Research Article

Relationship between Damage Rate of High-Voltage Electrical Equipment and Instrumental Seismic Intensity

Rushan Liu, Mingpan Xiong, and Deyuan Tian

Key Laboratory of Earthquake Engineering and Engineering Vibration, Institute of Engineering Mechanics, China Earthquake Administration, Harbin 150080, China

Correspondence should be addressed to Rushan Liu; liurushan@sina.com and Deyuan Tian; 1981138215@qq.com

Received 22 February 2020; Revised 24 November 2020; Accepted 30 December 2020; Published 9 January 2021

Abstract

Based on the actual damage data of high-voltage electrical equipment in electric substations during the Wenchuan earthquake, this paper uses the cumulative Gaussian distribution function to describe the relationship between the damage rate of high-voltage electrical equipment and the instrumental seismic intensity. The instrumental seismic intensity at strong motion observation stations in the Wenchuan earthquake is calculated, and the Kriging interpolation method is used to estimate the instrumental seismic intensity for substations at 110kV and above voltage levels in Mianyang, Deyang, Guangyuan, and Chengdu of Sichuan Province. A cumulative Gaussian distribution function is then used to fit the damage rate-instrumental seismic intensity relationship curve for six types of high-voltage electrical equipment such as transformers, circuit breakers, voltage mutual inductors, current mutual inductors, isolating switches, and lightning arresters. The results show that transformers have the highest vulnerability during earthquakes and suffered a certain level of damage even under low instrumental intensity. The second most vulnerable equipment is the circuit breaker, followed by the lightning arrester, transformer, and isolating switch, which share a similar vulnerability curve.

1. Introduction

Numerous earthquakes at home and abroad have caused serious damage to high-voltage electrical equipment in the transformer substations which resulted in the failure of power grid function in the affected areas and caused great difficulties for postevent emergency rescue efforts, the lives of the affected people, and the resettlement efforts after the disaster. Research on the vulnerability of high-voltage electrical equipment in the transformer substations is of great significance for improving the seismic performance of electrical equipment, assessing the damage and functional failure of power facilities and speeding up emergency repair efforts after an earthquake.

The research activities on the seismic vulnerability of high-voltage electrical equipment can be divided into three main categories: theoretical and numerical simulation, shaking table test, and statistical analysis [1]. The first two are mainly used for studying the seismic capability of the equipment, simulating seismic response and damage mechanism, and developing techniques for earthquake resistance and damage mitigation such as seismic base isolation [2–4].

The statistical method is used for studying the damage rates of the equipment under different ground motion intensities based on the samples of high-voltage electrical equipment damaged in earthquakes so as to obtain the vulnerability of the equipment. This method is an empirical approach that is directly linked to the actual seismic damage and is often used for seismic risk analysis, damage estimation, and economic loss assessment of the electric equipment.

In the 1990s, the Pacific Earthquake Engineering Center (PEER) and Pacific Gas and Electric Company in the US jointly established the Database of Seismic Performance of Transformer Substation Equipment for California, which recorded the damage to electrical equipment of 60 substations for different voltage classes with 220kV and above in 12 earthquakes in California. The vulnerability curves of high-voltage electrical equipment were statistically calculated, and the results were
widely used in postdisaster assessment for electrical power system [5]. The Applied Technology Council (ATC) in the US provided seismic vulnerability curves for various lifelines, which were used in the seismic risk analysis system by Federal Emergency Management Agency (FEMA) [6, 7].

In recent years, a few scholars in China have studied the seismic vulnerability of substation electrical equipment with oil-immersed high-voltage transformer connected to the pipe busbar [8, 9]; He et al. provided seismic vulnerability curves of transformers, busbars, and power transmission towers based on seismic damage data [10]; Liu et al. used the Weibull distribution function to fit the seismic vulnerability curves of electric porcelain electrical equipment [11]; Yang studied the relationships between the damage probability of various high-voltage electrical equipment with the peak ground acceleration and acceleration response spectrum and analyzed the functional failure modes of transformer substations under different peak ground accelerations [12].

Substantial progress has been made recently in constructing the rapid seismic intensity reporting system in various regions of China [13], and the system can quickly produce spatial distribution information on instrumental seismic intensity after an earthquake. Rapid assessment of seismic disaster based on instrumental seismic intensity meets the urgent need for postearthquake emergency response and rescue as well as engineering repair efforts. The research on the vulnerability of high-voltage electrical equipment based on instrumental seismic intensity is the basis of rapid seismic disaster assessment of power facilities.

However, the previous studies on the vulnerability of electrical equipment were based on peak acceleration, acceleration response spectrum, or traditional intensity. There were few published reports on studying the vulnerability of substation high-voltage electrical equipment based on instrumental seismic intensity.

