traditional empirical
methods, but there still exist some shortcomings. For ex-
ample, ANN and ANFIS approaches are time consuming in
terms of the optimal selection of parameters due to the fact
that the number of training parameters is excessive and the
model is easy to fall into overfitting. -e SVM method is
difficult to operate large-scale training data and is sensitive
to the choice of parameters and kernel function. At present,
there is still no effective method to solve this problem.
Moreover, the machine learning models established by
single dataset may not perform well in other liquefaction
datasets [21]. Kohestani et al. [22] also stated that machine
learning methods have a limited domain of applicability and
are mostly case dependent. -erefore, it is necessary to
improve these existing methods or seek for other more
advanced methods for liquefaction evaluation.

-e random forest (RF) is an ensemble learning algo-
rithm developed by Breiman [23] based on a combination of
a large set of decision trees. -e advantage of the random
forest is that it is simpler in selection of hyperparameter and
can solve the overfitting problem [22, 24]. RF method has
been successfully used for solving the geotechnical engi-
neering such as landslide [25], ground surface settlements
[24, 26], the prediction of soil shear strength [27], and
bearing capacity of foundations [28]. However, few studies
have been reported about the RF model applications in the
liquefaction evaluation. Kohestani et al. [22] reported the
evaluation of liquefaction potential based on CPTdata using

RF method. Nejad et al. [29] established a RF model for
predicting the occurrence or nonoccurrence of liquefaction
based on the shear wave velocity data collected by Kayen
et al. [2]. However, these liquefaction models using RF
cannot be well verified by other datasets since limited dataset
was utilized by separating training dataset from testing set
randomly.

In this study, the liquefaction evaluation was con-
ducted based on shear wave velocity by using the random
forest. A total of 225 cases from Andrus et al. [1] and 336
cases from Kayen et al. [2] with respect to liquefaction and
nonliquefaction histories are used as training dataset and
testing dataset, respectively. -e performance of the
model using the RF method for liquefaction evaluation
proposed in this study is compared with the Chinese code
method [30] and the method proposed by Andrus et al.
[1], respectively.

2. Method

2.1. RandomForest. -e random forest (RF) is an intelligent
recognition method based on statistical learning theory [23].
Many predictors are generated based on the strategy of
ensemble learning, which can be applied for solving clas-
sification and regression problems by classification tree and
regression tree, respectively. -e purpose of this study is to
evaluate the liquefaction potential of soil. -ere are two
results for liquefaction evaluation including liquefaction or
nonliquefaction; thus, classification tree is adopted herein.
Figure 1 shows the general architecture of the random forest
for classification, where X is the training dataset, n is the
number of classification trees (represented by n_estimator in
machine learning tool, Scikit-learn), and max_depth is the
maximum depth of the tree which plays an important role in
controlling the complexity and size of the tree. -e con-
struction process of the random forest is summarized as
follows.

(1) New training subsets Xn are generated by randomly
drawing samples with replacement from original
training dataset (X). Each training subset contains
approximately two-thirds of the elements of X
(called bootstrap samples) and the remaining ele-
ments are called out-of-bag (OOB) samples. OOB
samples can be used to evaluate the generalization
ability of the random forest model based on the
calculation of OOB error rate (ERROOB) for training
subsets, which can be also utilized to determine the
optimal hyperparameters of the random forest
model [28] such as n_estimator, max_depth, and
max_features (the number of training parameters in
random subset at each node).

(2) For each subset Xn, the classification tree is growing.
At each node of the tree, rather than choosing the
best spilt among all training parameters in classifi-
cation tree, max_features training parameters is
randomly selected and the best spilt is chosen among
them based on calculating the value of Gini index as
follows [31, 32]:
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where Pi represents the possibility of class Kt in Xn
and t is the number of the classes which is 2 for
liquefaction evaluation since the classification result
only has two types: liquefaction or nonliquefaction.

