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*e phase-field method is a widely used technique to simulate crack initiation, propagation, and coalescence without the need to
trace the fracture surface. In the phase-field theory, the energy to create a fracture surface per unit area is equal to the critical
energy release rate.*erefore, the precise definition of the crack-driving part is the key to simulate crack propagation. In this work,
we propose a modified phase-field model to capture the complex crack propagation, in which the elastic strain energy is
decomposed into volumetric-deviatoric energy parts. Because of the volumetric-deviatoric energy split, we introduce a novel form
of the crack-driving energy to simulate mixed-mode fracture. Furthermore, a new degradation function is proposed to simulate
crack processes in brittle materials with different degradation rates. *e proposed model is implemented by a staggered algorithm
and to validate the performance of the phase-field modelling, and several numerical examples are constructed under plane strain
condition. All the presented examples demonstrate the capability of the proposed approach in solving problems of brittle
fracture propagation.

1. Introduction

Crack propagation is an active research topic in mechanical,
energy, and environmental engineering, such as under-
ground excavation, oil drilling, and nuclear waste storage
[1–3], during the past decades. In particular, predictive
investigations of crack-induced failure in rocks or rock-like
materials are a complex problem due to the presence of
preexisting fractures and voids which impact the strength
and other mechanical properties. For geological materials
like concrete and gypsum at no/low confinement, the failure
mode is brittle fracturing which can be explained by Grif-
fith’s theory [4] and assuming that the energy to create a
fracture surface per unit area is equal to the critical energy
release rate Gc. Based on the Griffith principle, many nu-
merical computational methods have been developed. Nu-
merical techniques for simulating crack propagation can be
categorised into discrete and diffuse/smear methods
depending upon how they handle the discontinuity.

Discrete methods attempt to capture the exact topology
either in an explicit way or in an implicit manner. For

instance, the extended finite-element method (XFEM) [5, 6]
has become a popular tool to consider the discontinuities. It
enables the accurate approximation of solutions with jumps
within elements through additional enrichment functions of
discontinuous and asymptotic fields, thereby avoiding
remeshing the cracked domain. Nevertheless, algorithmic
tracking of the evolution of complex fracture surfaces is a
tedious task in the numerical implementation. *e cracking
particles method (CPM) [7–9] is a pragmatic alternative to
explicit modelling of crack surfaces in which a crack is
represented by a set of cracking particles that can be easily
updated when the crack propagates.

Diffuse methods for fracture modelling are based on the
assumption that the discontinuity in the cracked material is
not sharp but can be interpreted as smeared damage [10, 11].
Recently, the phase-field method [12, 13] has been attracting
much attention because of its simplicity for numerical
implementation. In the phase-field model, a smooth
boundary of the phase-field is employed to approximate the
internal discontinuity boundary of a crack. *e use of the
phase-field model for fracture can circumvent the
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complexity of tracking crack propagation that is typically
required in discrete models. In this research, we adopt the
phase-field method and propose novel modifications in
order to elegantly simulate complicated fracture processes in
geological materials. *e phase-field method was proposed
by Bourdin et al. [14], and further developed by Borden et al.
[15] and Miehe et al. [16, 17]. Due to its strong ability to
simulate complex fracture processes such as nucleation,
propagation, and branching, great efforts and extensions
have also been done for brittle fracture [18–24], quasi-brittle
fracture [25, 26], ductile fracture [27–30], dynamic fracture
[15, 31], and multi-physicals fracturing problem [32, 33] for
various materials.

*e fundamental concept behind this model is the in-
troduction of a scalar damage field, which ranges from 0
(undamaged material) to 1 (fully damage material), to
represent the degree of fracture or damage of the material
[13]. *e crack propagation problem is sequentially recast as
a standard multifield problem which can then be handled
using the conventional finite-element method for both two-
dimensional and three-dimensional cases. As a result, issues
related to crack discontinuities are circumvented, and
complex crack evolution can be treated naturally without
difficulty. *e phase-field model was developed within the
framework of a variational principle of fracture [14], and this
further enhances its attraction. *e principle [12, 34] can be
regarded as a generalization of Griffith’s theory which en-
ables it to predict not only crack initiation but also the crack
propagation path. Furthermore, the solution of the varia-
tional principle is globally rather than locally optimal; thus,
any new crack nucleation can be detected naturally without
being specified in advance [14, 34].

