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To predict the mechanical response of a circular cavity/tunnel buried in saturated poroelastic soils to a moving point load, a
semianalytical model is provided in this work. ,e soils are governed by Biot’s theory that describes the wave propagations for
saturated poroelastic materials. ,e displacement and stress vectors for the solid skeleton and pore-water fluid are represented by
scalar and vectorial potentials. ,e governing equations for the tunnel and surrounding soils are solved in the frequency domain
with the aid of separation of variables and Fourier transformations. To check the feasibility of the present analytical model, the
solution is compared with other available results calculated for the ring load case.,e good agreement shows the correctness of the
present model. Numerical results suggest that the mechanical response from a moving point load in a tunnel for two-phase
poroelastic materials is quite different from that in single-phase elastic materials. ,e critical velocity of the tunnel-soil system is
around the shear wave speed of soils while the second one introduced into the track-tunnel-soil system with very high value is
around the critical velocity of the track structure itself.

1. Introduction

Recently, the propagations of ground vibration from un-
derground railways into nearby buildings have become an
important research topic due to the fact that more and more
metro lines run in urban areas and become closer to the
nearby buildings. Lots of research works have been done to
investigate this problem through numerical simulations,
such as FEM, BEM, and coupled FEM-BEM [1–3]. ,e
analytical models can predict the vibrations from under-
ground in a relatively faster way compared with numerical
simulations. ,e reasons may lie in the fact that the ana-
lytical solution does not need the element discretization or
the addition of energy attenuation boundaries to the dis-
cretized domain. Since numerical simulations are quite
popular, in the present work, only some representative
analytical models are discussed.

As mentioned above, some typical research works on the
topic of analytical modeling on underground railway-in-
duced vibrations are introduced briefly in the following.
Metrikine and Vrouwenvelder [4] inserted an Euler beam
into the ground to model the tunnel-soil system while the
moving train is simplified as a moving point load running on
the beam. Krylov [5] regarded each sleeper in the under-
ground tunnel as a point vibration source buried in the half-
space, and with the help of Green functions, the response at
arbitrary positions can be calculated. However, this buried
source model is only suitable for predicting vibrations due to
low-frequency propagated waves. Forrest and Hunt [6]
proposed an analytical model for the vibration calculation
around the tunnel, which can be used to predict the ground
vibration at the vibration source. To model the twin tunnel
case, Guan and Moore [7] gave an analytical solution for
computing the mechanical response from two cylindrical

Hindawi
Advances in Civil Engineering
Volume 2021, Article ID 4482364, 9 pages
https://doi.org/10.1155/2021/4482364

mailto:zjj.xuyuanlei@zjsjky.com
mailto:yuanzh@zjut.edu.cn
https://orcid.org/0000-0002-8090-0812
https://orcid.org/0000-0002-5723-7194
https://orcid.org/0000-0001-9267-2063
https://orcid.org/0000-0001-5633-9837
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/4482364


cavities buried in an unbounded space and investigated the
interaction problem between two deep side-by-side circular
tunnels.

All above studies deal with a tunnel embedded in single-
phase elastic soils; however, there exists underground water
in soils meaning that the soils are two-phase material instead
of single phase. ,e presence of pore water in soils may have
significant effects on wave propagations generated by the
underground moving trains. ,erefore, it may be safe to
argue that the fully saturated poroelastic soil model is su-
perior to the elastic one for the analysis of mechanical re-
sponses of the metro system or at least the poroelastic soil
models are as good as the elastic soil one.

Regarding the two-phase poroelastic soil model, Sen-
juntichai and Rajapakse [8] modeled the transient response
of poroelastic full space with a cylindrical cavity under
symmetric axial loadings. Using a similar model, Lu and
Jeng [9] investigated the dynamic response from a cavity
embedded in poroelastic soils. Based on the work by Forrest
and Hunt [6] and Lu [9], in this paper, an improved tunnel-
track model in saturated poroelastic soils to a moving point
load is proposed by semianalytical methods. ,e soil is
governed by Biot’s theory which describes the wave trans-
missions for saturated poroelastic materials. ,e displace-
ment and stress vectors for the solid skeleton and pore-water
fluid are represented by scalar and vectorial potentials. To
check the correctness of the present analytical model, the
solution is compared with other results calculated for the
ring load case. Using the boundary conditions along the
tunnel surface and the full space, the formulas written for the
displacement, stress, and pore pressure are provided.

