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Geotechnical models are usually built upon assumptions and simplifications, inevitably resulting in discrepancies between model
predictions and measurements. To enhance prediction accuracy, geotechnical models are typically calibrated against mea-
surements by bringing in additional empirical or semiempirical correction terms. Different approaches have been used in the
literature to determine the optimal values of empirical parameters in the correction terms. When measured data are abundant,
calibration outcomes using different approaches can be expected to be practically the same. However, if measurements are scarce
or limited, calibration outcomes could differ significantly, depending largely on the adopted calibration approach. In this study, we
examine two most commonly used approaches for geotechnical model calibration in the literature, namely, (1) purely data-
catering (PDC) approach, and (2) root mean squared error (RMSE) method. Here, the purely data-catering approach refers to
selection of empirical parameter values that minimize coefficient of variation of model factor while maintains its mean value of
one, based solely onmeasured data. A real case of calibrating the Federal Highway Administration (FHWA) simplified facing load
model for design of soil nail walls is illustrated to thoroughly elaborate the differences in practical calibration and design outcomes
using the two approaches under scarce data conditions.

1. Introduction

It has been well recognized that model uncertainty plays a key
role in reliability-based design of geotechnical structures
[1–5], as it is usually much larger than uncertainty associated
with design parameters (e.g., soil cohesion, unit weight, and
internal friction angle). Typically, geotechnicalmodels need to
be assessed and calibrated against measured or observed data
before used for design. However, in many cases, measure-
ments or observations that are available for model assessment
and calibration are limited, mainly due to two reasons: first,
obtaining in situ geotechnical data is costly and time con-
suming in general; and second, monitored data were always
undervalued and thus not well collected and pooled, although
in recent years, geotechnical engineers start to realize the
value of data andmake effort to make the best use of it [6–13].

Despite of the situation, assessment and calibration of
geotechnical models using limited data are far better than
doing nothing at all [3]. Usually, calibration of a geotechnical

model can be done by following two steps: (1) introduce an
empirical or semiempirical correction term to a model and
(2) determine the constants in the correction term according
to certain criteria. Based on the calibration criteria, there are
two methods that have been widely adopted for geotechnical
model calibration in the literature. One is the purely data-
catering (PDC) approach, and the other is the root mean
squared error (RMSE) approach.

+e PDC approach calibrates a model by adjusting the
constants to satisfying two criteria: keeping the mean of bias
equal to one while minimizing the coefficient of variation
(COV) of bias. Here, bias is defined as the ratio of measured to
the predicted value. Bias, also referred to as model bias or
model factor elsewhere, is commonly treated as a random
variable and used as an indicator for quantification of model
accuracy. Previous geotechnical model calibration using the
PDC approach can be seen in, e.g., Lin and Liu [14], Lin et al.
[15], Lin et al. [16], Phoon and Kulhawy [17], Phoon and Tang
[18], Tang and Phoon [19], Yuan et al. [20], andYuan et al. [21].

Hindawi
Advances in Civil Engineering
Volume 2021, Article ID 4245051, 12 pages
https://doi.org/10.1155/2021/4245051

mailto:liuhuifen99@163.com
https://orcid.org/0000-0001-5714-4783
https://orcid.org/0000-0002-6360-9046
https://orcid.org/0000-0003-0554-2215
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4245051


On the other hand, the RMSE approach determines the
constants as the set that minimizes the root mean squared
error between measurements and predictions. Common
examples are geotechnical models developed using the re-
sponse surface method and machine learning methods, e.g.,
Bathurst and Yu [22], Lin et al. [16], Liu et al. [23], Yu and
Bathurst [24], Zhang et al. [25], Zhang et al. [26], Zhang et al.
[27], and Zhang et al. [28]. Obviously, these two calibration
approaches are not equivalent, especially when the data for
calibration are scarce. +is will result in different calibrated
values for the constants, which in turn lead to different
geotechnical design outcomes. Discussion on the difference
of these two approaches will be provided later in this study.

While being extensively used, influences of adoption of
the two approaches on geotechnical calibration outcomes
and the consequences are not yet thoroughly examined. To
fill the gap, this study is focused on investigating the dif-
ferences in both calibration and practical design outcomes
that are resulted by using the above two calibration ap-
proaches. To allow comparing model competence from a
third angle, the Bayesian information criterion (BIC) is
employed [29]. A case study of calibrating the default
Federal Highway Administration (FHWA) facing load
model for facing design of soil nail walls is shown to
elaborate the influences.

2. Approaches for Model Calibration
and Ranking

+is section introduces in detail the PDC and RMSE ap-
proaches for calibration of geotechnical models against
observed data. +e commonalities and differences of the two
approaches are discussed. A likelihood-based model ranking
method called Bayesian information criterion (BIC) is also
introduced, which will be used later to quantify the com-
petences of the calibrated models.

