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Bridge engineering is an important component of the transportation system, and early warnings of construction safety risks are
crucial for bridge engineering construction safety. To solve the challenges faced by early warnings risk and the low early warning
accuracy in bridge construction safety, this study proposed a new early-warning model for bridge construction safety risk. The
proposed model integrates a rough set (RS), the sparrow search algorithm (SSA), and the least squares support vector machine
(LSSVM). In particular, the initial early warning factors of bridge construction safety risk from five factors (men, machines,
methods, materials, and environment) were selected, and the RS was used to reduce the attributes of 20 initial early warning
factors to obtain the optimized early warning factor set. This overcame the problem of multiple early warning factors and reduced
the complexity of the subsequent prediction model. Then, the LSSVM with the strongest nonlinear modelling ability was selected
to build the bridge construction early-warning model and adopted the SSA to optimize the LSSVM parameter combination,
improving the early warning accuracy. The Longlingshan Project in Wuhan and the Shihe Bridge Project in Xinyang, China, were
then selected as case studies for empirical research. Results demonstrated a significant improvement in the performance of the
early-warning model following the removal of redundancy or interference factors via the RS. Compared with the standard
LSSVM, Back Propagation Neural Network and other traditional early-warning models, the proposed model exhibited higher
computational efficiency and a better early warning performance. The research presented in this article has important theoretical
and practical significance for the improvement of the early warning management of bridge construction safety risks.

1. Introduction

Developing countries such as China are currently imple-
menting large-scale bridge projects [1]. However, these
projects require large project investment, complex tech-
nology, and extensive contents and are typically established
in poor construction environments. This results inextremely
high construction safety, with an enhanced probability of
serious accidents. In recent years, bridge construction safety
accidents (e.g., the impact of the cofferdam, the collapse of
floating cranes, and flooding) have been a common oc-
currence [2]. The early warning of construction safety risk
generally involves the monitoring, evaluation, and predic-
tion of factors corresponding to construction safety risk,
with the aims of predicting future risks, determining the

potential time range of risks, and measuring the strength of
risks and their damage degree. Such a system aids decision-
makers in taking appropriate risk control measures [3].
Therefore, the systematic identification, estimation, and
early warning control of bridge construction safety risks can
effectively reduce construction safety risks and achieve the
management goals of bridges while complying with safety
regulations.

Numerous scholars have performed in-depth studies on
the early warning of risk in many fields. To effectively reduce
the financial risks of non-life-insurance enterprises, Yan
et al. [4] constructed a financial risk early-warning model.
Zhang [5] developed a safety risk early-warning model of the
food industry chain, revealing that introducing early
warning theory into the field of food safety risk can
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effectively improve the level of risk management. In order to
reduce the loss of ship collision, Cheng et al. [6] introduced
risk early warning theory into ship collision risk manage-
ment. Based on climatology, disaster science, and envi-
ronmental science, Zhang et al. [7] determined that the risk
early warning theory should be introduced into the early
management of the drought disaster risk of crops such as
corn. Sattlee et al. [8] integrated risk early warning theory
into the reliability analysis of geological disasters to effec-
tively reduce the losses caused by landslides and falling
rocks. Great achievements have been made in the theory of
early warning risk, but the research results on early warning
of bridge construction safety risk are rarely reported. The
early warning of risk denotes the prediction or classification
of the target value of research objects. Scholars have adopted
various research methods to build risk early-warning models
across different fields of research. Ding [9] comprehensively
combined the analytic hierarchy process (AHP) and the
fuzzy comprehensive evaluation method to construct the
risk early-warning model of financial enterprises. However,
the fuzzy comprehensive evaluation is a linear weighted
evaluation method and cannot effectively reflect the elevated
influence of all evaluation indicators. Nonlinear character-
istics are also unable to meet the requirements of practical
evaluations. The AHP is associated with several disadvan-
tages, such as strong subjectivity and the sensitivity to ex-
treme expert opinions. Based on the strong self-learning
ability and nonlinear processing of artificial neural networks
(ANNS), Yan et al. [10] constructed an early-warning model
of human resource management risk based on the back
propagation neural network (BPNN). However, the appli-
cation of the BPNN in early warning risk research results in
several shortcomings, including overfitting, slow conver-
gence, and easy to fall into a local minimum. Wang et al. [11]
employed the grey model (GM) to construct an early
warning safety risk model of a railway service system. Al-
though the GM is simple to operate, it requires that variables
satisfy the multivariate normal distribution, which is difficult
to meet in practical applications. Chen and Zhang [12] used
the logistic regression model to construct a logistics-based
early warning risk management system for the default risk of
cultural creative crowdfunding projects. However, the cal-
culation of the logistic regression model is approximate and
thus has several shortcomings, such as complex calculations
and low prediction accuracy.

The least square support vector machine (LSSVM) in-
herits the structural risk concept and kernel mapping
concept of the standard support vector machine (SVM).
Starting from the loss function of machine learning, two
norms are used in the objective function of the optimization
problem in the LSSVM, and equality constraint is used
instead of inequality constraint in SVM standard algorithm,
which makes the solution of optimization problem of
LSSVM method become a set of linear equations obtained by
Kuhn-Tucker condition. The LSSVM trains the SVM by
solving the transformed linear equations, which greatly
improves the training efficiency of the SVM [13]. In recent
years, the LSSVM has been widely used in data prediction,
data classification, and other research fields. Zhao et al. [13]
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used the LSSVM to effectively diagnose aircraft engine faults.
Ahmadi et al. [14] successfully simulated the vaporization
enthalpies of pure hydrocarbons and petroleum fractions via
the LSSVM. Statistical results determined the LSSVM-pre-
dicted average relative deviation and R? of the vaporization
enthalpies as 0.51% and 0.9998, respectively, indicating the
high prediction accuracy of the LSSVM. To improve the
prediction accuracy of the cotton fabric K/S value, Yu et al.
[15] combined particle swarm optimization (PSO) with the
LSSVM to construct a new prediction model. In order to
overcome the low early warning accuracy, in the current
study, the LSSVM is employed to build an early-warning
model of bridge construction safety risk.

Despite its strong robustness and generalization ability,
the LSSVM cannot simplify the dimensions of information
space. For high dimensions or large training samples, the
LSSVM often faces problems, such as dimension disaster,
and an increase in time consumption due to the limited
memory capacity or complex network structure. The rough
set (RS) does not require any prior knowledge and removes
redundant data without affecting the classification accuracy.
It is widely used in the fields of attribute sets [16] and key
indicator screening. Introducing the RS into the LSSVM can
effectively determine key attributes and reduce the adverse
effects of redundancy and multicollinearity among various
input variables on prediction accuracy. Therefore, when
developing the proposed early-warning model based on the
LSSVM, the RS is introduced to solve the problem of
multiple early warning factors.