(3) -e random forest produces classification results Kt
for each classification tree. -e final classification
result (K) is obtained based on the voting results by
following the principle that the minority is subor-
dinate to the majority [22].

2.2. Database. -e database published by Andrus et al. [1]
(hereafter called the Andrus database) was used as training
dataset in this study to develop the liquefaction evaluation
model using random forest. Numerous scholars have used
the Andrus database to develop the new model for lique-
faction evaluation and the authority of Andrus database is
widely recognized [5, 33]. -e fundamental parameters such
as Mw (moment magnitude), ds (sandy-layer buried depth),
dw (depth of ground water table), Vs1 (overburden pressure-
corrected shear wave velocity), and amax (peak horizontal
ground surface acceleration) are provided in Table 1. As
shown in Table 1, the Andrus database collected 225 cases of
shear wave velocity data from 26 earthquakes and more than
70 sites, including 96 liquefaction and 129 nonliquefaction
cases. According to the Chinese seismic intensity table [34],
the dataset is divided into seismic intensities VI, VII, VIII,
and IX, as shown in Table 2.

-e database published by Kayen et al. [2] (hereafter
called the Kayen database), given in Table 3, also consists of
soil and seismic parameters including Mw, ds, dw, Vs1, and
amax. -e Kayen database was used as testing dataset which
consists of 415 case studies collected from 256 sites of nine

earthquakes mainly distributed in Asia, Greece, the United
States, and China. Excluding 79 sets of cases which were
duplicated with the Andrus database, a total of 336 cases
were used as testing dataset and the classification is shown in
Table 4.

2.3. Selection of Training Parameters. -e accuracy of the
random forest method for liquefaction evaluation is highly
related to the selection of influence parameters, which can be
divided into three categories including the intensity of
ground motion, buried condition of soil layer, and com-
pactness of soil. -ere are 9 liquefaction influencing pa-
rameters in the Andrus and Kayen database. Among these
parameters, the seismic magnitude (Mw), peak horizontal
ground surface acceleration (amax), and cyclic stress ratio
(CSR) reflect the intensity of groundmotion; the sandy-layer
buried depth (ds), depth of water table (dw), total vertical
stress of soil at the depth considered (σr), effective vertical
stress of soil at the same depth ((σr

′), and shear stress re-
duction factor (rd) reflect the buried conditions of soil layer;
the stress-corrected shear wave velocity (Vs1) characterizes
the compactness of soils. Some of these parameters are
coupled with each other and have strong correlation which
leads to the inaccuracy of the model. -erefore, it is nec-
essary to analyze the correlation of these parameters and
select the training parameter that is less relevant to the others
to establish the random forest model.

Figure 2 shows the correlation matrix of these param-
eters. It can be seen that four parameters ds, dw, σr, and σr

′
that reflect the buried condition of soils have strong cor-
relation, which will reduce the accuracy of the model.
-erefore, a new parameter k is introduced herein to reflect
the buried condition of soil layer. Yao et al. [35] proposed
the stress ratio, k, to establish a logistic regression model for
liquefaction evaluation and achieved satisfying evaluating
results. -e stress ratio, k, is defined as
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Figure 1: A general architecture of the random forest.
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k � σr/σr
′. (2)

It can be shown from Figure 2 that, compared with
dw, k is less relevant to σr and σr

′. In addition, rd only
depends on the buried depth of sand, ds. -us, the stress
ratio, k, and sandy-layer buried depth, ds, are selected as
training parameters for the random forest model to
reflect the buried condition of soil layer. CSR and amax are
two highly correlated factors, while amax is more easily
obtained than CSR. -us, amax and Mw are selected to
reflect the intensity of ground motion. Moreover, the
corrected shear wave velocity of soil, Vs1, reflects the
compactness of soil. Shear wave velocity are of great
significance for the establishment of the liquefaction
evaluation model. In summary, five factors including ds,
k, amax, Mw, and Vs1 are used as training parameters in
the random forest model. Table 5 shows the statistical
information of training parameters used for model
training and normal distribution is selected for these
parameters.