2.1. Purely Data-Catering Approach. Suppose y � f(x) be
the geotechnical model to be calibrated. Here, y is the model
output which is taken to be a scalar for simplicity; and x is
the model input parameter vector, x � (x1, x2, . . . , xn). Note
that the input parameter vector x is the same across different
design scenarios, while the values of its elements could vary.
For convenient, we denote yk and xk for design scenario k.

Let D � (d1, d2, . . . , dm) be m observed or measured
values for y from m real cases, and λ be the model factor
(which is a random variable) for y � f(x). +en, based on
the method of moment, the sample mean and sample
standard deviation of λ, denoted as λ and sλ, respectively, can
be computed as

λ �
1
m



k�m

k�1

dk

yk
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(1)

+e purely data-catering (PDC) approach assumes that a
model can be adequately (indeed, compromisingly) cali-
brated in terms of λ and sλ that are obtained by the method
of moment. +e PDC approach introduces an empirical
correction term, M, to the original model for calibration
purposes, where M is a function of x and C, with C being a
vector of empirical constants to be determined using D. In
general, the correction term can be written as
M � fM(x ; C). As such, the calibrated model can be
expressed as

y′ � M × f(x) � fM(x ; C) × f(x), (2)

where y′ is the model output after calibration. +e sample
mean and sample standard deviation of the model factor for
the calibrated model, denoted as λ′, can then be calculated as

λ′ �
1
m
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dk

yk
′

, (3)
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+e calibration principles of the PDC approach are to
adjust the values of the empirical constants in C until si-
multaneously satisfying two criteria: (1) λ′ is equal to 1, and
(2) sλ′ is minimized. Evidently, when the data available for
calibration are limited, i.e., m in equations (3) and (4) is not
sufficiently large, both λ′ and sλ′ could be significantly
influenced by m and D, resulting in unstable calibration
outcomes.

2.2. Root Mean Squared Error (RMSE) Approach. +is
method assesses the accuracy of a model by computing its
root mean squared error (RMSE) betweenmodel predictions
(i.e., yk or yk

′) and measured (true) values (dk). +e RMSE
can be computed as

r �

��������������
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, (5)

for the original model, i.e., y � f(x), and
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, (6)

for the calibrated (corrected) model, i.e.,
y′ � fM(x ; C) × f(x).

+e calibration principle of the RMSEmethod is to select
C that minimizes r’. Note that this method does not nec-
essarily result in λ′ � 1 with minimal COVλ′, where COVλ′ �
sλ′/λ′ is the coefficient of variation of λ’. Although the RMSE
method has been widely used for geotechnical model de-
velopment and calibrations, it does not provide an intuitive
impression of model accuracy.
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2.3. Model Competence Ranking. +e Bayesian information
criterion (BIC) is a relative measure of goodness-of-fit
amongmodels given observed data and has been widely used
in ranking model competence [29, 30]. +e BIC is computed
as

BIC � −2 ln Lmax(  + κ ln(n), (7)

where ln(Lmax) is the log of the maximum likelihood, κ is the
number of model parameters, and n is the number of data
points.

Typically, the maximum value of the likelihood function
(L) and the corresponding maximum likelihood estimators
can be found using numerical methods. Technical de-
scriptions of the maximum likelihood estimation method,
e.g., the construction of a likelihood function, are not
provided here for brevity. Interested readers are directed to,
e.g., Juang et al. [31] and Lin and Liu [14] for more details.

+e criterion simply states that the smaller the BIC value
of a fitting model, the better the model captures the ob-
servations. It should be emphasized that the absolute value of
the BIC itself is meaningless in terms of model competence;
only the difference between BICs helps ranking the models.

2.4. Discussion. Although the above two approaches have
been widely adopted for geotechnical model calibrations
based on observed data, there are some fundamental dif-
ferences in calibration outcomes and interpretations, as
given in Table 1.

+e PDC approach uses two indicators to jointly de-
scribe the model accuracy, i.e., λ′ and sλ′; whereas, the RMSE
approach uses only one indicator, r′ . Typically, λ′ is
interpreted as an indicator for on-average accuracy, while sλ′
is taken as an indicator for dispersive accuracy. +e ad-
vantage of such an accuracy assessment scheme is that it
provides an immediate and general idea of the performance
of a model. For example, λ′ � 0.90 and COVλ′ � sλ′/λ′ � 0.30
suggest that overall model predictions are 10% larger than
the corresponding observations, while the dispersion in
prediction accuracy is 30%. Clearly, if a model is perfect,
then it would have λ′ � 1 and COVλ′ � 0.+e disadvantage is
probably the lack of ability to compare accuracies among
models. +is can be easily seen for two models, for example,
A and B, where A has λ′ � 0.90 and COVλ′ � 0.30 and B has
λ′ � 0.80 and COVλ′ � 0.20. In such a case, model A has a
better on-average accuracy, but its prediction is more
dispersive; whereas, model B has a less on-average accuracy,
but the prediction spreads less. Hence, it is difficult to
directly determine which model is more accurate, if without
any further analyses.