As a new machine learning method, the prediction ac-
curacy and computational performance of the LSSVM de-
pend on the reasonable selection of regularization and kernel
width parameters. In the development of a landslide dis-
placement prediction model for rainfall, Zhu et al. [17]
employed the genetic algorithm (GA) to determine the
LSSVM optimal parameters. However, the GA is associated
with several bottlenecks, including complex coding, a slow
calculation speed, and easy premature convergence [18]. To
improve the accuracy of the LSSVM in predicting concrete
strength, Xue [19] optimized the calculation parameters via
PSO. However, the PSO is also prone to premature con-
vergence (particularly when dealing with complex multi-
modal search problems) and has a poor local optimization
ability [14].

The sparrow search algorithm (SSA) is a new swarm
intelligence optimization approach that was inspired by the
foraging and antipredation behaviours of sparrows [20].
When predicting the deboning strain of fibre reinforced
polymer reinforced concrete, Li et al. [21] employed the SSA
to optimize the initial weight and threshold of the BPNN.
Empirical results revealed that the SSA-optimized BPNN
surpassed the traditional version in terms of prediction
accuracy and robustness. Liu and Rodriguez [22] used the
SSA to accurately solve the problem of sustainable energy
optimization in residential engineering, a complex and
multiobjective nonlinear optimization problem. Wumaier
et al. [23] adopted the SSA to optimize the SVM parameter
combination, and based on wind turbine fault diagnosis
data, the SSA-SVM was clearly superior to GA-SVM and
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PSO-SVM in terms of computing performance. Therefore,
the SSA in the proposed method was adopted to determine
the LSSVM optimal parameter for efficient computing
performance.

Based on the above analysis and review of the relevant
literature, a hybrid early-warning model of bridge con-
struction safety risk was developed based on the RS, SSA,
and LSSVM. The contributions and innovations of this
article are as follows. (1) At present, researches on the early
warning of risk mainly focuses on the financial risk, the food
safety, the disaster risk, or other fields. In this study, early
warning for the construction safety risk of bridge projects
was studied, and a detailed case study was made. This
provided new insights for early warning and management of
bridge construction project. (2) From five aspects (men,
machines, materials, methods, and environment), the index
system of early warning for construction safety risk of bridge
projects was constructed completely, which provided ref-
erence and foundation for similar researches. (3) In this
study, a novel early-warning model based on the RS, SSA,
and LSSVM was constructed, which not only effectively
solved the problem of multiple risk early warning factors but
also overcame the problem of low precision of traditional
early warning methods.

The remaining sections of this article are arranged as
follows. In Section 2, the early warning indicator system of
bridge construction safety risk and the early-warning model
are constructed. In Section 3, the Longlingshan Bridge
Project in Wuhan and the Shihe Bridge Project in Xinyang,
China, are used to perform the empirical research. Section 4
analyses the computational performance of the early-
warning model proposed in this study, whereas Section 5
summarizes the main conclusions and limitations of this

study.

2. Materials and Methods

2.1. Establishment of an Early-Warning Indicator System for
Bridge Construction Safety Risk

2.1.1. Preliminary Selection of Early-Warning Indicators for
Bridge Construction Safety Risks. Risk early warning mainly
includes three parts: identification, division, and prediction
of risk levels. The early-warning management system of
construction safety risk in a bridge project plays a key role in
scientifically creating an early warning indicator system for
safety risk. Referring to the underlying reasons of risk loss
during bridge construction, the early warning indicators of
bridge construction safety risk was screened from five as-
pects (men, machines, materials, methods and environment;
4MI1E) [24, 25], as described in the following.

(1) Men. This includes all participants in the bridge con-
struction process. The construction and management of
bridge engineering is generally performed by employees, and
thus, their safety has a great influence on bridge construction
safety. The illegal operation of workers is a common in-
stigator of construction safety accidents [2]. In general, the
more workers violating regulations, the greater the

possibility of construction safety accidents and the more
serious the consequences. Therefore, the more skilled
workers, the lower the safety risks. The safety skills of project
managers also play a key role in the daily risk management of
construction safety. The stronger the safety skills of project
managers, the more effective the daily risk management is.
When safety accidents occur, project managers with a good
emergency handling ability can effectively reduce secondary
accidents and losses caused by safety accidents.

(2) Machines. This includes all machinery and equipment
used in the construction project. The safety state of ma-
chinery in bridge construction projects is a key influencing
factor of construction safety. Mechanical quality, mechanical
installation, mechanical operation, and mechanical opera-
tion failure are generally the most important factors affecting
the safety status of objects in bridge construction [3].

(3) Materials. This includes all materials employed in the
bridge construction process. The quality and management
problems of materials will consequently result in the quality
and safety problems of the whole bridge construction. The
most important building materials for bridge construction
are concrete and steel, which are the main stress parts of the
bridge structure, and they have obvious influence on the
structural performance. When the structural performance of
bridges is insufficient, safety accidents such as local collapse
are easy to occur. Therefore, the qualification rate of these
two building materials has a great influence on the con-
struction safety and engineering quality. In addition, related
management problems (e.g., stacking and random inspec-
tion of materials) may also result in bridge construction
safety accidents [2, 24].

(4) Methods. This denotes the overall management process of
bridge construction. Method indicators related to con-
struction safety include all rules and regulations, technical
requirements, organization and management, and con-
struction methods. Combined with the construction tech-
nology and characteristics of bridge engineering, the most
important indicators are the monitoring and calculation
methods, as well as technical disclosure. Furthermore, a
large number of new technologies and processes are often
used in bridge construction; thus, the proportion of new
construction schemes also has a significant impact on
construction safety [25]. In general, the greater the pro-
portion of new construction schemes and the less mature the
technology, the greater the risk of construction safety.

(5) Environment. This denotes the natural environment
and social environment during bridge construction. The
characteristics of bridge construction sites and technology
and economy lead to a complex construction environment,
and there are many natural and social factors that affect
bridge construction. Natural disasters, such as earthquakes,
typhoons, and rainstorms, will seriously affect construction
safety. In bridge construction, the wind has a great influence
on bridge construction safety [3]. The social environment of
bridge construction mainly refers to the sustainability and
socioeconomic stability of engineering projects.



Table 1 provides details of the five early warning indi-
cators. Here, the qualitative indicator refers to the data ob-
tained by expert investigations, whereas the quantitative
indicator is obtained by field investigations, consulting design
data, or calculations based on national standards. The benefit
indicator increases with the bridge construction safety risk
level, whereas the opposite is true for the cost indicator.