Despite these contributions, these phase-field models
assume that the critical energy release rates of different crack
modes are the same, but in fact for manymaterials are not. In
rock-like materials, such as concrete and gypsum, the critical
energy release rate for Mode-I fracture is significantly lower
than that for Mode-II fracture. *is feature complicates the
modelling of crack phenomena for rocks. In a rock specimen
with a single inclined flaw under compression, wing cracks
emerge first followed by secondary cracks. It has been re-
ported [35, 36] that the wing crack is a Mode-I crack (tensile
crack), while the secondary crack is usually Mode-II crack
(shear crack). *e sequential appearance of wing and sec-
ondary cracks can be attributed to the considerable difference
in the critical energy release rates for different crack modes.
*us, it has been suggested [37] that this phenomenon cannot
be captured by using the traditional critical energy release
criterion, which does not account for the different critical
energy release rates for mode-I and mode-II fractures.

In this paper, a modified phase-field model for brittle
fracture is proposed to distinguish between the critical re-
lease rates for mode-I and mode-II cracks. *is is achieved
by partitioning the active energy density into distinct parts
corresponding to different crack modes.*e present paper is
organized as follows: in Section 2, the fundamentals of the
phase-field method are first briefly summarized. Section 3
presents the numerical implementation in detail. In Section
4, the accuracy of the numerical simulation is verified by

using one-element example; then a number of classical
experimental tests are simulated. Finally, Section 5 con-
cludes the paper.

2. Fundamentals of the Phase-Field Method

In this section, an arbitrary bounded computational domain
Ω ⊂ Rndim (ndim � 2, 3) is considered with external boundary
zΩ ⊂ Rndim− 1 and internal discontinuity Γ ⊂ Rndim− 1 as il-
lustrated in Figure 1. *e external boundary zΩ is
decomposed into two disjoint parts zΩu and zΩt, i.e.,
zΩu ∩ zΩt � ∅ and zΩu ∪ zΩt � zΩ. *e domain Ω is
subjected to the Dirichlet boundary conditions, u(x) for
x ∈zΩu, and the Neumann boundary zΩt ∈ Ω, with the
corresponding outward unit normal vectors nu and nt. *e
Neumann conditions impose the traction t∗(x) on zΩt.

2.1. Energy Functional. As already mentioned in Introduc-
tion, the phase-field approach to brittle fracture is based on
the work of Bourdin et al. [13] and consists in the regula-
rization of the variational formulation of Griffith’s theory of
brittle fracture, first proposed in 1998 by Francfort and
Marigo [12]. Neglecting inertia effects and assuming quasi-
static conditions, the total energy functional Ψ(u, Γ) of a
solid is the sum of elastic energy ψ(ε), fracture energy, and
external work. *us, the total power is written as

Ψ(u, Γ) � 
Ω
b · udΩ + 

zΩt

t∗ · udS − 
Γ
GcdΓ − 

Ω
ψε(ε)dΩ,

(1)

with the linear strain tensor ε � ε(u) given by

ε ≡ ∇su �
1
2
∇u + ∇uT

 , (2)

where u denotes the displacement field of the body Ω and
∇(·) and ∇s(·) denote the gradient and symmetric gradient
operators, respectively, with (·)T being the transpose
operator.

