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(e development of geospatial technologies has opened a new era in terms of data collection techniques and analysis procedures.
Digital elevation models as 3D visualization of the Earth’s surface have many mapping and spatial analysis applications. (e
primary terrain factors derived from the raster dataset are usually less critical than secondary ones, e.g., ruggedness index, which
plays a vital role in engineering, hydrological information derivation, and geomorphological processes. Surface ruggedness is a
significant predictor of topographic heterogeneity by calculating the absolute value of elevation differences within a specified
neighborhood surrounding a central pixel. (e current study investigates the impacts of various topographic metrics obtained
from a digital elevation model on characterizing terrain ruggedness utilizing stepwise principal component analysis. (is popular
multivariate statistical technique is applied to conduct a comprehensive assessment and treat the information redundancy of
terrain parameters. Simultaneously, the standard deviation of elevation is also proposed as an alternative approach to quantifying
topographic ruggedness. Besides, quantitative and qualitative method is espoused to validate the algorithms and compare their
capabilities to the previously introduced models in the literature. (e findings have shown that principal component analysis
provides superior performance against other models. Furthermore, they indicated that the standard deviation of elevation could
be used instead of the available ones.

1. Introduction

Geomorphometry, which is defined as the science of
quantitative Earth’s terrain analysis [1], has mainly con-
centrated on studying terrestrial landscapes and derivation
of a large spectrum of environmental variables [2, 3]. (e
essential data source for performing such spatial analysis is
digital elevation models [4]. (e digital elevation model is a
three-dimensional raster representation of the land surface
to identify geographical features [5, 6] by interpolating the
landform using modern geospatial techniques [7–9]. It can
be established through conventional ground topographic
surveys or remote sensing methods [10–13]. In general,
DEM is high-quality spatial data that is applied to extract
terrain factors such as slopes, curvatures, aspects, and
drainage network [14–18].

Generally, irregularity in elevation makes cultivation
difficult and costly to traverse [19, 20], but useful for keeping

newborn reindeer calves against weather and windchill [21].
Relief ruggedness is a valuable attribute of wildlife habitat
models and one of the prime components affecting vege-
tation diversity, snowmelt patterns, and water drainage that
are key elements of nutrient obtainability [22–25] and the
book [26]. Many previous studies have addressed quanti-
fying surface ruggedness, in which some of these investi-
gations were adopted on the statistical dispersion of
elevations, slopes, aspects, and vectors orthogonal to planar
facets on the landscape. Beasom et al. [27] described an
approach for characterizing land surface ruggedness as a
function of the total length of contour lines in a study area.
More recently, Riley et al. [28] proposed a methodology to
determine topographic heterogeneity by calculating the
terrain ruggedness index value for each grid cell from the
sum elevation changes within a specified neighborhood
surrounding a central pixel. Sappington et al. [29] developed
and tested a vector ruggedness measure algorithm to
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estimate landscape ruggedness as the variation in the 3D
orientation of grid cells in a moving window by decom-
posing slope and aspect into 3D vectors. In contrast, Popit
and Verbovšek [30] identified the ruggedness index by
computing the differences between the lowest and highest
elevation for each cell location on the output raster.

In a multivariate statistical analysis, the dataset’s di-
mension plays a critical role in determining the problem’s
complexity. One of the most common techniques for re-
ducing the data dimensions to increase its interpretability is
the principal component analysis that was introduced by
Pearson [31]. Presently, PCA is considered a powerful
statistical approach in image processing due to its ability to
decrease the number of correlated image bands resulting in a
smaller dataset capable of representing most of the original
variabilities [32]. Over the last few decades, PCA was used in
geosciences and remote sensing [33–37]. For instance,
Petrişor et al. [38] highlight the potential of integrating
geographic information systems and PCA as a decision-
support tool for underdeveloped countries. Huang et al. [39]
concluded that PCA could provide an accurate represen-
tation of terrain complexity distribution features compared
to k-means clustering. However, this method has not yet
been introduced to the process of modeling terrain
ruggedness.