2.1.2. Threshold Value of Early Warning Bridge Construction
Safety Risk. The early-warning threshold of bridge con-
struction safety risk is divided into a general indicator early-
warning threshold and a subindicator early-warning
threshold. In the actual construction process, rapidly
obtaining quantitative data of risk indicators proves to be a
difficult task, particularly as indicators related to early
warnings still rely on the observation and subjective judgment
of site managers. Therefore, a qualitative and quantitative
combination, with a qualitative expert determination, method
was adopted to judge the warning situation of early warning
indicators. Table 2 reports the division of each indicator and
the corresponding descriptions.

The warning degree division of each secondary indicator
comprehensively considers the related specifications, such as
the Load Code for the Building Structure Design (GB 50009-
2012), the Specifications for Long-Span Highway Bridge
Construction Surveys (JTG/T 365-02-2019), the Safety
Technical Specifications for Highway Engineering Con-
struction, (JTG F90-2015), the Specifications for Bridge
Design Wind Speed Calculations (QX/T 438-2018), the
Design Code of the Municipal Bridge (CJJ 11-2011), and the
results of previous research of early warning systems [26].

2.2. Introduction to the RS. The RS, a data analysis theory
proposed by Polish mathematician Pawlak, is able to deal with
the uncertainty, incompleteness, and incompatibility between
information and knowledge. The RS-based attribute reduction
process involves deleting unimportant or irrelevant redundant
attributes while maintaining the classification or decision-
making ability of information systems unchanged and de-
ducing the classification or decision-making of the problem to
be solved [16, 17]. Therefore, theoretically speaking, applying
the RS to the intensive prewarning indicators of bridge con-
struction safety risks can reduce the unimportant indicators
while maintaining the prewarning ability, thus improving the
calculation accuracy of the subsequent risk prewarning model.

In the RS, information systems can be represented by 4
tuples [16]:

S=(U, AV, fs), (1)

where U is the domain of discourse; A=CuUD = {al,az,
.., a,} is a finite set of non-empty attributes, CND = &, C
is a conditional attribute set, and D is a decision attribute set;
V = UV, is the set of attribute values, and V, is the range
of attribute a € A. Function fg is used to assign corre-
sponding attribute values to each object attribute in theory.
The support degree of conditional attribute C to decision
attribute D is an important concept of rough set theory [16]:

Advances in Civil Engineering

_ POS¢ (D)
yc(D) = Ul

, (2)
where POS (D) is denoted as the positive domain of D
about C, which describes all the element sets in U that can be
exactly classified into the U|D class according to the
knowledge of C, and y,, (D) indicates the ratio of objects that
can be classified into the U|D decision class under condi-
tional attribute C and expresses the degree of support of the
conditional attribute to the decision attribute.

Assume that there exists g € C and C € A in information
system S, if PCS (D) # POS () (D), then itis said that g is a
necessary attribute in C and must be kept; otherwise, g is an
unnecessary attribute in C and can be deleted [16].

In information system S, ECCCA and E are inde-
pendent and satisfy (yz(D)=yc(D))A(VE' € E)=
(yg (D)#7yc (D)). E is denoted as the reduction of C,
Red (C), and the set of essential attributes in C forms the core
of C, Core(C). If E is independent, it is considered as the
minimum set required to maintain the classification ability
of universe U [16].

Although the mathematical theory of RS is very complex,
the development of Rosetta, which is a computing software
integrating rough set principle, facilitates data set classifi-
cations and minimum set searches.

2.3. Introduction to the SSA. The SSA is a novel swarm
intelligence optimization algorithm [20]. Compared with
classical algorithms, such as the PSO, it exhibits a superior
computing performance due to the addition of discoverer
and early warnings [21, 22].

At each SSA, iteration the location update of the dis-
coverer is described as follows [20]:

—1i
Xt — ), ifR,<ST,
1 bj o P ( o - iter, . ) 1
Xi; = (3)

X;;+Q-L, if R, > ST,
where t represents the current iteration number, iter,,, is a
constant indicating the maximum iteration number, Xi,j
represents the position information of the i-th sparrow in
the j-th dimension, & € (0, 1] is a random number, R, and
ST represent the warning and safety values, respectively, Q is
a random number that obeys a normal distribution, L
represents a 1 x d matrix, and d is the dimensions of the
problem to be optimized.

During each iteration, the position update of the enrollee
is described as follows [20]:

x o -X
Q- exp <7wors;2 i >, ifi> g,
X = (4)

x4 +|le’j - X§j1| -A". L, if otherwise,

where X, is the best current position occupied by the dis-
coverer, X, is the worst position in the world at present, and
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TaBLE 1: Primary early-warning indicators of bridge construction safety risk.

Primar T . . .
in dicatz),r Secondary indicator Unit Indicator type Data collection method
Al1: Rate of operation violation %  Quantitative benefit indicator ~ On-site investigation and statistics
A12: Rate of improper emergenc - . I - -
hanlzlli Ifg gency %  Quantitative benefit indicator ~ On-site investigation and statistics
Al: M -
en A13: Acceptance rate of worker Quantitative cost-based o L -
% .1 On-site investigation and statistics
technology indicators
: Safety skills of managers — ualitative cost indicator xpert investigation
Al4: Safety skills of g Qualitati t indicat Expert investigati
A21: Unqualified rate of mechanical L o . -
! quality %  Quantitative benefit indicator Field test and statistics
. A22: Failure rate of mechanical o . . -
A2: Machines installation %  Quantitative benefit indicator Field test and statistics
A23: Rate of mechanical operation error %  Quantitative benefit indicator =~ On-site investigation and statistics
A24: Rate of mechanical failure %  Quantitative benefit indicator ~ On-site investigation and statistics
. titati t-based . .
A31: Qualified rate of concrete % Quan Hafive cost-base Field test and statistics
indicators
. ualitative cost-based . -
A32: Qualified rate of steel % Q indicator Field test and statistics
A3: Materials Qualitative cost-based
A33: Rationality of material stacking — — . Expert investigation
indicator
A34: Sampling inspection of materials — Qua tative cost based Expert investigation
indicator
. . N ualitative cost-based . L
A41: Rationality of monitoring method — Q . Expert investigation
indicator
A42: Advancement of calculation Qualitative cost-based . L
— . Expert investigation
Ad: Methods method indicator
' . . antitative cost-based o _— -
A43: Rate of technical disclosure % Qu any On-site investigation and statistics
indicators
A44: Proportion of new construction - o - L -
P scheme %  Quantitative benefit indicator ~ On-site investigation and statistics
. o .. nsul ign , local rbook,
A51: Disaster frequency — Quantitative benefit indicator Consult desig deattca ocal yearboo
. — - Fiel i f
A52: Wind load grade —  Quantitative benefit indicator feld exp erlm.ent an d reference
A5: specification
Envi A53: inability of engineeri litati - . _—
nvironment 53: Sustainabi ity of engineering . Qual itative cost based Expert investigation
project indicator
. . L litati - . _—
A54: Social and economic sustainability — Qua lt?zgiec;?;rt based Expert investigation

TaBLE 2: Division of early warning indicators of bridge construction safety risk.