Regarding the choice of the split of the energy density
function, we introduce the volumetric-deviatoric energy
split proposed by Lancioni and Royer-Carfagni [38]. As-
suming the solid is isotropic and linear elastic, the elastic
energy density ψε(ε) � ψdev(ε) + ψvol(ε) is written as

ψdev
(ε) � μ εdev: εdev  �

1
2
ε: Cdev

: ε,

ψvol
(ε) �

1
2

Ktr2(ε) �
1
2
ε: Cvol

: ε,

(3)

where εdev � ε − (1/3)tr(ε)I is the deviatoric component of
the strain tensor ε, K � λ + (2/3)μ is the bulk modulus of the
material, λ and μ are the Lamé constants, I the second-order
unit tensor, and Cdev and Cvol are the deviatoric and volu-
metric parts of the elasticity tensor C, and defined as follows:

C
vol

� KI⊗ I;

C
dev

� C − C
dev

.

⎧⎨

⎩ (4)
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2.2. Phase-Field Approximation for Fracture Energy. In the
phase-field model, a scalar field (phase-field) is used to
diffuse the sharp crack topology [16, 17] over a certain
domain which avoids complex crack tracking procedures
and an explicit representation of the crack surface as in
discrete crack approaches [39]. *erefore, a narrow tran-
sition band connects the fully fractured and intact domains
with the displacement being still continuous. Within the
context of quasi-static brittle fracture in elastic solids, the
cracks are approximated as bands of finite thickness char-
acterised by the phase-field d(x, t) ∈ [0, 1] as shown in
Figure 1, which satisfies the following conditions:

d �
0, if material is intact,

1, if material is cracked.
 (5)

*is variable indicates the damage in the material. *e
material is fully broken for d � 1, and d � 0 represents the
intact state. A typical one-dimensional phase-field is ap-
proximated with the exponential function:

d(x) � e
− (|x|/ℓ)

. (6)

*e length-scale parameter ℓ plays an important role
which controls the transition region between the fracture
and intact material.

For 2D and 3D problems, the crack surface density per
unit volume of the solid is given by [17]

c(d,∇d) �
d
2

2ℓ
+
ℓ
2

zd

zxi

zd

zxi

. (7)

*us, exploiting equation (6), the fracture energy in
equation (1) can be rewritten as


Γ
GcdS � 

Ω
Gc

d
2

2ℓ
+
ℓ
2

zd

zxi

zd

zxi

 dΩ. (8)

2.3. Governing Equations for Evolution of the Phase-Field.
It is noticed that the phase-field formulation equation (1)
does not distinguish fracture behaviour during tension and

compression. *erefore, based on the volumetric-deviatoric
decomposition of the elastic energy, a more adequate choice
for a split would be adopted [40]:

ψ+
�
1
2

K〈tr(ε)〉2
+ + μ εdev: εdev ,

ψ−
�
1
2

K〈tr(ε)〉2
− .

(9)

We follow Ambati et al. [41] and assume that the phase-
field affects the positive part of the elastic energy:

ψ(ε) � [(1 − k)g(d) + k]ψ+
+ ψ−

, (10)

where 0< k≪ 1 is the parameter that stabilizes the stiffness
matrix to ensure the numerical convergence. Taking ad-
vantage of equations (8) and (10), equation (1) can be re-
written as

Ψ(u, Γ) � 
Ω
b · udΩ + 

zΩt

t∗ · udS − 
Γ
Gc

d
2

2ℓ
+
ℓ
2

zd

zxi

zd

zxi

 dΩ

− 
Ω

[(1 − k)g(d) + k]ψ+
+ ψ−

 dΩ.

(11)

Following Miehe et al. [16], we obtain two coupled local
equations:

divσ + b � 0,

(1 − k) _g(d)ψ+
+ Gc

d

ℓ
− ℓΔ d  � 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

where σ is the stress tensor, defined as

σ � g(d) K〈tr(ε)〉+I + 2μεdev  + K〈tr(ε)− 〉I. (13)

*e degradation function g(d) characterizes the ratio of
residual strain energy and total strain energy during the
crack evolution. *e degradation g(d) function is a
monotonically g(0) � 1 and g(1) � 0. Actually, the se-
lection of degradation function depends on the

Ω

Γ
ε (X, t)

дΩu

дΩt

(a)

2l

Ω

Γ
ε (X, t)

дΩu

дΩt

(b)

Figure 1: Schematic depiction of a solid body Ω with a strong discontinuity Γ (a), modeled by the phase-field fracture method (b). *e
parameter ℓ controls the width of the diffused fracture zone.