2.4. Optimizing the Random Forest Hyperparameters. -e
best prediction accuracy of the random forest model can be
obtained by tuning hyperparameters. As presented in Sec-
tion 2.1, three hyperparameters need to be optimized in-
cluding n_estimator, max_depth, and max_features. -e
value of ERROOB for each combination of hyperparameters
was calculated, and we chose the optimal combination for
three hyperparameters corresponding to minimum ERROOB
[36]. -e n_estimator was initially set as 1–100 and
max_depth was set as 1–20. Usually, max_features<M (the
number of training parameters), which is 5 in this study as
discussed above. -e default max_features is [log2 (M) + 1]
[36] and then is decreasing and increasing until the mini-
mum ERROOB is obtained. -e optimal hyperparameters
were determined as max_features� 2, max_depth� 7, and
n_estimator� 13. -e same optimal hyperparameters were
used in the random forest model to evaluate the liquefaction
potential based on the new Kayen database [2]. -e pre-
dicted result can be produced by using python programming
language in Scikit-learn [37].

Table 1: Database published by Andrus et al. [1].

No. Earthquake Mw No. of cases ds (m) dw (m) Vs1 (m/s) amax(g)

1 1906 San Francisco 7.7 12 4.2∼8 2.4∼6.1 131∼168 0.32∼0.36
2 1957 Daly City 5.3 5 3.5∼7.9 2.7∼5.9 105∼220 0.11
3 1964 Nigita Japan 7.5 4 3.2∼6.2 1.2∼5 112∼162 0.16
4 1975 Haicheng China 7.3 6 3∼10.2 0.5∼1.5 98∼147 0.12
5 1979 Imperial Valley, California 6.5 11 3∼4.7 1.5∼2.7 90∼173 0.12∼0.51
6 1980 Mid-Chiba Japan 5.9 2 6.1∼14.8 1.3 155∼195 0.08
7 1981 Westmorland, California 5.9 11 3∼4.7 1.5∼2.4 90∼173 0.02∼0.36
8 1983 Borah Peak, Idaho 6.9 18 1.9∼3.7 0.8∼3 94∼274 0.23∼0.46
9 1985 Chiba-Ibaragi-Kenkyo, Japan 6.0 2 6.1∼14.8 1.3 155∼195 0.05
10 1986 Taiwan (event Lsst2) 5.3 4 5.3∼6.1 0.5 127∼156 0.05
11 1986 Taiwan (event Lsst3) 5.5 4 5.3∼6.1 0.5 127∼156 0.02
12 1986 Taiwan (event Lsst4) 6.6 4 5.3∼6.1 0.5 127∼156 0.22
13 1986 Taiwan (event Lsst6) 5.4 4 5.3∼6.1 0.5 127∼156 0.04
14 1986 Taiwan (event Lsst7) 6.6 4 5.3∼6.1 0.5 127∼156 0.18
15 1986 Taiwan (event Lsst8) 6.2 4 5.3∼6.1 0.5 127∼156 0.04
16 1986 Taiwan (event Lsst12) 6.2 4 5.3∼6.1 0.5 127∼156 0.18
17 1986 Taiwan (event Lsst13) 6.2 4 5.3∼6.1 0.5 127∼156 0.08
18 1986 Taiwan (event Lsst16) 7.6 4 5.3∼6.1 0.5 127∼156 0.14
19 1987 Chiba-Toho-Oki, Japan 6.5 1 9 6.2 150 0.1
20 1987 Elmore Ranch, California 5.9 11 3.4∼4.7 1.5∼2.7 90∼173 0.03∼0.24
21 1987 Superstition Hills, California 6.5 11 3.0∼4.7 1.5∼2.7 90∼173 0.18∼0.21
22 1989 Loma Prieta, California 7.0 67 2.3∼9.9 0.6∼6.1 91∼209 0.1∼0.45
23 1993 Kushiro –Oki Japan 8.3 2 4.2∼4.5 0.9∼1.9 135∼152 0.41
24 1993 Hokkaido-Nansei-Oki, Japan 8.3 4 2.0∼7.0 1.0∼1.4 74∼143 0.15∼0.19
25 1994 Northridge, California 6.7 3 4.4∼5.6 3.4 129∼160 0.51
26 1995 Hyogo-Ken Nanbu, Japan 6.9 19 3.3∼11.5 1.5∼7 110∼214 0.12∼0.65