Division of warning

Descriptive explanation

degree
No (I) Very low risk and project managers do not need to take any measures.
Mild (I1) Risks are accepted, yet some early warning indicators have a small probability of causing bridge construction

Moderate (IIT)

Severe (IV)

safety accidents. Project managers must focus some of their attention of the risks.
High-risk and some early-warning indicators exhibit a certain probability of causing bridge construction safety
accidents. Project managers must make initially targeted measures.
Very high-risk and some early warning indicators have a high probability of causing bridge construction safety
accidents. Project managers should take effective measures immediately; otherwise, construction safety accidents
will easily occur.

Aisal x d matrix, in which each el t is randomly assigned t t t :
/ (1)sr at_1 matrix, in which each element is randomly assigne X +B- | XL~ Kb i fi> f o
When aware of the danger, the sparrow population will ij;-l = | E_ oyt (5)
exhibit antipredation behaviour, which is described as fol- Xl?j +K- f”ff“:’m’ if f; = f,
;= €
1 w

lows [20]:



where X, is the current global optimal position, f3 is the
step control parameter, K is a random number, f; is the
fitness value of the current sparrows, f, and f,, are the
best and worst fitness values in the world, respectively,
and ¢ is the smallest constant required to avoid a zero
denominator.

Compared with other classical meta-heuristic optimi-
zation algorithms, the SSA algorithm possesses advantages,
including good stability, strong global search ability, and
minimal parameters. The bionics principle of the SSA al-
gorithm simulates the foraging process of sparrows, which is
similar to other classical meta-heuristic optimization algo-
rithms and is based on “discoverer-follower” optimization.
However, the SSA algorithm further simulates the detection
and warning behaviour of sparrows during the foraging
process. Not all sparrows are constantly approaching the
current optimal solution in each iteration, yet some sparrows
will experience detection and early warning. This mecha-
nism enhances the global search ability and faster optimi-
zation speed of the SSA algorithm.

2.4. Introduction to the LSSVM. Assume that there is a
training set { (x;, y,)li = 1,2,...,n}, where x; € Ry, eRd
is the input space dimension, and # is the number of training
samples. x; € R? is projected into feature space H using
nonlinear mapping ¢ and constructed in H following the
structural risk minimization criterion. This process can be
described as the following constrained optimization prob-
lem [13]:

. 1 2 +C 1 i EZ
min| -w — N
2 2 i=1 l

sty =w ¢(x;)+b+&,

(6)

where C is the compromise coefficient between the empirical
risk and confidence interval, that is, the regularization pa-
rameter, ; is the uncorrelated random error, w is the weight
variable of the prediction function, ¢(x) is the nonlinear
mapping function, and b is the deviation coefficient.

This constrained optimization problem can be trans-
formed into the following form by the Lagrange method
[13]:

15

L=-w+C

2
2 &

“i(wT¢ (x;)+b+& - )’i)’ (7)

N =
D=

Il
—

n
i i=1
where «; is a Lagrange multiplier.

Using the Karush-Kuhn-Tucker condition, equation (7)
can be transformed into equality form, allowing us to obtain
the linear model [13] by solving «; and b via the least square
method.

y = Z oK (x,x;) + b, (8)
i=1
where K (x,x;) = ¢(x)T¢(x) is the kernel function.
The radial basis function (RBF) is selected as the kernel
function, namely, (x,y) = exp(—-x — y/(20?)), where ¢? is
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the kernel width parameter reflecting the distribution
characteristics of the training samples. Because the RBF
kernel function satisfies the Mercer condition, calculating
the kernel function in the original input space can replace
the inner product operation in the mapping feature space.

To ensure the generalization performance of the LSSVM,
it is necessary to optimize the regularization and kernel
width parameters to determine the optimal parameter
combination. At present, the K-fold calculation method or
meta-heuristic optimization algorithm are commonly used
to determine the optimal calculation parameters.

2.5. Implementation of the Early-Warning Model. The core
concepts of the proposed early-warning model are described
as follows: (1) The RS is used as the preprocessing system of
the LSSVM, which preprocesses the safety risk data of the
bridge construction and eliminates the redundant attributes
and conflict attributes, thus simplifying the early-warning
model structure of the LSSVM, shortening the training and
improving the classification performance. (2) The LSSVM
model is optimized via the global optimization ability of the
SSA, and the parameter combination with the highest cal-
culation accuracy is obtained to construct the optimal early-
warning model of bridge construction safety risk. Figure 1
presents the architecture diagram of the proposed early-
warning model.

In particular, the key steps of the proposed early-warning
model for bridge construction safety risk are described in the
following.

Step 1. Training and test sets are built, and the research
object is determined. The original engineering data are
collected based on the bridge construction safety risk
early warning indicator system detailed in Section 2.1.
Some samples are randomly selected from the original
data as training sets and the remaining data are taken as
the test sets.

Step 2. Data preprocessing and attribute set. The
original engineering data are normalized as the data-
base of early warning research. On the premise of
guaranteeing the original classification ability, the re-
dundant or conflicting attributes in the decision table
are eliminated via a rough set theory and the minimum
conditional attribute set is obtained.

Step 3. The early-warning model based on the LSSVM is
trained and optimized. In particular, the early-warning
model and kernel function parameters are initialized,
the training sample set is input into the model, and the
SSA algorithm is implemented to optimize the calcu-
lation parameters. Note that the iterative optimization
calculation only occurs in the SSA, not in the LSSVM.
The optimal calculation parameters and engineering
data are input into the LSSVM to determine the early
warning results.

Step 4. Early warning identification. The test sets are
input into the optimal LSSVM model for early warning
identification to obtain the early warning results of
bridge construction safety risks.
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Construction of early warning index

End

Output of early warning results

system of bridge construction safety risk

Get the optimal calculation parameters of LSSVM

Collection and pretreatment of
engineering data

Index screening based on The RS

i

Y

Achieve the optimization
goal?

Update the location of discoverers, joiners and
watchmen

*

Calculate fitness and sort it

*

Initialize SSA population

*

Test set

\

Training set

Set calculation parameters of SSA and LSSVM

FiGure 1: Flow chart of the early-warning model proposed in this study.