Advances in Civil Engineering 3



mechanical properties of materials. For this reason, in-
spired by the work of [42–44], a new degradation function
is proposed in this study to describe a large range of failure
processes:

g(d) � (1 − k)
(1 − d)

2

M +(M − 1)(1 − d)
2 + k. (14)

In this degradation function, M is a nondimensional
material parameter, which characterizes the degradation rate
of strain energy with the evolution of the phase-field, as
shown in Figure 2. To prevent crack healing, we take ad-
vantage of the definition of local history field proposed by
Miehe and Schänzel [45] to set up relationship between
phase-field variable and maximum reference energy in
history, whereby the following relation is given:

H(x, t) � max
s∈[0,t]

ψ+
ε , inΩ ×(0, T], (15)

where x is the material point in a reference body and t is the
pseudotime. *us the phase-field evolution equation is fi-
nally given as

lΔ d �
d

ℓ
+(1 − k) _g(d)

H

Gc

. (16)

*e critical energy release rate for brittle tension fracture
is significantly lower than that for the compressive-shear
fracture. To capture this feature, in this work, the model
incorporates different contributions of energy components
to crack growth, which is able to capture tensile and shear
cracks according to the strain states.*erefore, equation (16)
can be rewritten as

lΔϕ �
d

ℓ
+(1 − k) _g(d)

H
+
vol

Gt

+
H

+
dev

Gt

+
H

−
dev

Gs

 , (17)

where the parameters Gt and Gs are the critical energy rates
for tensile and compressive-shear fracture, respectively.H+

vol
and H ±dev represent parts of the volumetric-deviatoric split
of the elastic strain energy:

H
+
vol �

1
2

K〈tr(ε)〉+,

H
+
dev � μ εdev: εdev H(tr(ε)),

H
+
dev � μ εdev: εdev [1 − H(tr(ε))],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where H(·) is the Heaviside function.

3. Numerical Algorithm

In this section, we describe the numerical algorithm on
implementation of the phase-field modelling of fracture
propagation in isotropic medium. We use the finite-element
method to discretize the spatial domain and a staggered
scheme to solve the coupling equations and for pursuing a
higher convergence rate.

3.1. Finite-Element Discretization. *e weak forms of the
governing equations are given by


Ω

− σ: δεdV + 
Ω
b · δudV + 

zΩt

t∗ · δudS � 0,


Ω

(1 − k)g′(d)
H

Gc

δϕdΩ + 
Ω

ℓ∇d · ∇δ d +
1
ℓ

dδ d dΩ � 0.

(19)

*e quadrilateral four-node element in 2D elements and
the hexahedral eight-node in 3D elements are implemented
to discretize the bulk domain Ω. *e node values ui and di

are discretized as follows:

u � 
n

i�1
Niui,

d � 
n

i�1
Nidi,

(20)

where n is the total number of nodes per element. Ni denotes
the shape function associated with node i. *e corresponding
matrices of the spatial derivatives can be expressed as

B
u
i �

Ni,x 0

0 Ni,y

Ni,y Ni,x

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

B
d
i �

Ni,x

Ni,y

⎡⎣ ⎤⎦.

(21)

*en it is possible to express the gradients:

M = 0.001
M = 0.01
M = 0.1
M = 0.5

M = 1
M = 5
M = 10
M = 50

0

0.25

0.5

0.75

1

g (
d)

0.25 0.5 0.75 10
 d

Figure 2: *e evolution of degradation function for different M.
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ε � 
n

i�1
B

u
i ui,

∇d � 
n

i�1
B

d
i di.