2. Governing Equations and General Solutions

,e governing equations of motion of fully saturated
poroelastic soils are as follows:

μui,jj + λc + μ( uj,ji + αMwj,ji � ρ€ui + ρf €wi, (1)

αMuj,ji + Mwj,ji � ρf €ui + m €wi + b _wi, (2)

where ui and wi are solid and fluid displacement vectors; i
denotes the directions x, y, and z; the subscripts i,jj and j,ji
represent the derivatives of variable component; the dot is
the differential over time; λc � λ+ α2M and μ are equivalent
Lame constants for poroelastic soils; ρ and ρf are the mixture
density of two-phase soils and water; m� ρf/n with n as the
porosity; and b is the ratio between the water viscosity and
permeability of the medium. ,e constitutive equation is as
follows:

σij � λδijθ + μ ui,j + uj,i  − αδijp,

p � −αMθ + Mς,

ς � −wi,i,

(3)

where θ � ui,i is solid strain; σij is stress tensor; and p is the
pore-water pressure.

,e displacement vectors of solid and fluid phases are
expressed by the scalar and vector potentials [6]:

u � ∇φ + ∇ × ψ, (4)

w � ∇χ + ∇ × Θ, (5)

where φ and ψ are scalar and vector potentials of solid phase
while χ and Θ are those of pore fluid. Substituting equations
(4) and (5) into equations (1) and (2), the following equa-
tions are given:
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(6)
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Transforming equations (6) and (7) into frequency
domain, we have
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(8)

Here, the tilde on variables denotes that they are in the
frequency and wavenumber domain.

,e above equations can be further manipulated to have
the famous Helmholtz equations:

∇2φf,s + c
2
f,sφf,s � 0, (9)

∇2 + c
2
t ψ � 0, (10)

where cf, cs, and ct are the wave numbers of two longi-
tudinal and one shear waves, which are written as follows:

c
2
f,s �

B∓
��������
B
2

− 4AC


2A
, (11)

c
2
t �

C

D
, (12)

A � (λ + 2μ)M,

B � λc + 2μ(  mω2
+ iωb  + ρω2

M − 2ρfω
2αM,

C � ρω2
hω2

+ iωb  − ρ2fω
4
,

D � μ mω2
+ ibω .

(13)

Employing equations (12)–(16), the potentials φ, χ, Θ,
and ψ can be expressed as follows:
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φ � φf + φs,

χ � ξ1φf + ξ2φs,

Θ � ξ3ψ,

(14)

where

ξ1,2 �
λc + 2μ( c

2
f,s − ρω2

ρfω
2

− αMc
2
f,s

,

ξ3 � −
ρfω

2

mω2
+ ibω

.

(15)

,e geometry for the ground soils and the tunnel is
shown in Figure 1. ,e soil is a full space with a cavity which
has an inner diameter of a while the tunnel is modeled as a
thin shell with a radius of the midsurface equal to a.

,e solution to the potentials in equation (14) can be
written as

φf � ff(r)cos nθe
iξz

,

φs � fs(r)cos nθe
iξz

,

ψr � gr(r)sin nθe
iξz

,

ψθ � gθ(r)cos nθe
iξz

,

ψz � gz(r)sin nθe
iξz

,

(16)

where ξ is the longitudinal wavenumber and n is a non-
negative integer.

,e solution to the functions ff, fs, gr, gθ, and gz are
the combinations of modified Bessel as follows:

ff � AfIn α1r(  + BfKn α1r( ,

fs � AsIn α2r(  + BsKn α2r( ,

gr � −gθ � ArIn+1(βr) + BrKn+1(βr),

gz � AzIn+1(βr) + BzKn+1(βr),

(17)

where α21 � ξ21 − c2
f, α

2
2 � ξ22 − c2

s , and β2 � ξ23 − c2
t ; In and Kn

are modified Bessel functions (n represents the order of the
functions).,e parametersAf, Bf,As, Bs,Ar, Br,Az, and Bz are
unknowns before the application of boundary conditions.
,e displacements, stresses as well as the pore pressure can
be obtained by substituting equation (17) into equations
(16), (14), (4), and (5).