It should be emphasized that although the three algo-
rithms (RS, SSA, and LSSVM) worked almost indepen-
dently, these three algorithms belonged to the research
framework of bridge construction safety risk early warning.
The RS was to solve the problem of many factors affecting
early warning and also to simplify the subsequent prediction
model. LSSVM optimized by SSA was used to solve the
problem of low prediction accuracy. Or it could be con-
sidered that both RS and SSA were used to optimize the
LSSVM model, in which RS was used to optimize the input
variables of LSSVM, and the SSA was used to optimize the
optimal calculation parameters of LSSVM.

3. Case Study

3.1. Introduction of the Case Study. The Longlingshan Bridge
Project in Wuhan and the Shihe Bridge Project in Xinyang,
China were selected as the case studies.

The Longlingshan Bridge Project adopts four two-way
lanes, with a standard width of 18.5m and a total length of
1678.5m. Its structural form is a restressed concrete con-
tinuous beam. The project is located in Wuhan, Hubei
Province, China. There are almost no earthquakes, yet heavy
rains often occur. Limestone karst caves are located around
the project and are generally 0.3-8.1m high. The main

construction technology of this pile cap is summarized as
follows: measure and support the position of the lofting steel
sheet, construct the purlin (which also serves as the guide
beam), insert the steel sheet pile to the design elevation, and
excavate the foundation pit to pour in cushion concrete.
Cranes are used as vertical transportation tools during the
pier construction process, while scaffolding is set up as an
operation platform. The concrete is commercial concrete,
and piers lower (higher) than 11 m are cast by day pump
once (twice). The basic construction steps of the concrete
box girder are the erection of the supports, the one-time
pouring, and overall tensioning. According to the site
construction conditions, there are two forms of box girder
support: (1) the floor-type bracket with full buckle and (2)
the combined bracket (smaller steel pipe bracket for the door
opening buckle bracket).

The Shihe Bridge Project in Xinyang is located in
Xinyang City, Henan Province, China, with a total length of
203 m. It is a typical thrust concrete-filled steel tube arch
bridge with a deck width of 37.5m and six lanes in both
directions. The construction procedures of the concrete-
filled steel tubular arch bridge typically include pouring,
reinforced, concrete, V-shaped piers and box girders, closing
hollow steel tubular arch ribs, installing and tensioning tie
bars, pouring concrete into arch ribs, installing and



tensioning suspenders, hoisting bridge deck beams and
longitudinal beams, laying prefabricated hollow slabs on the
bridge deck, pouring bridge deck concrete, installing anti-
collision walls, paving bridge deck asphalt concrete, and so
on. The construction of multispan, continuous, concrete-
filled, steel, tubular arch bridges generally adopts the con-
struction sequence of flowing water from the side span to the
middle span. The subsequent construction process can be
carried out once the entire bridge is completed. The ad-
vantage of this construction scheme is that the uniform
loading between spans is realized to the maximum extent,
thus effectively ensuring the arch rib line type and increasing
the uniformity of the V-shaped buttress and arch.

3.2. Data Acquisition and Preprocessing

3.2.1. Data Acquisition and Reliability Analysis. The
Longlingshan Bridge and Shihe Bridge Projects were con-
structed in 700 and 360 days, respectively. 1,060 groups of
data from each day during the construction phase of these
two projects were collected. Incomplete and questionable
data sets were eliminated, and a total of 372 data sets were
obtained; 300 (80.64%) of which were randomly selected as
training sets, and the remaining 72 (19.36%) as test sets.
Table 3 presents an example of the raw data.

Obtaining engineering data has always been one of the
main difficulties in the engineering field. According to
different engineering data sources or data acquisition
methods, the 20 secondary indicators were roughly divided
into the following three categories.

(1) The index data of A51 (Disaster frequency) and A52
(Wind load grade) were obtained by consulting local
yearbooks or design data.

Taking Long Lingshan Bridge Project in Wuhan as
an example, this study illustrated the data acquisition
processes of A51 and A52. According to the statistics
of Wuhan Yearbook (http://tjj.wuhan.gov.cn/tjfw/
tjnj/) published by Wuhan Municipal Govern-
ment, during the period from 2001 to 2020, there
were 47 natural disasters in the urban area of Wuhan,
so the score of A51 was 2.35, and 2.35 natural di-
sasters occurred every year on average. The data of
A52 was the wind forecast data released by Wuhan
Meteorological Bureau (http://hubei.weather.com.
cn/wuhan/index.shtml).

(2) Data of A11 (Rate of operation violation), A12 (Rate
of improper emergency handling), A13 (Acceptance
rate of worker technology), A21 (Unqualified rate of
mechanical quality), A22 (Failure rate of mechanical
installation), A23 (Rate of Mechanical operation
error), A24 (Rate of mechanical failure), A3l
(Qualified rate of concrete), A32 (Qualified rate of
steel), A43 (Rate of technical disclosure), and A44
(Proportion of new construction scheme) were ob-
tained by field investigation or field investigation
combined with standard calculation. Taking Long
Lingshan Bridge Project in Wuhan as an example,
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this study illustrated the data acquisition process of
All and A31. Project managers randomly checked
the operation of workers in daily inspection. If there
were 53 unqualified workers’ operations in 125
random checks, the score of All should be 0.424
(0.424 = 53/125). Project managers randomly
checked the quality of concrete. If 2453 of the 2500
selected times were qualified, the score of A31 should
be 98.12 (98.12 = 2453/2500 * 100). The data of other
indicators were also calculated according to the daily
management data of the project.

(3) Data of Al4 (Safety skills of managers), A33 (Ra-
tionality of material stacking), A34 (Sampling in-
spection of materials), A4l (Rationality of
monitoring method), A42 (Advancement of calcu-
lation method), A53 (Sustainability of engineering
project), and A54 (Social and economic sustain-
ability) were obtained via questionnaires. According
to their rich engineering experience, the experts
graded the qualitative indicators with reference to
Table 2. The average score of 20 experts was taken as
the final score of the input variable. To ensure the
validity of the expert scoring data, the invited 20
experts had more than 15 years of work experience
and were senior engineers. The reliability of the
qualitative indicator data is evaluated by determined
the Cronbachs’ « coefficient (Table 4).

The Cronbachs’a coefficients of all qualitative indicators
exceed 0.7, proving the high reliability of the questionnaire
survey results [27]. The acquisition methods of other indicator
data are based on field statistics, standard calculations, and
official statistics; thus, their reliability is well guaranteed.