Table 2: Data classification based on the Andrus database [1].

Seismic intensity L NL Total
VI 0 34 34
VII 23 46 69
VIII 35 35 70
IX 38 14 52
Total 96 129 225
Note. L represents liquefied sites; NL represents nonliquefied sites.
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3. Results and Analysis

-e random forest model trained by the Andrus database is
compared with the Chinese code method and the Andrus
method by using the same database. Accordingly, these two
methods will be introduced in brief first. Moreover, the
established random forest model is validated by evaluating
the actual cases and comparing with these two methods by
using the Kayen database which was not used in the training
process.

3.1. 7e Chinese Code Method for Liquefaction Evaluation.
-e critical shear wave velocity, Vscri, is used as an index to
evaluate soil liquefaction in the Chinese code [30], which is
expressed as

Vscri � Vs0

��������������

ds − 0.0133ds
2

 



1 − 0.185
dw

ds

 , (3)

where Vs0 � a reference value of shear wave velocity, which is
65m/s, 90m/s, and 130m/s for seismic intensity VII, VIII,
and IX, respectively.

When the stress-corrected shear wave velocity, Vs1, is
smaller thanVscri, the site is evaluated as liquefied; otherwise,
it is nonliquefied. It should be noted that the Chinese code
method does not evaluate the sites distributed in seismic
intensity VI and X. -erefore, the cases in seismic intensity
VI and X were excluded from comparisons among different
methods.

3.2. 7e Andrus Method for Liquefaction Evaluation.
Andrus et al. proposed a method for liquefaction evaluation
[1], called the Andrus method hereafter, which is written as

Table 3: Database published by Kayen et al. [2].

No. Earthquake Mw No. of cases ds (m) dw (m) Vs1 (m/s) amax(g)