As stated before, no optimal measure would provide a
powerful tool for defining habitat availability [40, 41].
Hence, selecting an appropriate method to evaluate this
indicator is an essential task. In contrast, GIS software such
as ArcGIS provides a variety of geoprocessing tools, but still
has some gaps that must be addressed. (e article’s main
objective is to investigate the variability of quantifying to-
pographic ruggedness characteristics, relying on PCA, a
standard deviation of elevation, and traditional indices.
Additionally, the spatial tools using ArcGIS Model Builder
and Python script will be developed for automating the
processes. As the basis for terrain ruggedness analysis, the
DEM is generated using synthetic data acquired by a
scanned topographic map with varying coefficients to em-
ulate Earth’s physical land-surface features. (e compre-
hensive assessment of several terrain metrics extracted from
DEM is examined to describe topographic ruggedness using
PCA. After that, the surface ruggedness obtained from the
PCA and STDmethods was compared against the ones from
two different literature models by adopting some statistical
approaches and visual depictions.

2. Materials and Methods

Topography relates to the shape and characteristics of the
Earth’s land surface and is a central controlling element in a
wide range of natural processes [42, 43]. It must be
quantitatively evaluated [44] by building accurate and
reliable geospatial data [45]. (e terrain analysis is con-
cerned with extracting topographic attributes from DEM
raster in GIS as a convenient environment for handling
data [46]. In general, DEM quality and resolution have a
critical influence on the derived factors [47–49]. (e
analysis scale and chosen approach for determining

different terrain variables will also play a role in the final
results. Surface ruggedness is a significant geomorpho-
logical parameter applied in geoscience and environmental
studies for indicating the relative change in elevation be-
tween adjacent grid cells [50]. Many approaches have been
applied to verify which algorithm is the most appropriate
for depicting topographic ruggedness. (e principal
component analysis was utilized in this study to evaluate
the correlations between terrain factors and reduce the
dimension of the original parameters to characterize sur-
face ruggedness. At the same time, the standard deviation
of elevation was also tested to be another ruggedness
model. Figure 1 describes a methodology flowchart adopted
in the current study for quantifying relief ruggedness.

2.1. Case Study Description. (e chosen case study is the
Wadi Musa area (Valley of Moses) as one of Ma’an gov-
ernorate towns in Jordan. It is characterized by gorgeous
natural scenery and a heterogeneous landscape with
mountains in the eastern part (Figure 2). (e geographic
position of Wadi Musa has situated about 200 km to the
south of Amman, between 30° 15′ 00″ N and 30° 30′ 00″ N
and 35° 10′ 00″ E and 35° 30′ 00″ E, as shown in Figure 3.(e
elevation of the terrain surface in this region varies from
49m to 1725m above the mean sea level (AMSL). (is area
has several types of features to assess the topographic
ruggedness map under different landform conditions. In-
deed, characteristics of terrain relief, such as flat, hilly, and
mountainous, have a significant influence on the reliability
of DEM [51] and extracted terrain factors. (e digital ele-
vation model of the site was generated using a topographic
map with a scale of 1/25000. (e map was scanned and
digitized to capture contour lines with an interval of 10m.
After that, the ANUDEM method, which is entailed in
ArcGIS 10.2 under the name of Topo to Raster, is applied to
derive the DEM model with 10m accuracy from CLs. (is
algorithm was developed by Hutchinson [52] to fit the shape
and drainage structure of the land surface. (e dataset’s
quality control was performed by superimposing and
inspecting the CLs extracted from the built DEM with the
original ones. Figure 4 illustrates the flowchart of data
acquisition.

2.2. Surface Ruggedness. Geomorphologic analysis as a
measure of landforms geometry was broadly applied to
understand various natural processes that impact humans
and the environment [53, 54]. Generally, the terrain char-
acteristics have tremendous leverage over the habitat and
socioeconomic activities. (e emergence of modern geo-
spatial techniques has brought new ways to represent and
quantify the bare-earth topography using grid-based DEMs
and develop novel algorithms for extracting geo-
morphometric attributes [55, 56]. Neighborhood tools are
common to carry out DEM analysis workflows by com-
puting a specified statistic for a focal cell within a defined
moving window that is designated in relation to the central
point [57]. In this study, a 3× 3 sampling window is ef-
fectively shifted across the DEM surface to identify terrain
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information, as indicated in Figure 5. (e main reason
behind this selection is to limit the effects of the cell size on
the results of the investigated models since finer windows
require highly accurate DEMs [58].