3.2.2. Data Preprocessing and Attribute Intensive. To elim-
inate the influence of dimensional and data-level differences
of early warning indicators on the performance of early-
warning models, the data are preprocessed by the nor-
malization methods in equations (9) and (10) for indicators
with beneficial type or cost type, respectively:

X - X;
! i max ik
Xk="——" o> 9)
Ximax ~ %imin
X — Xioo:
/ ik imin
xik = — > (10)
Ximax ~ *imin

where x; and x;, are the k-th indicator value of the i-th
indicator and its normalized value, and x;,;, and x;,,,, are
the minimum and maximum values of the i-th indicator
value, respectively.

Linear correlations may be observed among the 20 sec-
ondary indicators. These redundant or interfered secondary
indicators are likely to affect the prediction accuracy of the
early-warning model. Therefore, this study adopted an at-
tribute reduction algorithm based on the RS. More specifi-
cally, redundant irrelevant or unimportant attributes were
deleted, and warning indicators that were sensitive to the
water state of bridge construction safety risks were identified.
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TaBLE 3: Original data of the case studies.

Secondary indicator 1 2 3 4 5 6 371 372
All 0.424 1.223 0.872 0.313 2.342 4.873 0.291 0.742
Al2 9.583 2.135 4.293 3.421 5.231 2123 0.234 1.882
Al13 93.21 90.31 85.74 89.07 79.42 95.25 76.48 89.25
Al4 86.25 72.55 83.85 94.25 69.35 86.65 79.95 68.55
A21 1.451 0.832 2.425 5.317 3.427 2.512 0.982 0.428
A22 12.48 10.42 0.342 4.124 0.523 16.25 3411 7.234
A23 25.25 18.14 9.413 17.94 24.31 4.510 7.223 5.861
A24 4112 9.379 2.345 0.512 4.294 2.512 0.316 3.184
A3l 98.12 97.52 98.65 99.05 96.59 94.50 98.52 99.50
A32 99.52 98.95 99.74 99.39 99.47 97.52 98.83 99.05
A33 84.75 74.45 86.25 69.15 48.55 86.05 79.55 73.45
A34 38.55 75.25 65.85 42.45 65.25 62.85 58.25 79.45
A4l 67.55 74.25 85.65 75.35 79.35 78.75 84.75 78.35
A42 85.25 79.35 95.25 7215 85.45 69.25 78.45 83.65
A43 98.41 99.58 95.25 96.23 97.14 95.42 e 99.74 98.68
A44 25 30 30 45 25 40 e 35 20
A51 2.35 2.35 2.35 2.35 2.35 2.520 e 2.520 2.520
A52 5 7 7 5 4 9 e 4 6
A53 68.35 84.25 60.55 75.35 82.45 48.95 e 68.45 84.25
A54 75.25 90.45 84.55 78.05 68.75 25.45 e 70.25 89.35
Warning degree I 1I I 1I 11T 1I e 1I II

TABLE 4: Reliability analysis of the qualitative indicators.

Secondary indicator Al4 A33 A34 A4l
Cronbachs’« 0.704 0.823 0.734 0.785
Result Pass Pass Pass Pass
Secondary indicator A42 A53 A54 -
Cronbachs’« 0.824 0.864 0.723 -
Result Pass Pass Pass -

The preprocessed 372 data sets were imported into
Rosetta, and the attribute reduction was performed via
Johnson’s algorithm. Table 5 reports the attribute reduction
results, namely, the most important indicators based on the
RS analysis.

The eight secondary indicators in Table 5 were also
identified as the most important indicators affecting the
construction safety risks in previous research [24, 25]. This
acts as a validation of our results.

As the RS is a data processing tool, the final RS-based
screening of the indicator system may differ for different
engineering data sets. Thus, the final early warning indicator
system in Table 5 is only applicable to the two engineering
cases selected in this study.

3.3. Early Warning of Bridge Construction Safety Risks

3.3.1. Optimization of LSSVM Parameters Based on the SSA.
The SSA specifications are as follows [22, 23]: population size
of 100, maximum iteration number of 200, safety threshold
of 0.7, discoverers account equal to 30% of the population
size, the maximum permissible error is 0.00001, and 10
sparrows aware of danger. Calculations were performed in
Matlab 2016a (MathWorks) on a computer with the Intel i7
processor configured at 3.40 GHz and a memory of 31 GB. In
the LSSVM model, the range of regularization parameters

was limited to [0.01, 1000], and the range of the kernel
function width coefficient was limited to [0.001,10000].

In the iterative optimization process of the SSA, the
average value of four warning errors was selected as the
fitness function of the SSA. The lower the average value of
early warning errors, the lower the function value of fitness
function and the better parameter combination.

In order to optimize the LSSVM model parameters for
the early warning of the bridge construction safety risks, 170
sets of preprocessed training data were input into the cal-
culation program in Matlab. Figure 2 depicts the adaptive
function curve of the SSA. In the enlarged view of Figure 2,
the filled rectangular points represented the points with the
minimal fitness function.

The fitness function of the SSA is observed to decline
rapidly from 44% to approximately 3% at the initial stage.
Table 6 tracks the optimization calculation process of the
SSA algorithm.

The SSA is observed to reach convergence in the 51th
generation, converging to 3.657321%. Figure 2 and Table 6
reveal the ability of the SSA to effectively optimize the
LSSVM model parameters in the 51th generation. Following
the optimization, the optimal parameter combination is
determined with kernel function and penalty factor pa-
rameters equal to 13.42 and 3.24, respectively.

3.3.2. Early Warning Calculations. The kernel function and
penalty factor parameters (13.42 and 3.24, respectively) were
input into the LSSVM model to construct the optimized
early-warning model. Table 7 reports the results of the 72
preprocessed sets of test data imported into the optimized
LSSVM model.

The parameters results reveal the high calculation ac-
curacy of the proposed prediction model, with a very low
misjudgement ratio for different warning degrees. The
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TaBLE 5: Final early warning indicator system based on the RS.

Primary indicators

Secondary indicators

Al: Men

A2: Machines

A3: Materials

A4: Methods
A5: Environment

A11: Rate of operation violation

Al4: Safety skills of managers
A21: Unqualified rate of mechanical quality

A24: Rate of mechanical failure

A31: Qualified rate of concrete

A32: Qualified rate of steel
A44: Proportion of new construction scheme
A52: Wind load grade
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FIGURE 2: Adaptive function curve of different meta-heuristic algorithms.

TaBLE 6: Detailed optimization process of the SSA.