For the RMSE approach, the smaller the r′, the better the
model accuracy. For a perfect model, r′ � 0. As this method
uses a single index for model assessment, accuracy com-
parison among models is straightforward. However, this
approach does not provide an intuitive sense of accuracy of
the model itself.

Another difference is the criteria set for calibration. +e
PDC approachminimizes sλ′ or COVλ′ conditioned on λ′ � 1.
A mean of λ′ of one represents that the calibrated model is

unbiased on average, within the context of observations D.
+e objective of the RMSE approach is to minimize r′ to
obtain the best accuracy. As has been pointed out earlier,
usually this is not necessarily equivalent to the criteria for the
PDC approach.

Generally, both PDC and RMSE approaches can only
handle uncensored data. If observation data are censored,
then more robust approaches such as the maximum like-
lihood method or Bayesian inference technique can be
employed. However, to do so, the maximum likelihood
method and Bayesian approach would have to first assume
the probability distribution of λ′ so as to construct the
likelihood function L. +erefore, the estimators by these
approaches are conditioned on the distribution of λ′. For
PDC and RMSE approaches, λ′ and sλ′ and r′ are computed
without any assumptions of distribution of λ′.

Last, it is pointed out that while each measurement or
observation is equally weighted in the PDC calibration
approach, it is not the case in the RMSE calibration ap-
proach. For the RMSE approach, measurements with large
values weigh much more than those with small values in the
calibration process.

3. Case Study

+is section presents a case study to elaborate the difference
in model calibration outcomes using the two approaches.
+e example is to calibrate the default Federal Highway
Administration (FHWA) simplified model for computation
of facing loads of soil nail walls using a total of 23 measured
data. +ese data were collected by Liu et al. [32] from the
literature. +ey corresponded to facing loads monitored
during or at completion of wall constructions. Hence, they
should be interpreted as “short-term” facing loads.

In the following, the measured facing load database
established by Liu et al. [32] is first introduced, followed by a
brief review of the default FHWA simplified facing load
model. Section 3.3 presents the calibration results along with
comparisons and discussion. Note that calibration of the
FHWA facing load model has been done by Liu et al. [32]
using the PDC approach. Section 3.4 shows how would the
selection of calibration approaches affect the practical de-
signs of facing of soil nail walls.

3.1.Database of Short-TermFacingLoads. Figure 1 shows the
side and front views of the facing of a typical soil nail wall.
Nails are structurally connected to the facing at their heads.
As the wall deforms, lateral active earth pressures act onto
the facing, which are then transferred to nails due to the nail-
facing connections. In equilibrium state, a nail is responsible
for the lateral earth pressure within a tributary area where
the nail head centers. +e product of the earth pressure and

Table 1: Comparisons of the two model calibration approaches.

Approach Accuracy indicator Calibration criterion
PDC λ′ and sλ′ Maintain λ′ � 1 and minimize sλ′
RMSE r′ Minimize r′

Advances in Civil Engineering 3



the tributary area is referred to as the nail head tensile load or
facing load (Figure 1(a)) in this study. Here, the tributary
area is the product of horizontal and vertical nail spacing
(Figure 1(b)).

Liu et al. [32] developed a database containing measured
long-term and short-term facing loads. +e short-term load
data are extracted and briefly reviewed here for the reader’s
convenience to follow. +ey collected in total 31 short-term
load data; however, 8 were identified as questionable data
and thus filtered from analyses. Table 2 provides the wall
geometry, soil properties, facing type, and nail spacing for
soil nail walls where the remaining 23 data were from.

+e data were collected from five wall sections, ranging
from 4 to 12m high. All walls had vertical or steep facings
and horizontal back slopes. Four walls were in cohesionless
soils, while one was in cohesive soil. Two walls were sub-
jected to surcharge, in addition to soil self-weights. +e
facings were constructed with shotcrete or concrete panels.
Nail spacings were set between 1 and 2m, which are typical.
Readers are directed to Liu et al. [32] for detailed description
of the collected facing load data.

3.2. FHWAFacingLoadModels. +e facing of a soil nail wall,
as shown in Figure 1, can be simplified as a continuous two-
way slab. According to the FHWA soil nail wall design
manuals [33], under working conditions, the maximum
facing load due to the lateral active earth pressure, Tf, can be
calculated as

Tf � αηKa cH + qs( ShSv, (8)

where α is the empirical spacing factor expressed as
α � 0.6 + 0.2(Smax − 1); Smax (unit: m) is the larger of hor-
izontal and vertical nail spacing Sh and Sv, respectively; η is
the empirical depth factor expressed as η� 1.25 h/H+ 0.5 for
0< h/H≤ 0.2, η� 0.75 for 0.2< h/H≤ 0.7, and

η� 2.03−1.83 h/H for 0.7< h/H≤ 1, where h and H are the
depth and wall height, respectively; Ka, c, and qs are the
Coulomb active earth pressure coefficient, soil unit weight,
and surcharge, respectively.