Terrain ruggedness index is assigned for each raster cell
using the algorithm described by Riley et al. [28] by

calculating the square root of the sum of the squared ele-
vation differences between the central pixel and the adjacent
ones within a specified neighborhood, as presented in
equation (1), in which zo is the elevation of the central cell, z
is the elevation of each neighbor grid cell to the focal one,
and N is the width of the roving window (number of pixels).

Data 
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surface ruggedness

Results & 
conclusions

Figure 1: Schematic representation of the research methodology.

Figure 2: Aerial view of Wadi Musa town.
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Figure 3: Location of Wadi Musa (geographical coordinates; WGS 1984).
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Hence, according to Figure 5, equation (2) is written. (e
source code was developed in Python programming in the
context of ArcPy to calculate the TRI algorithm, as indicated
in Figure 6.
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1
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Vector ruggedness measure provides another procedure to
quantify terrain ruggedness as the variation in cells’ 3D ori-
entationwithin a neighborhood, as presented in Figure 7. It was
initially developed by Hobson [59] and later espoused by
Sappington et al. [29]. (e vector ruggedness measure can be
calculated from the slope and aspect using equation (3). Fig-
ure 8 illustrates a complete workflow ArcGIS Model Builder
scheme to generate a VRM grid from the DEM dataset.
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Figure 4: Flowchart of data acquisition.
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Figure 6: TRI calculator code in Python script.
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VRM � 1 −
|r|

n
, (4)

where n is the sample size (number of pixels in the moving
window) and r is the resultant vector of central cells in a
given neighborhood.

2.3. Ruggedness Conditioning Parameters. (e terrain
metrics shown in Table 1 are tested to evaluate and an-
alyze ruggedness mapping to determine the most influ-
ential predictive factors. (ese parameters include six
topographic features: slope, aspect, total curvature,
surface roughness, topographic relief, and topographic
position index. (e relevant hydrological factors were the
stream power index, sediment transport index, and to-
pographic wetness index. Figure 9 demonstrates an

automated workflow in ArcGIS Model Builder that uses
standard tools to extract morphometric variables from
DEM.

2.4. StandardDeviation of Elevation. (e standard deviation
of elevation is determined by analyzing a DEM at a pixel
level via sliding window scanning using equation (5). (e
standard deviation of elevation is examined in this study as
an alternative ruggedness measure. (e key point about
choosing this method is to ease calculating its parameters
using focal statistics in ArcGIS with a reasonable processing
time for a large spatial dataset.

STD �
1

N2 − 1
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where N is the width of the roving window, z is the mean
elevation in the window, and z is cell elevation. Hence,
according to Figure 5, it can be written as follows:
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Table 1: Definition and formula of terrain parameters.

Factor Definition Formula

Slope (°) Angle between a tangent plane and a horizontal one at a certain
point [56] β � tan−1(

������
p2 + q2


)

Aspect (°) Clockwise angle from north to the horizontal projection of an
external normal vector at a specific point [56] α � tan−1(p/q)

Ground curvature
(m−1) Degree of bending variation at a given point [60, 61] C � q2 r − 2pqβ + p2t/(q2 + p2)

���������
1 + q2 + p2



p and q are the rate of elevation change in x and y direction, respectively, and r and t are curvature radii of point

Topographic relief (m) Elevation difference between the highest (zmax) and lowest (zmin)
point over an area TR � zmax − zmin

Surface roughness Describes surface relief and soil erosion degree [62] SR � 1/cos β
Topographic position
index (m)

Elevation difference between central pixel (zc) and the average
elevation (z) of neighboring cells [63] TPI � zc– z

Topographic wetness
index Defines the cell tendency to accumulate water [64] TWI � ln(As/tan β) As catchment area