For brevity the displacements, stresses as well as pore
pressure components are expressed in a concise matrix form
as follows:
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,

with [S] �

cos nθ 0 0

0 sin nθ 0

0 0 cos nθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

(18)

where C � Af, Bf, As, Bs, Ar, Br, Az, Bz 
T
is the unknown

coefficients vector. ,e matrices [U] [T] are given in a
previous work done by Yuan et al. [10, 11].

A moving unit point load is expressed in a rectangular
coordinate system as follows:

Px � Py � 0,

Pz �
δ(x − ct)δ(θ)

a
,

(19)

where a is the radius of the tunnel; c denotes the velocity of
the moving load; and δ(x − ct) and δ(θ) are Dirac delta
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functions. δ(θ)/a can be expanded into a combination of
ring components:

δ(θ)

a
�

1
2πa

+ 
∞

n�1

1
πa

cos nθ. (20)

,e external force can be further expanded into the
integration with respect to the wavenumber by the usage of
Fourier transformations:

Px � Py � 0,
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1
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∞

n�1
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(21)

Making a comparison with equation (18), the external
force for a specific mode number n is

Pxn � 0,

Pyn � 0,
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1
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1
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, n> 0,
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,erefore, the boundary conditions used to determine
Af, Bf, As, Bs, Ar, Br, Az, and Bz are given as follows:
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For a variable z approaching to infinity, Kn(z) tends to
zero whereas In(z) increases to infinity as well. To satisfy the
radiation condition at the infinity r⟶∞, only the
modified Bessel functions Kn and Kn+1 can be adopted
meaning that

Af � As � Ar � Az � 0⇒C � 0 Bf 0 Bs 0 Br 0 Bz .

(24)

According to the boundary condition equation (23), the
coefficients Bf, Bs, Br, and Bz can be determined. ,en, by
substituting these coefficients into equation (18), the dis-
placement, the stress as well as the pore pressure can be
obtained. ,e response in the time-space domain is written
as
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Figure 1: ,e geometry for cavity in soils (a) and the tunnel (b).
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A set of nondimensional variables is introduced with
reference length (aR), shear modulus (μR), and density (ρR)
as follows:

r
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,
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t
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,

c
∗

�
c
���
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 .

(26)

3. Numerical Analysis Results and Discussion

3.1. Numerical Results for a Moving Point Load in a Cavity.
,emechanical responses are computed from equation (24).
It can be obtained through the summation over the ring
components n and transformations over the longitudinal
wavenumber ξ. An FFT algorithm is employed to compute
the integrals with respect to the wavenumber using 4096
integration points and integration step Δ ξ � 0.04.,e aim of
this subsection to present the results for a moving point load
in a cavity is twofold. ,e first is that to compare with the
published results in the literature calculated for a ring load.
,e ring load is different from the point load considered
here. However, as the tunnel-soil model is assumed to be a
linear system, the principle of superposition is satisfied.
,en, to simulate the ring load case available in the pub-
lished results, the point load can be applied at different
positions around the periphery of the cavity surface. Figure 2
compares the results of soil displacement in radial direction
and the pore pressure given by Lu [9] with those by the

present model. In Lu’s work, a moving ring load is applied at
the cavity surface (different from the point load case con-
sidered here). ,e model used in the present work can be
modified to simulate the model in Lu’s work. ,e whole ring
of the tunnel is divided into 360Δθ. ,e displacements are
calculated using the present model for each θ� nΔθ (n� 0, 1,
2, . . ., 359). ,e total displacements for the present work in
Figure 2 are given by the linear combination of the dis-
placement for each θ as follows:

ur � 
359

n�0
u

n
r(nΔθ)Δθ. (27)

,e parameters of the soils chosen for the calculation in
Figure 2 are the same with those in Lu’s work. Figure 2
provides the radial displacement ur and the pore pressure p
versus axial coordinate z for the load velocity equal to half of
the shear wave speed of soils c� 0.5VS. ,e agreement be-
tween different models for themechanical response variables
ur and p confirms the feasibility of the improved tunnel
model for poroelastic soils.