Iterations l(:;tr_lels )S Fitness (n) Fltness(I(/ln_) ;)Fltness
49 4.336809 4.332868 0.003941001 > 0.00001
50 4.332868 4.166309 0.166559012 > 0.00001
51 4.166309 3.657321 0.508988 > 0.00001
52 3.657321 3.657321 0<0.00001

200 3.657321 3.657321 0<0.00001

highest proportion of prediction errors occurred in No (I),
which fully met the needs of the engineering practices. For
the moderate (III) and severe (IV) cases, two important
warning degrees, the proposed prediction model was
completely correct. Thus, the proposed model has strong
potential in engineering applications.

The proposed model is basedon data; thus, the statistical
analysis of the prediction results is required, and the cal-
culations were repeated 1,000 times. Table 8 reports the
average of the 1,000 calculations.

The proposed prediction model exhibits a high calcu-
lation accuracy for the 1,000 repeated calculations, with
extremely low misjudgement ratios for different alarm levels.
The highest proportion of prediction errors equals just
1.97%, occurring for no (I). This low error rate fully meets
the needs of engineering practices. The high calculation
accuracies for the moderate (III) and severe (IV) levels also

fully meet the needs of engineering practices. These results
further demonstrate the high accuracy of the proposed
model and its corresponding potential applicability in the
field of engineering.

To further analyse the calculation accuracy of different
prediction methods, this study calculated the average value
of prediction errors. The calculation results showed that the
average prediction error of the prediction model proposed in
this study was only 1.025%, which was the lowest among all
the results.

Computational time and stability are additional key
indicators of the computational ability of prediction models.
Table 9 reports the average calculation time of 1,000 cal-
culations and the standard deviation of the prediction
results.

The running time of our prediction model is observed to
be just 3.241 s. Furthermore, the standard deviation of the
prediction model results is very low, indicating the high
stability of the model.

For this case study, the data structure characteristics of
randomly selected training sets may exert a strong influence
on the prediction performance of the model. We thus re-
peated the above calculation 10 times, with the training set
randomly selected each time (Table 10).

The difference of the 10 repeated calculations is observed
to be minimal, indicating the limited influence of the data
structure characteristics from the randomly selected training
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TaBLE 7: Results of the early-warning model proposed in this study.

11

Warning degree

Actual warning degree

The model proposed in this study

Predicted warning degree

Rate of prediction errors (%)

I 27
II 34
III 8
v 3

3.70
2.94
0.00
0.00

TABLE 8: Average value of the 1000 early warning results of different models.

Warning degree Actual Predicted Rate of errors (%) Predicted Rate of errors (%) Predicted Rate of errors (%)
The proposed model The proposed model without RS LSSVM
I 27 27.531 1.97 25.024 7.32 16.952 37.2
I 34 33.524 1.40 36.084 6.13 42.084 23.8
III 8 7.944 0.70 7.840 2.00 8.716 8.95
v 3 3.001 0.03 3.052 1.73 4,248 41.6
SSA-BP PSO-LSSVM PSO-BP
I 27 36.723 36.0 21.414 20.7 34.482 335
I 34 26.521 22.0 36.498 7.35 26.567 21.9
III 8 5.667 29.2 10.036 25.45 7.011 12.4
v 3 3.089 29.7 4.052 49.2 3.940 3.13

TABLE 9: Average calculation time and standard deviation of 1000 calculations.

Model

The proposed model The proposed model without RS LSSVM

SSA-BPNN PSO-LSSVM PSO-BPNN

Average calculation time (s) 3.241 3.826 0.937 4.856 4.642 5.752
Standard deviation of I 0.00305 0.00524 0.02221 0.00552 0.01245 0.01046
Standard deviation of II 0.00731 0.00793 0.02597  0.00723 0.02213 0.01475
Standard deviation of III 0.00645 0.00830 0.02424  0.01420 0.04174 0.09422
Standard deviation of IV 0.01023 0.01384 0.04552  0.01525 0.01463 0.02425
TaBLE 10: Prediction accuracy of repeated randomly selected training sets.
Woarning d Rate of errors (%)
arning degree

§ <8 st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
I 1.97 1.93 1.96 2.12 1.92 1.90 2.01 1.99 1.93 1.97
I 1.40 1.39 1.39 1.41 1.39 1.41 1.40 1.38 1.40 1.30
III 0.70 0.73 0.69 0.71 0.69 0.72 0.68 0.71 0.70 0.68
v 0.03 0.04 0.03 0.04 0.02 0.03 0.05 0.03 0.03 0.03

sets of the case study on the model prediction performance.
The maximum prediction error is 2.12%, fully meeting the
needs of engineering practices.

4, Discussion

4.1. Comparative Analysis of the Attribute Intensive Calcu-
lation Results. Correlation analysis [28] and the mean im-
pact value (MIV) [29] are commonly employed as index
screening tools. For the former, the Pearson correlation
coefficient (r) is typically used to investigate the linear
correlation between different variables [28]:

.o i (% —%) (yi =)
VI (o= 2 0= 9
where x; and y,; are the values of the first and second

variables, respectively, and X and ¥ are the average values of
the first and second variables, respectively.

(11)

The absolute value of # can effectively characterize the
linear correlation between variables: r > 0.8 denotes a strong
linear correlation between two variables, r>0.7 denotes a
moderate correlation, and r < 0.7 denotes almost no linear
correlation. Moreover, >0 (r <0.8) represents a positive
(negative) correlation.

The normalized engineering data in Table 3 was taken to
calculate the Pearson correlation coefficient between an
index and the warning degree on equation (11). This also
denotes the correlation coefficient between input and output
variables. Table 11 reports the results, where bold values
indicate absolute values greater than 0.7.

Alarm degrees Al12, A13, A23, A32, A33, A4l, A44,
and A54 are observed to correlate strongly with the output
index. Therefore, the remaining 12 indicators were se-
lected as the key risk early warning indicators and input
into the SSA-LSSVM model for subsequent calculations.
Table 12 reports the results of the calculations repeated
1,000 times.
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TaBLE 11: Pearson correlation coefficient between an index and the alarming degree.

Secondary indicator All Al2 Al3 Al4
Correlation coefficient 0.3144 0.7812 -0.8250 0.2275
Secondary indicator A21 A22 A23 A24
Correlation coeflicient 0.7424 0.5384 0.8462 —-0.6380
Secondary indicator A31 A32 A33 A34
Correlation coeflicient 0.3127 -0.7263 0.7422 —-0.0125
Secondary indicator A4l A42 A43 A44
Correlation coefficient 0.7423 -0.4352 -0.2354 0.7421
Secondary indicator A51 A52 A53 A54
Correlation coeflicient 0.3261 0.2742 -0.4630 0.9031

TABLE 12: Results determined from 1,000 repeated calculations of different variable screening methods.