Stream power index Measures potential flow erosion at the specified point [65] SPI � As tan β
Sediment transport
index Characterizes the process of erosion and deposition [65] STI � ( As/22.13)

m
( sin β/0.0896)

n

m � 0.6, n � 1.3
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2.5. Principal Component Analysis. (e simplified algorithm
for conducted PCA is seen in Figure 10. In general, four
main steps are used to perform this method based on terrain
factors. (e correlation and covariance matrices are com-
puted, and then the principal components are defined, and
finally the dataset is shifted and rotated to the new axis.
Usually, to improve the performance, avoid the numerical
conflicting, and training stability of the ruggedness values,
the following equation is used to normalize the obtained
results [66].

normalized values �
Rastervalue − Rastermin

Rastermax − Rastermin
. (7)

2.6. Model’s Performance Assessment. As mentioned previ-
ously, the obtained ruggedness grids from each method were
classified into five different classes. (ese classes were de-
fined as level (1), slight (2), moderate (3), high (4), and very
high (5). In line with this study’s aim, the identified classes
from each model were compared by adopting the principle
of confusion matrix that is always used for evaluating the
performance of classification algorithms in machine learn-
ing. Each matrix’s row represents the instances in a true
class, whereas each column accounts for the predicted class
cases. For a specific class in a multiple classes matrix such as
the one shown in Figure 11, it can be divided into four main
categories to indicate the number of times that the model: (1)
true positive (TP) has rightly predicted the positive class, (2)
true negative (TN) has precisely estimated the negative one,
(3) false positive (FP) has incorrectly predicted the positive
class, and (4) false negative (FN) has incorrectly estimated
the negative class. (us, using this matrix provides an easy
and direct way for investigating the matching between two
different approaches of the selected ruggedness modeling
methods.

In general, matching any two models in this study is
evaluated by computing the confusion matrix’s overall ac-
curacy. (e accuracy is defined as the number of corre-
sponding points in all cases divided by the total number of
points selected for the investigation. Furthermore, the
models’ performance at the class level is assessed using two
different approaches: precision and recall, as demonstrated
in Figure 12.

3. Results and Discussion

Digital elevation models are fundamental to many appli-
cations in Earth sciences such as geomorphology, geology,
ecology, and engineering [67–69]. Hence, the accuracy of
DEM-derived elements must be deemed to reduce the in-
herent errors.(e terrain ruggedness is extracted fromDEM
to measure local elevation variability within a defined
window. (is study’s main objective is to carry out a
comparative analysis to assess the quality of surface rug-
gedness generated by the PCA and STD algorithm. (is
analysis includes representing topographic ruggedness in-
dices and verifying their performance. (e standard devi-
ation of elevation was determined using focal statistics over a
3× 3 cell neighborhood of the DEM dataset. (e chosen
conditioning parameters (Figure 13) were normalized, and
then the PCA approach was applied to describe surface
ruggedness. On the other hand, the geoprocessing workflow
in ArcGIS 10.2 software was automated by Python Script
and Model Builder tool to calculate TRI and VRM indices,
respectively.

(e terrain variables in Table 1 were all used to develop
an initial PCA model and choose the most suitable ones
through its correlation matrix and eigenvalues. Indeed, the
curvature, TWI, TPI, and aspect have indicated very low
correlations than other metrics. Pearson’s correlation co-
efficient of each pair for a selected dataset (sample size 64635
points) and descriptive statistics were computed to inves-
tigate the impact of various terrain parameters on the
ruggedness indices, as shown in Tables 2 and 3. Hence, the
influencing parameters, which highly correlate with the
ruggedness index, were selected for building the PCAmodel.
(e Pearson correlation coefficient varies between −1 and 1,
with values close to the limits reflect high significance. In
general, the blue color refers to have a positive correlation in
which the ruggedness index is directly proportional to the
terrain feature, while the orange color represents having a
negative correlation means that the ruggedness index is
inversely proportional to the terrain feature. Accordingly,
the slope, TR, and SR have revealed the highest correlations;
besides, SPI and STI gave a good correlation with different
ruggedness methods. Hence, it is vital to use them to
generate an accurate PCA map. Although TWI shows a
significant relationship with all approaches, it minimized the
model’s capabilities when utilized in the PCA due to its
negative interaction. Additional analysis was conducted to
identify the bivariate correlation of factors with the PCA
model. Table 3 indicates that the trends in PCA results follow
those of the other approaches. In contrast, the correlation
coefficients between the examined parameters and VRM are
significantly lower than the other models. For instance, the
correlation coefficient between the slope and the ruggedness
index reduced from about 0.99 to 0.291 when using the VRM
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model. A similar drop was observed in the VRM case,
whether the correlation is positive or negative. On the other
side, Figure 14 illustrates the correlation plots to measure the
degree of agreement between the models and chosen to-
pographic metrics. (e x-axis of all diagrams represents the
ruggedness index for each of the investigated methods (i.e.,
PCA, TRI, STD, and VRM) stated on the top, and the y-axis
is the topographic parameters. In general, the TRI and STD
algorithms display nearly the same, and TRI is highly
correlated with the slope and the SR. In contrast, the PCA is
related to several variables while there is no correlation
between the VRM and comparative factors.