As for a moving point load, the critical velocity at which
the resonance responses of the system take place is a sig-
nificant problem for the researchers and industry com-
munity. For soft soils with a low shear wave speed, which is
usually near the critical velocity of a linear ground system,
the velocity of moving sources can easily exceed this critical
one leading to the resonance of the system. Regarding the
dynamic responses of soils subjected to moving force
running on the free surface, the vibrations reach a peak as the
load velocity become closer to the Rayleigh wave speed of
underlying soils. A moving point load running on a circular
tunnel/cavity surface resembles that moving sources on a flat
ground surface. It is also expected that there is a critical velocity.
,is phenomenon is investigated in Figure 3, which gives the
displacements varying with c under different permeabilities of
the soils. As indicated above in Section 3.1, the velocity and the
displacement are provided in a dimensionless way (Table 1).
From Figure 3, it is noted that when c< 0.25, the amplitude of
the displacements is rarely influenced by the increase of the
load velocity. When 0.25≤ c≤ 1.0, the magnitude of the dis-
placements presents a sharp increase as c increases and ap-
proaches a maximum value at exactly c� 1.0. When c> 1.0, the
magnitude of the displacements drops significantly with a
further increase in c. ,e influence of permeability parameter b
on the displacement as well as the critical velocity is also
presented in Figure 3. If the load velocity c< 0.8, the magnitude
of radial displacements decreases as b increases. However,
when 0.8≤ c≤ 1.2, the amplitude of displacements increases as
b increases.When c> 1.2, again the amplitude of displacements
decreases as b increases though the influence of b on the critical
velocity is very small.

,e spatial distribution of ur around the periphery of the
inner surface of the cavity is shown in Figure 4 for different
load moving velocities. As seen in Figure 4, 0° denotes the
tunnel invert while 180° denotes the tunnel apex. Since the
model is symmetric, only half of the spatial distribution is
provided in Figure 4. At the tunnel invert where the load
applied, the peak displacement response appears, and the
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influence of the load velocity is most significant. With the
increase in the observation angle θ, the radial displacement
versus the angle θ fluctuates obviously; however, when the

angle is larger than 60°, very small influence can be observed
for different moving velocities.

3.2. Numerical Results for a Moving Point Load in a Tunnel.
To compare the difference in the mechanical responses for
single dry soils and two-phase saturated soils, in Figure 5, a
circular tunnel embedded in the dry soils is compared with
the results obtained for the two-phase saturated soils. ,e
results for the saturated soils come from a previous work
done by Yuan et al. [10]. To guarantee the comparability, the
dry soil parameters come from the saturated soil parameters
in Yuan’s work [10, 11]. ,e solid density is ρs � 2600 kg/m3,
the porosity n� 0.4, and the density of pore fluid ρf � 0. ,is
leads to a density of dry soil ρd � ρs × n� 1560 kg/m3. ,e
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Figure 2: Comparison between the numerical result in the work by Lu and Jeng [9] and present work: (a) radial displacement ur/Fn; (b) pore
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Table 1: Dimensionless parameters of the soils used for Section 3.1.

Dimensionless coefficients Numerical
values

Lame constants λ∗ 1
Compressibility of water M∗ 1.67
Water density ρ∗ 0.53
Hysteretic damping ratio β 0.02
Parameter of soil structure m∗ 1.5625
Compressibility of soil grain α 0.95
Ratio between fluid viscosity and permeability
b∗

10
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Figure 4: ,e spatial distribution of ur around the periphery of the
inner surface of the cavity.
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Lame constants (λ and μ) of dry soils are selected as those of
the solid skeleton of poroelastic soils. Compared with dry
soils, the decreasing trend of the displacement for two-
phase saturated is more obvious. ,is is because in addition
to the material damping in the soil skeleton, extra viscous
damping also exists in two-phase saturated soils because of
the motion between the water and solid phase, which leads
to more energy loss, in particular in the high-frequency
range. On the contrary, as seen in Figure 5, in the low-
frequency range, the differences between the two soil
models are not visible. ,is is because in this frequency
range the shear waves dominate the response; however, the
addition of the water into the soil skeleton may have small
influence on the shear wave properties. Overall, the dis-
placement response for two-phase saturated soils is smaller
compared with the response for single-phase dry soils since
absolute compression modulus of water is much higher
than the solid skeleton.