+e measured facing loads (Tm) are plotted against the
corresponding predicted Tf using equation (8), as shown in
Figure 2(a). +e data points in the figure appear to be two
clusters: one around the 1 :1 correspondence line and the
other below the line. +is suggests that the current default
FHWA facing load model is conservative as generally it
would overestimate the maximum facing loads. +is ob-
servation is confirmed by computing the sample mean (λ)

and sample COV (COVλ) of λ of equation (8), which are
λ � 0.77 and COVλ � 0.669. Hence, on average, equation (8)
overpredicts the maximum facing loads by 23%, and the
predictions are highly dispersive, according to the ranking
scheme proposed by Phoon and Tang [18]. Furthermore,
Figure 2(b) shows that λ tends to decrease as Tf increases.
+e dependency is quantitatively confirmed at a level of
significance of 0.05 by Spearman’s rank correlation test
results that are also given in the figure. Such a dependency is
undesirable, and its effects on reliability-based geotechnical
design have been investigated by Lin and Bathurst [34]. As a
result, it is necessary to perform model calibration for
equation (8) for accuracy improvements.

To identify the sources of model errors and the
abovementioned dependency, λ are plotted against each
input parameter of equation (8), as shown in Figure 3.
Spearman’s rank correlation test results show that λ are
statistically correlated to α, Ka, and ShSv at a significance
level of 0.05.+erefore, a correction term which is a function
of these three parameters can be introduced to the equation
for calibration, i.e., M � f(α, Ka, ShSv). However, since α
and ShSv are highly correlated, only ShSv is kept, while α is
removed from M formulation for simplification. Moreover,
Ka is removed from M to further simplify the calibration as
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Figure 1: Facing of a typical soil nail wall: (a) side view; (b) front view.
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Figure 2: Analyses of accuracy of the default FHWA simplified facing load model: (a) measured versus predicted facing load; (b) model bias
versus predicted facing load.

Table 2: Summary of wall geometry, soil properties, facing type, and nail spacing for soil nail walls.

Wall Soil type
Wall geometry Soil strength properties

qs (kPa) Facing type
Nail spacing

H (m) ω (o) β (o) ϕ (o) c (kPa) c (kN/m3) Sh Sv

W1 Heterogenous SM 9.2 0 0 36.5 18.5 16.3 0 Shotcrete 1.85 1.85
W2 Glacial tills 12 10 0 32 0 20 22.5 Shotcrete 1.5–1.9 0.9–1.55
W3 Fill, silt, sand 7.6 0 0 38 0 19.6 0 N/A 1.83 1.22–1.83
W4 Gravelly silty sand 4 0 0 35 0 19.6 0 Concrete panel 1.0 1.05
W5 Gravelly silty sand 5 0 0 35 0 19.6 127 Concrete panel 1.0 1.05
H, wall height;ω, face batter angle; β, back slope angle; ϕ, soil friction angle; c, soil cohesion; c, soil unit weight; qs, surcharge; Sh, horizontal nail spacing; Sv,
vertical nail spacing.
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Figure 3: Plots of model bias λ for the default FHWA facing load model against various input parameters.
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the focus of this study is on comparison of calibration
approaches rather than model development. Last, a power
form expression is assumed for M, and thus, equation (8)
becomes

Tf � MαηKa cH + qs( ShSv � a
ShSv

At

 

b

αηKa cH + qs( ShSv,

(9)

where a and b are the empirical constants to be determined
using the 23 measured facing load data; and At � 2.25m2 is
the typical tributary area used tomake M dimensionless.+e
PDC and RMSE approaches discussed earlier in this study
are then used to determine the values of a and b. +e results
are shown and discussed in the next section.

3.3. Analysis Results. Calibration of equation (9) is carried
out in this section. +e accuracy of the calibrated model is
then compared based on sample mean and sample COV and
also root mean squared errors (RMSEs). After that, the
accuracy is rescrutinized from a maximum likelihood per-
spective, which helps understanding the calibration
outcomes.

3.3.1. Comparisons between PDC and RMSE Approaches.
Table 3 provides the calibration outcomes for equation (9)
using the two approaches. By using the PDC approach, the
constants in equation (9) are determined as a � 0.4964 and
b � −1.0677, which correspond to λ′ � 1.00 and a minimal
COVλ′ � 0.432. +e RMSE for this case is computed to be
38.3618. On the other hand, by the RMSE approach, the
optimal a and b values are found to be 0.4866 and –1.3118,
respectively. +e minimal RMSE is 35.9635. +e sample
mean and sample COV for this case are λ′ � 0.96 and
COVλ′ � 0.452. Several interesting observations can be made
from these results.