Figure 15 represents topographic ruggedness maps
generated by TRI, VRM, PCA, and STD algorithms ex-
amined in the research area. (ese datasets are split into five
homogeneous classes (level, slight, moderate, high, and very
high) using the Jenks natural breaks optimization [70, 71].
Indeed, the smoothest areas represented by shades of a gray
tone are entirely related to plain regions. Moreover, the more

rugged zones, clarified by cyan color, are fully seen around
the mountains’ topmost, as illustrated in Figure 16. (e
graphical representations of the ruggedness index indicate
that the texture and colors/tones of the STD model closely
match the corresponding TRI one. At the same time, these
two surfaces show a slight difference from that of PCA,
especially in places with very high ruggedness. Also, the
VRM index reveals a considerable variation in the tone color
patches from other algorithms. As a result, visual inspection
has highlighted the PCA approach as practically the most
superior model among the tested ones. Nevertheless, further
analysis will be performed to evaluate tested models using
statistical methods.

(e PCA model was developed using selected topo-
graphic parameters in the case study, and covariance and
correlation matrices are shown in Tables 4 and 5. Fur-
thermore, the eigenvectors and eigenvalues are provided in
Tables 6 and 7, respectively. Typically, the first component of
the updated PCA cumulative contribution reached about

Table 2: Descriptive statistics of the selected dataset.

Variable Mean Standard deviation Maximum Minimum Q1 Median Q3
PCA 0.212 0.105 0.885 0.0137 0.132 0.192 0.267
TRI 0.083 0.071 0.802 0.0001 0.032 0.067 0.114
STD 0.083 0.071 0.799 0.0001 0.032 0.066 0.113
VRM 0.000 0.001 0.064 0.0000 0.000 0.000 0.000
SPI 0.498 0.082 0.985 0.0757 0.452 0.502 0.547
STI 0.004 0.009 0.754 0.0000 0.001 0.003 0.004
Slope 0.179 0.136 0.937 0.0001 0.072 0.150 0.251
TR 0.083 0.072 0.812 0.0001 0.031 0.065 0.113
SR 0.348 0.026 0.822 0.3336 0.335 0.339 0.350
Curvature 0.544 0.019 0.951 0.2593 0.538 0.544 0.550
TWI 0.268 0.090 0.917 0.0131 0.209 0.257 0.314
TPI 0.545 0.019 0.956 0.2697 0.538 0.545 0.551
Aspect 0.583 0.287 1.000 0.0000 0.346 0.671 0.813

Table 3: Bivariate correlation of terrain metrics and ruggedness algorithms.

STD

SPI 0.537 0.415 0.415 0.112

STI 0.328 0.273 0.272 0.123

Slope 0.992 0.989 0.989 0.291

TR 0.977 0.989 0.989 0.288

SR 0.868 0.929 0.929 0.247

Curvature 0.002 0.037 0.038 -0.098

TWI -0.473 -0.533 -0.533 -0.177

TPI 0.003 0.038 0.039 -0.098

Aspect 0.032 0.021 0.021 -0.012

Parameter PCA TRI VRM
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Figure 14: Plots of the correlation between the models and tested parameters.
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Figure 15: Topographic ruggedness maps of investigated models.
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PCA approach TRI index

VRM index STD index

Figure 16: Terrain ruggedness and CLs of the sample area.