1 1906 San Francisco 7.7 2 4.75∼9.85 2.4∼6.1 172∼172.1 0.32∼0.366
2 1948 Fukui 7.1 11 1.1∼9.5 0.5∼1.3 134∼312.5 0.5
3 1964 Niigata Japan 7.5 9 3.6∼10.5 1.2∼5 122.2∼170.6 0.16∼0.18
4 1968 Tokachi Oki 7.9 5 2.75∼6.5 0.8∼1 109.9∼148.5 0.15∼0.23
5 1973 Miyagi Ken Oki 7.4 11 3∼9 0.5∼2.7 110.2∼171.8 0.2∼0.32
6 1975 Haicheng 7.1 6 1.9∼10.25 0.5∼1.5 101.3∼152.1 0.12
7 1976 Tangshan 8.0 24 1.35∼8.15 0.7∼3.7 140.9∼336.6 0.2∼0.45
8 1978 Miyagi Ken Oki 6.7 8 4.3∼7.5 0.5–2.6 140.9∼172.2 0.12∼0.14
9 1979 Imperial Valley 6.5 11 3∼4.65 1.4∼2.7 98.3∼203.9 0.12∼0.51
10 1980 mid Chiba 5.9 2 6.15∼14.8 1.4 152.7∼153.8 0.08
11 1981 Westmorland 5.9 11 3.15∼4.65 1.4∼2.7 98.3∼203.9 0.02∼0.36
12 1983 Nihonkai Chubu 7.7 8 4∼7.075 0.4∼1.5 123.4∼184.2 0.12∼0.28
13 1983 Nihonkai Chubu Aftershock 7 2 4.4∼6 0.4∼1.0 123.4∼139 0.12
14 1983 Bora Peak 6.9 24 2∼3.65 0.8∼3 114.9∼328.6 0.23∼0.5
15 1986 Lotung LSST 6∼6.2 6 3.5 0.5 159.2 0.04∼0.18
16 1986 Chiba Ibaragi Kenkyo 6 2 6.15∼14.8 1.4 152.7∼153.8 0.06
17 1987 Chiba Toho Oki 6.5 1 9.1 6.2 110.8 0.1
18 1987 Superstition Hills 6.5 11 3.15∼4.65 1.4∼2.7 99.4∼211.7 0.15∼0.2
19 1987 Elmore Ranch 5.9 11 3.15∼4.65 1.4∼2.7 98.3∼211.7 0.03∼0.15
20 1989 Loma Prieta 7 59 2.15∼9.85 0.6∼6.4 124∼239.6 0.11∼0.47
21 1993 Kushiro 7.6 8 2.55∼9 1.0∼2.0 118.5∼197.6 0.4∼0.46
22 1993 Hokkaido Nansei Oki 7.7 27 1.45∼7.5 0.5∼3 81.7∼213 0.14∼0.50
23 1995 Hyogo Nambu 7 85 2.5∼18.5 0.5∼7 124.3∼298.2 0.12∼0.60
24 1999 Chi Chi 7.6 14 2.15∼12.7 0.5∼3 147.4∼217.8 0.25∼0.70
25 1999 Druce 7.4 2 7.25∼7.5 2.4 137.3∼146.7 0.4
26 2000 Tottori Seibu 6.8 3 5.6∼6.0 1.0∼2 100.1∼129.5 0.33∼0.38
27 2001 Geiyo Hiroshima 6.8 5 2.5∼10.5 1.0∼3 145.9∼179.3 0.25∼0.26
28 2002 Denali Fault 7∼7.9 9 1.75∼2.35 0.5∼1 149.1∼362.9 0.36∼0.39
29 2003 Sanriku Minami 7 11 3.0∼9.0 0.5∼2.7 110.2∼172.2 0.22∼0.28
30 2003 Tokachi Oki 7.8 6 4.5∼9.0 1.0∼2 109.9∼197.6 0.09∼0.4
31 2003 Tokachi Oki Aftershock 7.1 1 6.5 1.0 109.9 0.13
32 2007 Niigata Chuetsu Oki 6.6 2 3.5∼5.0 2.4 136.7∼157.8 0.68
33 2008 Achaia Elia 6.5 2 5.5 2.4 191.0∼193.4 0.33
34 2011 Tohoku 9.0 2 4.55∼4.6 2.4 139.0∼139.5 0.27
35 2011 Tohoku Aftershock 7.4 10 2.9∼9.0 2.4 111.1∼172.7 0.2∼0.76

Table 4: Data classification based on the database published by
Kayen et al. [2].

Seismic intensity L NL Total
VI None 4 4
VII 23 17 40
VIII 80 29 109
IX 145 35 180
X 3 None 3
Total 251 85 336
Note. L represents liquefied sites; NL represents nonliquefied sites.
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where CRR� soil liquefaction resistance, Vs �measured
shear wave velocity, Pa is a reference stress of 100 kPa, and
V∗s1 � limiting upper value of Vs1.

Once CSR>CRR, liquefaction is predicted to occur;
otherwise, liquefaction does not happen. More details about
the method can be referred to reference [1].