First, these two approaches are not practically equivalent
from the perspective of model calibration when the data
volume available for the calibration is small. +e resulted a

values are close, i.e., 0.4964 versus 0.4866; whereas, the b

values are significantly different, i.e., −1.0677 versus −1.3118.
Second, based on bias statistics of equation (9), the PDC

approach appears to be superior as its results are unbiased on
average and less dispersive compared to those by the RMSE
approach (i.e., 4% overestimation and 2% more dispersive).
Interestingly, if comparing the RMSEs, one would easily
reach a reverse conclusion that the RMSE approach is better
than the PDC approach as it gives less RMSE, 35.9635
against 38.3618.+erefore, it is difficult to judge which one is
better if based merely on the results given in Table 3. +e
comparison should be made from a third angle, which will
be discussed in the next subsection.

Last, both approaches are effective and efficient in model
calibration for accuracy enhancement. +e essence of cali-
bration is to move the data points towards the 1 :1 corre-
spondence line in general, as shown in Figure 4. +e
difference is that λ′ by the PDC approach seems to be more
skewed, while those by the RMSE approach appear to be

more uniform. Despite of this, λ′ by the two approaches
follow closely along the 1 :1 correspondence line, and thus,
the two methods in general do not lead to fatally different
outcomes.

3.3.2. Rescrutinization from a Maximum Likelihood
Perspective. +e accuracies of the three facing load models,
i.e., default FHWA, calibrated FHWA by PDC, and cali-
brated FHWA by RMSE, are reassessed in this section using
the maximum likelihood method. +e cumulative distri-
butions of λ and λ′ are shown in Figure 5. Kolmogor-
ov–Smirnov tests are applied to the three bias datasets, and
the results show that all the datasets can be considered as
both normally and log-normally distributed at a significance
level of 0.05. Hence, the maximum likelihood estimation
(MLE) is carried out assuming normal and log-normal λ and
λ′. +e estimation outcomes are given in Table 4.

For both cases, the estimatedmeans byMLE are practically
the same as the sample means; while, the estimated COVs by
MLE are slightly less than the sample COVs, i.e., about 2–4%
which are practically neglectable. However, for the default
model case (i.e., equation (9)), the estimated bias COVbyMLE
assuming log-normal λ is much larger than the sample COVor
that assuming normal λ, i.e., about 20% higher.

For the normal case, the computed maximum loglike-
lihood values ln(Lmax) are −12.8317 and −12.9868 for the
PDC and RMSE approaches, respectively. As for both
models, the number of parameters is κ � 2, and the number
of data points is n � 23; by using equation (7), the BIC values
are correspondingly calculated to be 31.93 and 32.24. +is
means that, if λ′ is a normal random variable, then in this
case, the PDC calibration approach is better than the RMSE
approach as the BIC value for the former is smaller. On the
other hand, ln(Lmax) are −9.5680 if using the PDC approach
and −8.6353 if using the RMSE approach. +e corre-
sponding BIC values are 25.41 and 23.54.+is suggests that if
λ′ is a log-normal random variable, then model calibration
using the RMSE approach is preferable. For both ap-
proaches, the ln(Lmax) values for the log-normal case are
always less than those for the normal case; hence, it can be
said that λ′ is more likely a log-normal random variable. If
comparing the four ln(Lmax) values, one would conclude
that the RMSE-log-normal scenario is the best one as its
ln(Lmax) is the smallest one.

3.4. Practical Influences. Analyses presented earlier show
how the selection of a calibration approach would affect
the calibration outcomes, i.e., C � (a, b). In this part, we
investigate the influences of the calibration outcomes on
practical designs of facing of soil nail walls. +e facing
design must ensure adequate margins of safety against
various limit states, including facing flexural, punching
shear, and headed-studs tensile failures. For illustration
purposes, here we only consider the facing flexural limit
state, which requires estimation of the maximum facing
load and the ultimate facing flexure capacity. +e primary
design parameter for this limit state is the reinforcement
ratio cross-sectional area per unit width at the nail head
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Figure 4: Histograms and comparisons of model biases λ and λ′.

Table 3: Summary of calibration outcomes of equation (10) using the PDC and RMSE approaches.

Model Approach
Constant in C Model bias, λ or λ′

RMSE
a b Sample mean Sample COV

Default FHWA N/A 1 0 0.77 0.669 140.7869

Calibrated FHWA PDC 0.4964 −1.0677 1.00 0.432 38.3618
RMSE 0.4866 −1.3118 0.96 0.452 35.9635

Default FHWA
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Calibrated FHWA, RMSE
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Figure 5: Cumulative distributions of model biases of the default and calibrated FHWA facing load models.
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and at midspan. +e influences of the two calibration
approaches are assessed by using C to compute the
maximum facing loads and to determine the reinforce-
ment ratio.

+e example wall used for analysis is 10m in height with
a horizontal back slope (β � 0°) and a vertical facing
(ω � 0°). +e means of the soil strength parameters are
assumed to be c � 0 kPa, ϕ � 30°, and c � 18 kN/m3. +e
COVs are taken as 0.15 for ϕ and 0.075 for c. Nails are spaced
at 1.2m horizontally and vertically.