(22)

According to 21) and (22), the contributions of one-
element at node i to the residual of the overall systems of
equations are given as

Ru
i � Fu,ext

i − Fu,int
i � 

zΩt

Nit
∗dS − 

Ω
B

u
i σdΩ,

R
d
i � − F

d,int
i � 

Ω
(1 − k)g′(d)

H

Gc

Ni + ℓ B
d
i 

T
∇d +

1
ℓ

dNi  dΩ,

(23)

where Fu,ext
i and Fu,int

i denote the external forces and inner
forces, respectively, which correspond to the displacement,
whereas Fd,int

i can be explained as inner forces to the phase-
field. We used the Newton–Raphson procedure to obtain the

solutions by making Ru � 0 and Rd � 0. *e corresponding
tangents on the element level can be obtained based on the
inner forces:

K
uu
ij �

zFu,int
i

zuj

� 
Ω

Bu
i 

TD Bu
j dΩ,

K
d d
ij �

zF
d,int
i

zdj

� 
Ω

B
d
i 

T
ℓ B

d
i  + Ni (1 − k)g

(2)
(d)

H
+
vol

Gt

+
H

+
dev

Gt

+
H

−
dev

Gs

  +
1
ℓ

 Nj dΩ,

(24)

where D is the fourth-order elasticity tensor given by

D �
((1 − k)g(d) + k) C

vol
+ C

dev
 , tr(ε)≥ 0,

C
vol

+((1 − k)g(d) + k)C
dev

, tr(ε)< 0.

⎧⎪⎨

⎪⎩
(25)

3.2. Staggered Scheme. A staggered scheme is adopted here;
where at each increment step, the governing equation (23) is
solved for u by freezing d. After updating the elastic strains,
we solve the phase-field evolution for d. *e step is repeated
until a convergence criterion is reached. A strong coupling
between the displacement field and phase-field introduces a
relatively complicated numerical process. *erefore, a N-R
iteration procedure is needed for solving this nonlinear
equation. For the sake of clarity, we show the flowchart of the
N-R iterative scheme in Figure 3.

4. Verification of the Proposed Approach

In this section, starting with the simplest case where we
compare different methods for one-element, more and more
complex cases are introduced. In all cases, the relevant
numerical parameters are summarized, then the results are
shown and interpreted. In all cases (plane strain), the
thickness of the element is 1mm. *e mesh is densified
where the crack is expected to propagate, the size is specified
in the text, and the mesh is shown in some of the figures.
According to the results of Miehe et al. [17], the length-scale

parameter is always taken two times larger than the smallest
element around the crack path.

4.1. One-Element. One 2D plane strain element is the
simplest case, to verify the correctness of the proposed
model. *e geometry and the boundary conditions are il-
lustrated in Figure 4(a).*e bottom nodes are constrained in
both directions, whereas we allow the top nodes to slide
vertically. For the case of homogeneous materials,
E � 2.1 × 105 MPa, v � 0.3, Gt � 5 × 10− 3 kN/mm,
Gs � 5 × 10− 2 kN/mm, and ℓ � 0.1mm as reported in
[43, 46]. *e loading history is divided into 1000 steps with a
constant increment Δu � 10− 4 mm.

Figure 4(b) shows the comparisons of macroscopic
stress-strain relation and damage evolution between the
analytical solution and the proposed method. Obviously,
these two solutions well recover each other as illustrated in
this figure. *is shows that the proposed phase-field method
can well describe the damage process in homogeneous
materials.

4.2.>ree-Point Bending Test. In this section, an example of
the problem of three-point bending test is presented per-
formed by Perdikaris and Romeo [47] and widely taken as
the benchmark model for numerical investigation onmodel-
I fracture energy for plane concrete. *erefore, some pre-
vious experiences and results are available for comparison.
*e geometry and loading conditions of the specimen are
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shown in Figure 5. Two different finite-element meshes are
considered and shown in Figure 6. It amounts to 6252 el-
ements in coarse mesh and 18474 elements in the fine mesh.
*e displacement imposed onto the notched beam is
Δu � 10− 2 mm.