3.3. Comparison among Different Methods. It should be
noted that 34 sets of cases in seismic intensity VI are re-
moved in order to compare the random forest method with
the Chinese code method. Table 6 shows the success rates of
liquefaction evaluation based on the Andrus database by
different methods. -e total success rate is defined as the
ratio of site number evaluated successfully to total site
number. Take the total success rate of the Chinese code
method as an example. As displayed in Table 2, there are 96
liquefied sites and 95 nonliquefied sites in seismic intensity
VII, VII, and IX. Of these, 86 liquefied sites and 28 non-
liquefied sites are successfully evaluated by the Chinese code
method. -us, the total success rates, Stotal, is obtained as

Stotal � (86 + 28)/(96 + 95) × 100% � 59.7%. (5)

For liquefied sites, the success rates using the Chinese
code method and the Andrus method are 89.6% and 97.9%,
respectively. However, the success rates for nonliquefied
sites are only 29.5% and 34.7%, respectively. -ese two
methods with total success rates smaller than 70% tend to be
conservative. -e random forest method gives a satisfactory
total success rate of 96.9%, along with 100% at liquefied sites.
To be noted, three methods all give satisfactory success in
terms of predicted result of liquefied sites presented in
Table 6, which are close to or more than 90%. -e random
forest method shows a significant difference in the predic-
tion of nonliquefied sites as compared with the other two
methods. Many nonliquefied sites are misjudged as liquefied
sites by the Chinese code method and the Andrus method
while the random forest method correctly classifies most
cases of nonliquefied sites. In conclusion, the other two
methods are fairly conservative. -e random forest method
can satisfactorily predict both liquefied sites and non-
liquefied sites.

-e success rates of liquefaction evaluation obtained by
the random forest model based on the Kayen database are
depicted in Table 7 by comparing with the Chinese code
method and the Andrus method, noting that 7 sets of cases
were excluded from the Kayen database. It is concluded that
the Chinese code method and the Andrus method give
success rate greater than 90% at liquefied sites for most
seismic intensities except 78.3% for the Chinese code
method at seismic intensity VII. -e total success rates for
liquefied sites obtained by the random forest method are
more than 80%. However, the success rates for nonliquefied
sites given by the Chinese code method and the Andrus
method are too low. For example, the success rates given by
these two methods at seismic intensity VIII and IX are both
less than 15%. -erefore, it tends to be conservative and
increase the engineering cost if these two methods are used
for seismic design. For liquefied sites, the Chinese code
method and the Andrus method give the total success rates
of more than 95% (regardless of seismic intensity), and the
random forest method gives a value of 83.1% which has
reached an acceptable level. However, the total success rates
for nonliquefied sites given by the Chinese code method and
the Andrus method are 23.5% and 15.4%, respectively, while
75.3% is given by the random forest method which is far
higher. Moreover, the total success rate given by the random
forest method for all cases is 81.2% which is the highest of all
methods. It can be inferred that the random forest method is
effective and reliable. Moreover, the random forest method
developed in this study differs from the conventional studies
which divided a database into 70% as the training dataset
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Figure 2: -e correlation matrix of training parameters.

Table 5: Statistics of the Andrus dataset for training (N� 225) [1].

Training parameters ds (m) k amax (g) Mw Vs1 (m/s)

Maximum 15 2.51 0.65 8.3 318
Minimum 1.9 1.07 0.02 5.3 99
Median 5.3 1.41 0.18 6.9 159
Mean 5.46 1.57 0.23 6.72 161.85
Standard deviation 2.22 0.45 0.15 0.65 31.01

Table 6: Success rates given by different methods based on the
Andrus database [1].

Evaluation method L (%) NL (%) Total (%)
-e Chinese code method 89.6 29.5 59.7
-e Andrus method 97.9 34.7 66
-e Random forest 100 95.8 96.9
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and remained 30% as the testing dataset. Two independent
databases including the Andrus database and Kayen data-
base are selected as the training dataset and testing dataset,
respectively. -e results indicate that the random forest
model developed in this study is not only applicable in the
range of training data, which limited the generalization
[21, 22]. -e application of the random forest is expanded in
the engineering, which can provide references for similar
projects.