3.4.1. On Estimation of Facing Loads. Both equations (9) and
(10) are used to compute the nominal facing loads (Tf)

along depth (h/H). +e results are shown in Figure 6. Vi-
sually, Tf along h/H is a trapezoidal shape with larger values
in the middle and smaller values at the top and bottom of the
wall. +e default FHWA model gives the highest facing
loads, for example, at h/H � 0.5, the nominal Tf is about
42 kN; while, the calibrated FHWA model by the PDC
approach gives the smallest Tf, which is about 33 kN. +e
difference is over 20%. +e Tf by the calibrated FHWA
model by the RMSE approach is about 36 kN.+e difference
in Tf using the two approaches is about 8%.

Figure 7 shows the distributions of facing loads corrected
by biases, λTf or λ′Tf, where the statistics of λ and λ′ are
estimated by the method of moment (referred to as sample
bias) and maximum likelihood method (referred to as MLE
bias). Visually, the distributions of λ′Tf by PDC and RMSE
approaches are highly similar, regardless of the methods
used to compute bias statistics. Compared to the calibrated
FHWA cases, the distributions of λTf for the default FHWA
case move leftward, meaning that λTf overall is smaller than
λ′Tf. +ere is a noticeable difference in λTf distributions by
sample bias and MLE bias, mainly due to the large difference
in COV of λTf, as given in Table 5, which summarizes
computed means and COVs of λTf and λ′Tf at h/H � 0.5
using different calibration approaches and bias estimation
approaches. On the other hand, λTf for the default FHWA
case has longer tails than those for the calibrated FHWA
cases; obviously, this is due to themuch higher COVs of λTf,
compared to those for λ′Tf. Last, it is observed that, in
general, the differences in the means and COVs of λ′Tf

based on RMSE and PDC approaches are practically in-
significant, as given in Table 5.

3.4.2. On Facing Design. Consider identical reinforcement
cross-sectional area per unit width at the nail head and at
midspan (an + am) horizontally and vertically, with Sh � Sv,
the facing flexural capacity, RF, calculated as [33]

RF �
CF

265
an + am( tfy. (10)

where CF is the empirical factor accounting for the non-
uniformity of soil pressures behind the facing and is equal to
2.0, 1.5, and 1.0 for temporary walls when the facing
thickness is t � 100, 150, and 200mm [35], and fy is the
reinforcement tensile yield strength. In this example, the
facing thickness is taken as t � 100 mm, and thus, CF � 2.0.
+e nominal value of fy is taken as 414MPa. +e rein-
forcement area (an + am) is the main design parameter to be
determined given a target margin of safety (e.g., factor of
safety or reliability index). +e design factor of safety for this
limit state can be calculated as

FS �
RF

Tf

. (11)

+e performance function, gF, can be written as

gF � λRRF − λLTf. (12)

where λR and λL are themodel factors (model factors (biases)
for RF and Tf, respectively. In this study, λL is λ if using the
default FHWA model and λ′ if using the calibrated FHWA
models. λR is taken as a log-normal random variable with
mean of 1.1 and COV of 0.1 [36, 37].

Table 4: Estimated statistics of model bias, λ, or λ′ using the maximum likelihood method.

Model Approach
Normal Log-normal

Mean COV ln(Lmax) Mean COV ln(Lmax)

Default FHWA N/A 0.77 0.654 −16.8202 0.79 0.888 −14.3902

Calibrated FHWA PDC 1.00 0.423 −12.8317 1.00 0.414 −9.5680
RMSE 0.96 0.442 −12.9868 0.96 0.414 −8.6353
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Figure 6: Predicted (nominal) maximum facing loads along depth
using the three FHWA models.
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Table 6 provides the design outcomes of (an + am) using
the deterministic approach where the margin of safety is taken
asFS � 2.0 and using the reliability approach where themargin
of safety is taken as βT � 3.50. Here, βT is the target reliability
index, and βT � 3.50 roughly corresponds to a probability of
failure of 1/5000. Note that these FS and βT values are con-
sistent with those recommended in the FHWA soil nail wall
design manual by Lazarte et al. [33] and Aashto [38]. Based on
the deterministic approach (equation (11)), using the FHWA
facing load model calibrated by the PDC approach gives the
least ((an + am)), which is 212mm2/m; whereas, the default
FHWA model gives the highest value, i.e., 266mm2/m. +e
difference is about 20%.

However, based on the reliability approach, the com-
puted (an + am) values using the default FHWA model are

much larger than those using the calibrated FHWA models,
i.e., 730 versus 446 and 492 and 1135 versus 430 and 447.+e
difference is about 40–60%. +e design outcomes by the
calibrated FHWAmodels by PDC and RMSE approaches are
more or less similar, albeit those by the RMSE approach are
slightly higher.

Figure 8 shows the (an + am) values with respect to FS

ranging from 1 to 5 and βT ranging from 2 to 4 using the
default and calibrated FHWA facing load models. It con-
firms that the difference in (an + am) is insignificant between
the two calibrated FHWA models; both are much less than
those obtained by the default model. +is highlights the
importance of performing geotechnical model calibration
while the influence of selection of the model calibration
approach is secondary. Tables 5 and 6 and Figure 8 together

Table 5: Summary of computed means and COVs of λTf and λ’Tf at h/H � 0.5 using different calibration approaches and bias estimation
approaches.