To further visualize the waves propagated from the
tunnel into soils, the magnitude of the soil displacement for a
harmonic point source with a frequency 10Hz is shown in
Figure 6. ,e displacement magnitude is calculated as

|u| �

����������������

|ur|
2 + |uθ|

2 + |uz|2


, where ur, uθ, and uz are the solid
displacements in three directions, namely, radial, circum-
ferential, and longitudinal directions. To investigate the
effect of presence of water on the mechanical response from
a harmonic point excitation, the response magnitude on a
transverse-vertical plane for a dry soil model is compared
with the result for a saturated soil model (see Figure 6). ,e
contour plots are shown for a concrete tunnel wall buried in
a full space and provide a clear inspection into the wave
propagation from the tunnel into the soils. As shown in
Figure 6, when the frequency is 10Hz, the energy from the
tunnel into surrounding soils is mainly located at the tunnel
invert. In general, it can be observed from Figure 6 that the
displacements in the case of a tunnel embedded in a satu-
rated soil for b� 1× 108 kg/(m3 s) are smaller than those in

the case of a tunnel embedded in a dry soil. ,is can be
explained as the fact that the presence of water increases
dynamic stiffness of the tunnel-soil system. More vibration
energy is transmitted upwards in the dry soil than that in the
saturated soil (b� 1× 108 kg/(m3 s)). ,is allows the vibra-
tion level in the free field of the saturated soil (b� 1× 108 kg/
(m3 s)) above the tunnel smaller than that of the dry soil.

3.3. Numerical Results for a Moving Point Load on a Track.
In Figure 7, the influence of load velocity on the rail and
track response is investigated using a track-tunnel-soil
model. ,e parameters for the tunnel and soils are the same
as those in Section 3.2. ,e track structure is a floating-slab
track consisting of two-layered beams whose parameters are
selected from the work done by Hussein et al. [12]. As seen in
Figure 7, the resonance peak value occurs at a very high load
velocity around 380m/s. At the critical velocity, the rail and
slab responses for the dry and saturated soils present sig-
nificant difference while at lower load velocity the presence
of water has small influence on the rail and slab responses. It
should be noted that at the critical velocity of the tunnel-soil
system (shear wave speeds of the soils), the rail and slab
responses present a trough value. ,is is because at this load
velocity, the tunnel-soil system is in resonance behavior
meaning that its stiffness is low and damping is high, thus
leading to a lower track response.

In Figure 8, the influence of load velocity on the soil
response is investigated using a fully track-tunnel-soil
model. As expected, there are two critical velocities for the
coupled system, one is the critical velocity of the tunnel-soil
system while the other is the critical velocity of the track
itself. In the mechanical response of surrounding soils, both
two critical velocities can be observed. Compared with
Figure 7, it is observed that at all the load velocities the
influence of presence of water on the soil response is ob-
vious. In a general trend, the dry soil model predicts a higher
soil response.
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4. Conclusions

In this work, an improved tunnel-track model in saturated
poroelastic soils to a moving point load is proposed.,e soils
are modeled as two-phase saturated poroelastic materials
based on Biot’s theory. Using the boundary conditions along
the tunnel surface and the full space with a cavity, the
mechanical responses such as the displacement, stress, and
pore pressure are derived. Numerical results are presented
for three cases, namely, mechanical responses for a moving
point load in a cavity, in a tunnel and on a track. In par-
ticular, the critical velocity for the three cases is analyzed.
,e main conclusions are summarized as follows:

(1) ,e present model is suitable for predicting vibra-
tions from underground in the design phase. It can
be used to calculate the vibration level around the
tunnel; then, with the help of the chain rule for the
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vibration and noise prediction, the preliminary vi-
bration level inside the ground, the foundation, and
the nearby buildings can be roughly estimated.

(2) In a general trend, the dry soil model predicts a
higher soil response than the two-phase poroelastic
soil model; however, the poroelastic soil model
provides pore-water pressure response.

(3) ,e critical velocity for a cavity/tunnel in a full space
is around the shear wave speeds of soils while the
second one introduced into the track-tunnel-soil
system with very high value is around the critical
velocity of the track structure itself.
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