Young’s modulus is taken as E � 4.83 × 104 MPa. *e
parameter Gt on the one hand has been provided experi-
mentally as Gt � 0.0451N/mm and, on the other hand, can
be calculated by the linear elastic fracture mechanics in
consideration of size effect [48]. According to the work
elaborated in [48], one takes Gt � 0.029N/mm.

Figure 7 illustrates the crack evolution process predicted
from the phase-field model. *e crack initiates from the
notch tip and propagates towards the top surface of the
beam. Comparing the crack evolution processes in Figure 6,
the speed of crack growth in the case of Gt � 0.0290N/mm is
faster than the other one, and the corresponding com-
pressive-shear critical energy release rates are Gs � 0.290N/
mm and Gs � 0.451N/mm, respectively.

Figure 8 compares the load-displacement response from
this study to the experimental data. *ere is no detectable
mesh dependency for the two meshes under consideration,

Input the basic parameters for the calculation

Giving the trial solution of displacement ui
n and phase field di

n

Fixed the phase field, and calculated the Jacobians J, residual Ru of each element

Assembled element Jacobians, residual Ru to global matrices

Calculated the displacement increment δun

Caculated the trial solution of displacement at i + 1 iteration step

Fixed the displacement, and calculated the phase field d at i + 1 iteration step

Convergence

Next time step

No

Yes

ui
n = un

i+1, di
n = dn

i+1

Figure 3: Flowchart of the staggered solution procedure.
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Figure 4: (a) Studied one-element and (b) comparisons of strain-force curves and macroscopic damage evolution between analytical
solution and numerical results.
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and the beam is subject to noncyclic loading. In the case of
Gt � 0.0290N/mm and Gs � 0.290N/mm, the maximum
force that the beam can sustain from the simulation is
12.3 kN which is very close to the experimental data
(12.0 kN). However, taking Gt � 0.0451N/mm and
Gs � 0.451N/mm, the peak load is about 13 kN which is
8.3% higher than the experimental result.

*e simulated forces both drop much faster than the
experimental data after reaching the bearing capacity. *ese
deviations on one aspect stem from the fact that a linear
fracture model is used in the simulation, whereas the
real fracture is nonlinear; the model neglects any plastic
deformation. It can be clarified by examining the load-
displacement curves from both cyclic and noncyclic loadings.

4.3. L-Shaped Panel Test. In this section, we simulate crack
propagation in an L-shaped slab. *e geometry and

boundary conditions of the problem are depicted in
Figure 9(a). *e experimental results are taken from [49],
and Figure 9(b) illustrates the crack path obtained from the
phase-field modelling and superimposes the range of ex-
perimentally obtained crack paths (shaded region). *e
material parameters are chosen as follows [50]: Young’s
modulus E � 2.0 × 104 MPa, Poisson’s ratio v � 0.18,
ℓ � 10mm, tension fracture energy Gt � 1.3 × 10− 4 kN/mm,
and compressive-shear fracture energy Gs � 1.3 × 10− 3 kN/
mm [51]. *e simulation is led with the step increment
Δu � 2 × 10− 3 mm.

*e computational domain is discretized using a total of
51,766 elements with fine meshes assigned to the critical
zone. Figure 10 illustrates the crack progression at several
loading stages. *e corresponding load-displacement curves
are presented in Figure 11. For ℓ � 10mm, the crack path
from the simulation is located at the path observed in the real
test. *e corresponding load-displacement curves are shown

P

w = 5

a = 78

S = 1016

L = 1118

D
 =

 2
54

Thickness: 127
Unit of length: mm

Figure 5: Symmetric three-point bending test: geometry and boundary conditions.