Th d model
Warning degree e proposed mode

The SSA-LSSVM with the
correlation analysis

The SSA-LSSVM with MIV

Predicted Rate of errors (%) Predicted Rate of errors (%) Predicted Rate of errors (%)
I 27.531 1.97 29.411 8.91 26.242 2.81
1I 33.524 1.40 39.036 14.8 34.654 1.92
11T 7.944 0.70 10.381 29.8 8.091 1.14
v 3.001 0.03 3.172 5.73 3.013 0.43

Following the method of [29], the MIV method was
employed to screen out the key risk indicator and input them
into the SSA-LSSVM model for subsequent calculations
(Table 12).

Compared with the correlation analysis and the MIV
method, this study adopted RS to screen key risk indicators
and obtained the best calculation accuracy. These results
prove the advancement of the RS presented in this study.

4.2. Comparative Analysis of Different Early-Warning Models.
To demonstrate the advancement of the early-warning model
proposed in this study, a comparative analysis was performed
based on two factors: the advancement of the optimization
algorithm and the advancement of the nonlinear modelling
method. The proposed model without the RS, the LSSVM, the
SSA-BPNN, the PSO-LSSVM, and the PSO-BPNN were
systematically ran. Tables 9 and 10 report the results, re-
spectively. Based on the parameter setting method of [10], the
sigmoid activation function was adopted for the BPNN, with a
minimum convergence error of 10™°. For the PSO algorithm,
following the parameter setting method of references [15, 30],
the maximum iteration number was set as 200, the weight
factor varied linearly from 0.4 to 0.9, and the acceleration
constants C1 and C2 were both equal to 2.

4.2.1. Advancement of the Selected Optimization Algorithm.
Figure 2 reveals that the fitness function of the SSA con-
verged to approximately 3.5% in the 60-80 generation
during the LSSVM parameter search, whereas the PSO
fitness function converged in 110-120 generations. Thus, the
SSA converged faster than the PSO, which is consistent with
results from the previous literature [21, 22].

Table 9 demonstrates the running time of the proposed
prediction model to be 1.401 s lower than that of the PSO-
LSSVM. More specifically, for the typical nonlinear

optimization problem of optimizing the LSSVM parameters,
the SSA exhibited a better global fast retrieval ability than the
PSO. Comparing the average running times of the PSO-
BPNN and SSA-BPNN, the SSA algorithm revealed to save
0.896 s. The SSA exhibited an improved global fast retrieval
ability in searching for the optimal initial threshold and
initializing the BPNN.

These results prove the superior ability of the SSA al-
gorithm for global fast retrievals.

4.2.2. Advancement of the Selected Nonlinear Modelling
Method. Table 9 demonstrates the running time of the
proposed prediction model to be 1.625s, 1.401 s, and 2.511 s
lower than that of SSA-BPNN, PSO-LSSVM, and PSO-
BPNN, respectively. This highlights the global fast retrieval
ability of the SSA and the simple structure of the LSSVM.

The running time of the proposed prediction model is
clearly superior to that without the RS. This can be attributed
to the removed redundant attributes of the original data from
the attribute reduction of the RS. The reduced minimum
conditional attribute set was consequently more representa-
tive and reduced the complexity of the LSSVM model. Note
that the LSSVM exhibited the shortest running time because it
does not involve iterative optimization calculations.

The LSSVM exhibited an improved calculation accuracy
and stability compared with the BPNN (Tables 9 and 10).
This is linked to the distinct calculation principles of the two
methods. The LSSVM class prediction method determines
the segmentation hyperplane with less support vectors,
whereas the neural network-based prediction method fol-
lows the law of large numbers in nonlinear modelling. More
specifically, the more training data samples, the higher the
accuracy of the prediction results, with sample sets often
required to be more than ten times the number of input
variables. Therefore, under sufficient historical data and
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large research samples, the neural network-based prediction
method has an advantage over LSSVM prediction methods
in terms of nonlinear modelling ability and computational
performance. However, for insufficient historical data and
small research samples, the nonlinear modelling ability and
computational performance of the LSSVM prediction
methods are significantly superior to those based on artificial
neural networks.

5. Conclusions

In the current study, an early-warning model of bridge
engineering construction safety risk based on the RS, SSA,
and LSSVM was constructed. The RS was used to effectively
solve the problem of multiple risk early warning factors,
whereas the LSSVM model optimized via the SSA overcame
the low precision of traditional early warning methods. The
construction safety risks of two typical bridge projects in
China were predicted. Results demonstrated the warning
error of the proposed warning model for bridge construction
safety risk to be low for different warning levels. In addition,
the number of misjudged samples was less than or equal to
one. Compared with the LSSVM, SSA-BP, PSO-LSSVM,
PSO-BP, and other models, the proposed model exhibits a
fast calculation speed, high early warning accuracy, and
strong robustness.

In addition, by employing 4MIE, the early warning
index system of bridge construction safety risk was con-
structed, including 20 secondary indexes. Based on the
engineering data of the research object, the index system was
screened by the RS, removing the redundant or unrealistic
attributes of the original data and effectively improving the
early warning accuracy of the LSSVM model. For the
restressed concrete continuous beam project and concrete-
filled steel tubular arch bridge selected in this study, the
operation violation rate, management safety skills, un-
qualified rate of mechanical quality, mechanical failure rate,
concrete qualified rate, steel qualified rate, promotion of new
construction schemes, and the wind load grade were the
most important risk warning indicators.

Despite the substantial advancement made by this study in
the research field, our proposed model faces several limita-
tions. For example, just two case studies (the Longlingshan
Bridge Project in Wuhan and the Shihe Bridge Project in
Xinyang) were selected. However, bridges can take the form of
numerous structural types and construction techniques.
Further research will apply the research results of this study to
additional bridges with different structural types or con-
struction techniques. Moreover, the expert experience
method, which is typically subjective, was adopted to deter-
mine the warning limit of early warnings for bridge con-
struction safety risk. Although the conclusion of the case study
was consistent with the actual situation, the determination of
the early warning threshold requires further quantification.
Lastly, the classification accuracy and performance of the
LSSVM depend on the calibration of its parameters. Future
work will focus on exploring effective multiobjective opti-
mization techniques to optimize the LSSVM parameter
combination and improve its prediction performance.
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Abbreviations

AHP:  Analytic hierarchy process

ANNs:  Artificial neural networks

BPNN: Back propagation neural network
GA: Genetic algorithm

GM: Grey model

LSSVM: Least squares support vector machine
MIV:  Mean impact value

PSO: Particle swarm optimization

RS: Rough set

SSA: Sparrow search algorithm

SVM:  Support vector machine

4M1E: Men, machines, materials, methods and
environment.
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