Bias statistics
λTf by default FHWA λ′Tf by calibrated FHWA,

PDC
λ′Tf by calibrated FHWA,

RMSE
Mean (kN) COV Mean (kN) COV Mean (kN) COV

By sample 32.21 0.700 33.39 0.478 35.21 0.500
By MLE 33.11 0.945 33.45 0.457 35.19 0.464

Cali. FHWA, RMSE

0 25 50 75 100 125 150

h/H = 0.5

0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e f

re
qu

en
cy

Cali. FHWA, PDC

0 25 50 75 100 125 150
0.00

0.05

0.10

0.15

0.20
Re

la
tiv

e f
re

qu
en

cy

Default FHWA

0 25 50 75 100 125 150
0.00

0.05

0.10

0.15

0.20

Re
la

tiv
e f

re
qu

en
cy

Sample bias, LN
MLE bias, LN

Corrected facing load λTf or λ'Tf (kN)

Figure 7: Histograms of facing load at h/H � 0.5 corrected by different biases, λTf or λ′Tf.
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suggest that adopting the PDC and RMSE approaches for
geotechnical model calibration does not result in a fatal
difference on practical design outcomes, even under scare
data conditions.

4. Conclusions

Calibrations of geotechnical models in many cases have to be
carried out with scarce data. +is study examines two ap-
proaches that have been widely adopted for geotechnical
model calibration in the literature, namely, pure data-
catering (PDC) approach and root mean squared error
(RMSE) approach. +e PDC approach calibrates a model by
adhering to two criteria: maintaining mean of model bias of
one while minimizing COV of model bias, where model bias
is defined as the ratio measured to the predicted value. +e
RMSE approach calibrates a model by minimizing the root
mean squared error between measured and predicted values.

A case study is presented to elaborate the influence of
selection of model calibration approaches from a practical
point of view. +e case study is on calibration of the default
Federal Highway Administration (FHWA) simplified facing
load model for facing design of soil nail walls. A total of 23
measured facing load data collected by Liu et al. [15] are

adopted for calibration. Calibration results confirm that the
two approaches are not practically equivalent when the data
available for calibration are scarce. Amodel calibrated by the
PDC approach usually does not reachminimal RMSE or vice
versa. +e Bayesian information criterion (BIC) is intro-
duced to rank the competence of the PDC and RMSE-
calibrated models fitting to the data. According to BIC, a
model calibrated by the PDC approach may or may not be
superior to its counterpart by the RMSE approach,
depending on the assumption of distribution of model bias.

+e two PDC- and RMSE-calibrated models are then
used for estimation of facing loads and design of rein-
forcement ratio against the facing flexure limit state using
both deterministic and reliability-based design approaches.
It is demonstrated that the estimated facing loads and the
determined reinforcement ratios using both calibrated
models do not differ significantly from each other. +ere-
fore, in practice, either approach can be adopted for geo-
technical model calibration even with scarce data.

Last, there are also other approaches for model cali-
brations, for example, the Bayesian inference technique. +e
Bayesian approach provides distributions other than point
estimates for estimation of model parameters. +is sets the
basic differences between the Bayesian approach and the
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Figure 8: Plots of design outcomes of (an + am) against FS ranging from 1 to 5 and βT ranging from 2 to 4.

Table 6: Comparisons of reinforcement area per unit width for facing design against flexural failures using default and calibrated FHWA
simplified facing load models.

Approach
Reinforcement area per unit width, (an + am) (mm2/m)

FS � 2.0 βT � 3.50, sample bias βT � 3.50, MLE bias∗

Default FHWA 266 730 1135
Cali. FHWA, PDC 212 446 430
Cali. FHWA, RMSE 232 492 447
∗Assuming log-normal distribution for bias.
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PDC and RMSE approaches. Discussion on parameter de-
termination using Bayesian approaches can be referenced to,
e.g., Lin and Yuan [39] and Lin et al. [40].
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Géotechnique, vol. 55, no. 1, pp. 45–54, 2005.

[18] K.-K. Phoon and C. Tang, “Characterisation of geotechnical
model uncertainty,” Georisk: Assessment and Management of
Risk for Engineered Systems and Geohazards, vol. 13, no. 2,
pp. 1–30, 2019.

[19] C. Tang and K.-K. Phoon, “Statistics of model factors and
consideration in reliability-based design of axially loaded
helical piles,” Journal of Geotechnical and Geoenvironmental
Engineering, vol. 144, no. 8, Article ID 04018050, 2018.

[20] J. Yuan, P. Lin, G. Mei, and Y. Hu, “Statistical prediction of
deformations of soil nail walls,” Computers and Geotechnics,
vol. 115, Article ID 103168, 2019b.