(a) (b)

Figure 6: FE-meshes used for computation of three-point bending on notched beam: (a) coarse; (b) fine.
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Figure 7: Predicted crack paths of the three-point bending test. (a) Gt � 0.0451N/mm. (b) Gt � 0.029N/mm.
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Figure 8: Calculated load-displacement curves of the three-point bending test.
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in Figure 11(a); the global response matches the experi-
mental peal loads. *e reaction force from the simulation
increases steadily to a maximum value and then drops
sharply. To further investigate the effect of the length scale, a
second simulation is performed with a larger length scale
(ℓ � 20mm). For ℓ � 20mm, a diffusive crack path is ob-
tained due to the relatively large length scale. Although the
maximum force obtained by using ℓ � 20mm is even lower
as shown in Figure 11(b), the predicted crack path agrees
well with the experimental data (Figure 10(b)).*e proposed
model is fairly in good agreement with the experimental
results in terms of crack pattern.

4.4. Compression of a Rock Plate with Double Flaws. To
further verify the modified phase-field model proposed and
highlight its capabilities, crack propagation involving frac-
ture coalescence is considered. Figure 12 shows a schematic
illustration of the problem where a specimen with double
inclined open flaws is loaded under uniaxial compression.
Such a test has been widely investigated experimentally [35]

and numerically [52] by means of prefracture specimens of
gypsum under uniaxial compression. In the test, the gypsum
specimen is 76.2mm long and 152.4mm high. *e length
and the width for the flaws are 12.7mm and 0.1mm, re-
spectively. *e geometry of the flaws is represented by the
terminology “β − s − c,” as shown in Figure 12. Herein we
consider the case of “45 - 2a - 2a” geometry (2a� 12.7mm).
Displacement increment Δu � 0.002mm is prescribed in
line with laboratory tests [35].

*e mechanical properties of the material are
E � 5 × 103 MPa, Poisson’s ratio v � 0.24, ℓ � 0.5942mm,
tension fracture energy Gt � 5.0 × 10− 6 kN/mm, and com-
pressive-shear fracture energy Gs � 1.0 × 10− 2 kN/mm. *e
numerical simulation gives a crack pattern similar to the
experimental observation, that is, the growth of four wing
cracks and the coalescence of a secondary and one wing
crack. *e fracturing process is explained in more detail in
Figure 13. Initially a stable growth of four wing cracks is seen
(Figure 13(b)). *e outer wing cracks continue to grow for a
while, and a shear crack is subsequently initiated close to the
inner tip of the upper notch; it coalesces with the inner wing
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Figure 10: L-shaped panel test. Damage profiles for various length-scale parameters at displacements u� 0.22mm, 0.30mm, 0.45mm, and
1.0mm. (a) ℓ � 10mm. (b) ℓ � 20mm.
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crack of the lower notch (Figure 13(d)).*en, the inner wing
crack of the upper notch is located in a strong shear stress
state and approaches the preexisting flaw (Figure 13(e)).
Eventually, they connect with each other. Up to this point,
the simulated crack pattern is quite similar to the experi-
mental [35].

5. Conclusions

*is paper presents a new framework of the phase-field
method based on the split of the fracture energy release rate
for simulation of crack propagation in geotechnical mate-
rials. *e critical release rate for tensile cracks is significantly
lower than the energy release rate for shear cracks. In the
proposed approach, the crack-driving energy is identified,
and a new degradation function is introduced, in which a
nondimensional parameter is used to describe crack prop-
agation of brittle materials with different weakening rates.

Several numerical examples are carried out. Firstly, the
modified phase-field model is validated by the widely used
benchmark example, and the simulation results well agree
with the analytical results. Furthermore, to demonstrate the
capability of the modified phase-field model in simulation
crack propagation and bifurcation in brittle materials,
several numerical examples are presented. *e presented
phenomenon of crack propagation shows that the modified
phase-field fracture model gives results in good agreement
with the experimental observations both with respect to
crack patterns and critical stress loads.

In summary, the modified model is capable of describing
the failure behaviour for brittle and presenting the failure
processes. Moreover, it is noteworthy that the effects of
length parameter and critical energy release rate on simu-
lation results need to be investigated further [53]. In future
work, the proposed approach can be extended to predict
crack propagation in multi-physics problems, for example,
hydraulic fracture propagation and heat transfer.
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