Table 4: (e covariance matrix of terrain factors.

Feature SPI STI Slope TR SR
SPI 0.00379 0.00022 0.00273 0.00131 0.00037
STI 0.00022 0.00005 0.00020 0.00010 0.00003
Slope 0.00273 0.00020 0.01087 0.00558 0.00180
TR 0.00131 0.00010 0.00558 0.00300 0.00100
SR 0.00037 0.00003 0.00180 0.00100 0.00040

Table 5: (e correlation coefficient of terrain factors.

Feature SPI STI Slope TR SR
SPI 1 0.51582 0.42526 0.38804 0.30153
STI 0.51582 1 0.26438 0.25196 0.22384
Slope 0.42526 0.26438 1 0.9777 0.86108
TR 0.38804 0.25196 0.9777 1 0.91594
SR 0.30153 0.22384 0.86108 0.91594 1

Table 6: Eigenvectors of all principal components.

Feature SPI STI Slope TR SR
SPI 0.26467 0.9617 0.04072 −0.05455 0.02105
STI 0.0183 0.05405 0.03683 0.92304 −0.37865
Slope 0.84721 −0.2136 −0.43802 0.09144 0.19076
TR 0.43779 −0.14837 0.607 −0.26591 −0.5892
SR 0.1421 −0.06757 0.66081 0.25679 0.68748
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Figure 17: Confusion matrix for each pair of the investigated models.

Table 7: Percent and accumulative eigenvalues of the five topographic metrics.

Feature Eigen value Percent of eigen values (%) Accumulative of eigen values (%)
SPI 0.01491 82.3431 82.3431
STI 0.00297 16.4057 98.7488
Slope 0.00016 0.8627 99.6115
TR 0.00004 0.2033 99.8148
SR 0.00003 0.1852 100
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82.3%, while it was possible to exceed 95% using the first and
second components only. However, the surface ruggedness
was created using all the components to reach the best
accuracy.

(e confusion matrix was defined for each pair of
methods to evaluate their capabilities and variations, as
clarified in Figure 17. It is observed that both TRI and
STD are almost identical in which they provided the same
zonal classification with an overall accuracy (matching)
of 99.7%. (is means that the STD model can replace the
TRI without any negative influence. (e difference be-
tween PCA and STD and TRI can be represented by an
overall variation of about 20%. (e PCA classified more
points in the very high category compared to the TRI one
that was capable of correctly identifying about 45% of the
points only. (is means that the PCA model is more
sensitive for rugged areas in comparison with other
methods. Pairwise comparison between the PCA and
VRM models showed an overall difference of about 70%;
besides, the ratio of points classified in the first class by
VRM was almost 97% of the testing population. (is
observation is in line with the previous findings in Fig-
ure 14 and means that the VRM method is incapable of
detecting moderate, high, and very high roughness areas.
Finally, both STD and TRI results indicated about 44%
correlation with the ones extracted from the VRM due to
having a majority of the points classified in the level class
of the VRM model.

(e following comparisons and postanalysis of the re-
sults will omit the VRM model and consider PCA, TRI, and
STD ones as most VRM points concentrated in the level

category. Figure 18 provides a class-based disparity be-
tween the PCA, TRI, and STD results through box plots.
In general, it can be seen that the points’ distribution in
each PCA class takes a larger range as compared to the TRI
and STD models that shrink the classes into minimal
extents of propagation. Furthermore, it can be noticed
that the limits of the level class in the PCA model are equal
to that of the level, slight, and moderate of the TRI and
STD ones combined. (is means that the PCA method
increases the ruggedness index values of the entire area as
compared to the TRI and STD results even though their
maps look very similar. On the other hand, the datasets’
normal distribution in each of the investigated models is
shown in Figure 19. It can be observed from the plots that
the only significant difference between the PCA and the
other algorithm is defined in the first class (level), where
the PCA follows the normal distribution perfectly. Also,
the spread of the other classes looks pretty similar in all of
the indices. In general, Figure 20 shows a strong rela-
tionship between the results of PCA and those of TRI and
STD. (us, the regression equation (8) can be used to
transfer TRI and STD models to the PCA one in Wadi
Musa were proposed in this paper. (e correlation co-
efficient of these equations is 0.9925 and 0.9926 in TRI and
STD, respectively. (ese models can find application in
many instances to overcome the need for high compu-
tational efforts.