[21] J. Yuan, P. Lin, R. Huang, and Y. Que, “Statistical evaluation
and calibration of twomethods for predicting nail loads of soil
nail walls in China,” Computers and Geotechnics, vol. 108,
pp. 269–279, 2019c.

[22] R. J. Bathurst and Y. Yu, “Probabilistic prediction of rein-
forcement loads for steel MSE walls using a response surface
method,” International Journal of Geomechanics, vol. 18, no. 5,
Article ID 04018027, 2018.

[23] H. Liu, P. Lin, C. Guo, Z. Li, and X. Qin, “A shallow artificial
neural network for mapping bond strength of soil nails,”
Marine Georesources & Geotechnology, vol. 39, no. 3, pp. 1–13,
2019.

[24] Y. Yu and R. Bathurst, “Probabilistic assessment of reinforced
soil wall performance using response surface method,”
Geosynthetics International, vol. 24, no. 5, pp. 524–542, 2017.

[25] J. Zhang, H. Huang, and K. Phoon, “Application of the
Kriging-based response surface method to the system reli-
ability of soil slopes,” Journal of Geotechnical and Geo-
environmental Engineering, vol. 139, no. 4, pp. 651–655, 2012.

[26] J. Zhang, H. Chen, H. Huang, and Z. Luo, “Efficient response
surface method for practical geotechnical reliability analysis,”
Computers and Geotechnics, vol. 69, pp. 496–505, 2015a.

[27] W. Zhang, A. T. Goh, and F. Xuan, “A simple prediction
model for wall deflection caused by braced excavation in
clays,” Computers and Geotechnics, vol. 63, pp. 67–72, 2015b.

Advances in Civil Engineering 11



[28] W. Zhang, C. Wu, Y. Li, L. Wang, and P. Samui, “Assessment
of pile drivability using random forest regression and mul-
tivariate adaptive regression splines,” Georisk: Assessment and
Management of Risk for Engineered Systems and Geohazards,
vol. 15, no. 1, pp. 1–14, 2019.

[29] G. Schwarz, “Estimating the dimension of a model,” Annals of
Statistics, vol. 6, no. 2, pp. 461–464, 1978.

[30] K. P. Burnham and D. R. Anderson, “Multimodel inference,”
Sociological Methods & Research, vol. 33, no. 2, pp. 261–304,
2004.

[31] C. H. Juang, J. Ching, L.Wang, S. Khoshnevisan, and C.-S. Ku,
“Simplified procedure for estimation of liquefaction-induced
settlement and site-specific probabilistic settlement exceed-
ance curve using cone penetration test (CPT),” Canadian
Geotechnical Journal, vol. 50, no. 10, pp. 1055–1066, 2013.

[32] H. Liu, L. Tang, P. Lin, and G. Mei, “Accuracy assessment of
default and modified Federal Highway Administration
(FHWA) simplified models for estimation of facing tensile
forces of soil nail walls,” Canadian Geotechnical Journal,
vol. 55, no. 8, pp. 1104–1115, 2018.

[33] C. Lazarte, H. Robinson, J. Gómez, A. Baxter, A. Cadden, and
R. Berg, Geotechnical Engineering Circular No. 7 Soil Nail
walls—Reference Manual, Rep. No. FHWA-NHI-14-007,
Federal Highway Administration, Washington, DC, 2015.

[34] P. Lin and R. J. Bathurst, “Influence of cross correlation
between nominal load and resistance on reliability-based
design for simple linear soil-structure limit states,” Canadian
Geotechnical Journal, vol. 55, no. 2, pp. 279–295, 2018a.

[35] R. Byrne, D. Cotton, J. Porterfield, C. Wolschlag, and
G. Ueblacker,Manual for Design and Construction Monitoring of
Soil Nail walls, Federal Highway Administration, Washington,
DC, 1998.

[36] P. Lin and R. J. Bathurst, “Reliability-based internal limit state
analysis and design of soil nails using different load and
resistance models,” Journal of Geotechnical and Geo-
environmental Engineering, vol. 144, no. 5, Article ID
04018022, 2018b.

[37] P. Lin and R. J. Bathurst, “Calibration of resistance factors for
load and resistance factor design of internal limit states of soil
nail walls,” Journal of Geotechnical and Geoenvironmental
Engineering, vol. 145, no. 1, Article ID 04018100, 2019.

[38] Aashto, LRFD Bridge Design Specifications, American Asso-
ciation of State Highway and Transportation Officials
(AASHTO), Washington DC, 9th Ed. edition, 2020.

[39] P. Lin and X.-X. Yuan, “A two-time-scale point process model
of water main breaks for infrastructure asset management,”
Water Research, vol. 150, pp. 296–309, 2019.

[40] P. Lin, X. X. Yuan, and E. Tovilla, “Integrative modeling of
performance deterioration and maintenance effectiveness for
infrastructure assets with missing condition data,” Computer-
Aided Civil and Infrastructure Engineering, vol. 34, no. 8,
pp. 677–695, 2019.

12 Advances in Civil Engineering