-e feature importance of the random forest model is
used to output the importance of each training parameter,
whose sum is equal to 100% [38]. Figure 3 shows the feature
importance of each training parameter. It is worth noting
that amax and Vs1 are the two most important parameters for
predicting soil liquefaction, which is in line with the con-
clusion given by Nejad et al. [29] and Yang et al. [39]. -e
other three parameters also show 15% feature importance
for liquefaction evaluation, which indirectly proves that it is
reasonable to choose these five parameters as training pa-
rameters and the liquefaction evaluation results are also
credible.

Even though the random forest method has been suc-
cessfully applied in soil liquefaction evaluation, there still
exist some limitations that need to be mentioned for further
research. -e accuracy of the random forest model may be
further improved by tuning other hyperparameters. On the
other hand, even though the contribution of each training

parameter to soil liquefaction was discussed through the
correlation analysis; however, similar with other machine
learning methods, the feature importance of training pa-
rameters for the random forest is sensitive to the selection of
training dataset. -us, more datasets need to be collected in
order to further confirm the relationship among training
parameters.

4. Conclusions

-e random forest method is utilized to evaluate the soil
liquefaction. -e selection of training parameters is dis-
cussed by adopting the Andrus database as the training
dataset. -ree hyperparameters in the random forest were
optimized by correlation analysis and the liquefaction
evaluation based on the random forest was established and
examined by using the Kayen database as testing dataset.-e
success rates under different seismic intensities were ob-
tained and compared with the Chinese code method and the
Andrus method. -e main conclusions can be drawn as
follows.

(1) Based on the Andrus database, four parameters
including the sandy-layer buried depth (ds), peak
horizontal ground surface acceleration (amax), seis-
mic magnitude (Mw), stress-corrected shear wave
velocity (Vs1), and an introduced parameter-stress
ratio (k) were used as training parameters by cor-
relation analysis for the random forest model.

(2) -e optimal hyperparameters were determined by
the minimum OOB error rate including the number
of classification trees, maximum depth of classifi-
cation trees, and maximum number of features
corresponding to 13, 7, and 2, respectively.

(3) -e success rates for liquefaction evaluation of three
methods were compared based on the Andrus da-
tabase, which indicated that the random forest model
developed based on the training dataset was credible.

(4) Based on the Kayen database which was not used in
the training dataset, the success rates of liquefaction
evaluation were compared among three methods
including the Chinese code method, the Andrus
method, and the random forest method established

Table 7: Success rates given by different methods based on Kayen database [2].

Seismic intensity L/NL/Total -e Chinese code method -e Andrus method -e random forest

VII
L 78.3 100 78.3
NL 52.9 52.9 94.1
Total 67.5 80.0 85.0

VIII
L 97.5 98.8 85.0
NL 13.8 3.4 62.1
Total 75.2 73.4 78.9

IX
L 100 94.5 82.8
NL 17.1 11.4 77.1
Total 83.9 78.3 81.7

Total
L 97.2 96.4 83.1
NL 23.5 15.4 75.3
Total 79.0 76.9 81.2
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Figure 3: Feature importance of training parameters.
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in this study. -e Chinese code method and the
Andrus methods gave a high success rate exceeding
90% for liquefied sites. -e random forest method
gave a success rate for liquefied sites and even a total
success rate for all cases higher than 80%, which was
completely acceptable. However, the success rates for
nonliquefied sites given by the Chinese code method
and the Andrus method were too low leading to the
increase of engineering cost which might not be
accepted.

Data Availability

-e Andrus database used to establish the random forest
model for liquefaction evaluation were taken from Andrus
et al.’s study [1] (https://www.nist.gov/publications/draft-
guidelines-evaluating-liquefaction-resistance-using-shear-
wave-velocity) and the Kayen database collected from
Kayen et al. [2] is available online in the ASCE Library
(https://doi.org/10.1061/(ASCE)GT.1943-5606.0000743).
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