PCA � −1.116 TRI2 + 1.805 TRI + 0.0745

PCA � −1.118 STD2
+ 1.807 STD + 0.0748.

(8)
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Figure 18: Box plot comparison between the investigated models.
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Figure 19: Distribution of dataset in each class of the investigated models.
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4. Conclusion

Topographic ruggedness is an essential factor of terrain
analysis for many applications in engineering and geo-
morphology. Several algorithms were introduced in the
literature to show the spatial distribution of surface rug-
gedness but did not necessarily provide an optimal solution.
(is study presents a substitutional approach to generate
terrain ruggedness using PCA and STD algorithms. Firstly,
the effects of various DEM-derived topographic metrics on
the ruggedness model were investigated using PCA. Sec-
ondly, the proposed methods are compared with the most
common ones, namely, TRI and VRM. Indeed, the per-
formance analysis of the ruggedness indices was conducted
relying on visual inspection and statistical methods. (e
findings indicated the feasibility of applying PCA to generate
an accurate ruggedness map consistent with the actual to-
pographic features. STD model is simple to implement,
available in ArcGIS software, and produces nearly identical
results to TRI, the more complex method, while VRM
showed the lowest performance. According to the statistical
analysis, the ruggedness index’s most influential variables
are slope, TR, and SR. Finally, additional research is required
to understand PCA’s capabilities for describing terrain
characteristics across various landscapes [72] and at different
scales.

Abbreviation

TRI: Terrain ruggedness index
DEM: Digital elevation model
VRM: Vector ruggedness measure
PCA: Principal component analysis
GIS: Geographic information systems
STD: Standard deviation of elevation
CLs: Contour lines
AMSL: Above mean sea level
α: Aspect
β: Slope
C: Curvature

SR: Surface roughness
TR: Topographic relief
TPI: Topographic position index
TWI: Topographic wetness index
SPI: Stream power index
STI: Sediment transport index.
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parison of two snowmelt modelling approaches in the Dudh
Koshi basin (eastern Himalayas, Nepal),” Hydrological Sci-
ences Journal, vol. 59, no. 8, pp. 1507–1518, 2014.

[24] H. Han, W. Chung, J. Song, A. Seol, and J. Chung, “A terrain-
based method for selecting potential mountain ridge

protection areas in South Korea,” Landscape Research, vol. 41,
no. 8, pp. 906–921, 2016.

[25] D. Asfaw and G. Workineh, “Quantitative analysis of mor-
phometry on Ribb and Gumara watersheds: implications for
soil and water conservation,” International Soil and Water
Conservation Research, vol. 7, no. 2, pp. 150–157, 2019.

[26] C. Nellemann and G. Fry, “Quantitative analysis of terrain
ruggedness in reindeer winter grounds,” Arctic, vol. 48,
pp. 172–176, 1995.

[27] S. L. Beasom, E. P. Wiggers, and J. R. Giardino, “A technique
for assessing land surface ruggedness,” Journal of Wildlife
Management, vol. 47, no. 4, pp. 1163–1166, 1983.

[28] S. J. Riley, S. D. DeGloria, and R. Elliot, “A terrain ruggedness
index that quantifies topographic heterogeneity,” Inter-
mountain Journal of Sciences, vol. 5, no. 1–4, pp. 23–27, 1999.

[29] J. M. Sappington, K. M. Longshore, and D. B. (ompson,
“Quantifying landscape ruggedness for animal habitat anal-
ysis: a case study using bighorn sheep in the Mojave Desert,”
Journal of Wildlife Management, vol. 71, no. 5, pp. 1419–1426,
2007.
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