To study the vulnerability of substation high-voltage electric equipment, this paper first calculated the instrumental intensities at strong motion observation stations in Wenchuan earthquake. The Kriging interpolation method was used to calculate the instrumental seismic intensities at a total of 121 110 kV and above substations for the national power grid in the worst-hit areas of Mianyang, Deyang, Guangyuan, and Chengdu in Wenchuan earthquake. Based on the seismic damage data of high-voltage electrical equipment, a cumulative Gaussian distribution function was used to express the relationship between damage rate and instrumental seismic intensity of high-voltage electrical equipment such as the transformer, circuit breaker, voltage mutual inductor, current mutual inductor, isolating switch, and lightning arrester, which was then used as the basis for seismic risk assessment and emergency response of power facilities.

2. Instrumental Seismic Intensity at Strong Motion Observation Stations

The instrumental seismic intensity is the intensity calculated using the strong motion observation records according to a specified method, and it directly reflects the ground motion intensity at the observation site and can be quickly obtained after an earthquake [14]. Rapid seismic intensity reporting systems have been constructed, and different algorithms for instrumental seismic intensity have been implemented in countries and regions such as the United States, Japan, and Taiwan. The national rapid seismic intensity reporting and early warning project in China is well under construction with a few rapid seismic intensity reporting networks having already been completed in a few selected regions, and an interim regulation for the calculation of instrumental seismic intensity has also been promulgated.

In accordance with the interim regulation, the calculation method for instrumental seismic intensity is defined as follows: the baseline correction and band-pass filtering were carried out first for the three-component seismic acceleration or velocity records at the observation sites, and the three-component synthesis was performed according to equations (1) and (2) to obtain the peak ground acceleration (PGA) and peak ground velocity (PGV). PGA and PGV were then used in equation (3) and (4) to calculate I_{PGA} for the peak seismic acceleration and I_{PGV} for the peak seismic velocity. Instrumental seismic intensity I is finally determined by equation (5). The instrumental seismic intensity is categorized into scales from I to XII.

$$\text{PGA} = \max \left(a(t_i)_{E-W}^2 + a(t_i)_{N-S}^2 + a(t_i)_{U-D}^2 \right), \quad (1)$$

$$\text{PGV} = \max \left(v(t_i)_{E-W}^2 + v(t_i)_{N-S}^2 + v(t_i)_{U-D}^2 \right). \quad (2)$$

In equation (1), $a(t_i)$ is the acceleration record in different directions at time t_i; in equation (2), $v(t_i)$ is the speed record in different directions at time t_i.

$$I_{PGA} = \begin{cases} 3.17 \log_{10}(\text{PGA}) + 6.59, & \text{when the PGA was synthesized from three directions,} \\ 3.20 \log_{10}(\text{PGA}) + 6.59, & \text{when the PGA was synthesized from two horizontal directions,} \\ 3.23 \log_{10}(\text{PGA}) + 6.82, & \text{when the PGA was synthesized from a single direction,} \end{cases} \quad (3)$$
Based on the strong motion acceleration records at 255 strong earthquake stations in Sichuan, Gansu, Ningxia, and Shaanxi during the Wenchuan earthquake and according to the definition specified in equations (1)–(5), the data obtained at these strong motion observation stations were processed, and the instrumental seismic intensities at these locations were calculated. The comparison between the seismic intensity at strong motion observation stations and the instrumental seismic intensity at the same sites is shown in Figure 1.

From Figure 1, the following can be stated. (1) The mean instrumental intensity was in good agreement with the traditional intensity in regions of intensity VIII or above, while the instrumental intensity was lower than the traditional intensity in regions of intensity IX or below. (2) The instrumental intensity had some dispersion from the traditional intensity, and the dispersion was relatively large in low-intensity regions. As the intensity increased, the dispersion decreased. There were more data points in regions of intensity between V and VII, the maximum difference between the instrumental intensity and traditional intensity was close to 2, and the dispersion in intensity VIII regions was relatively small.

3. Interpolation of Instrumental Seismic Intensity at Substations

The Kriging interpolation method was used to calculate the instrumental intensity at the substation based on the instrumental seismic intensity and geo-coordinates of the strong motion observation station. The Kriging interpolation method is an interpolation method named after South African geologist P. G. Krige by French scientist Matalon [15], which is widely used in contour line interpolation in many fields. This approach is based on the regionalized variable theory and the variogram theory, and the estimated values are obtained under the premise of ensuring that the estimated values satisfy the unbiased condition and the minimum variance condition. The Kriging interpolation method considers not only the positional relationship between the points to be evaluated and the sample points but also the spatial correlation of all known points near the point to be evaluated, and thus it greatly reduces the systematic error in instrumental intensity estimation.

It is assumed that $f(x)$ is the regionalized variable in the space where the interpolation point and the sample point are located, and it is intrinsic, and $f_i (i = 1, 2, \ldots, n)$ is the corresponding value at the sampling point $x_i (i = 1, 2, \ldots, n)$. The estimated value of f_0 is f_0^*, and f_0^* meets the following condition:

$$f_0^* = \sum_{i=1}^{n} \lambda_i f_i, \quad i = 1, 2, \ldots, n.$$ \hfill (6)

The coefficient $\lambda_i (i = 1, 2, \ldots, n)$ could be calculated according to the principle of unbiasedness and minimum variance of error.

According to the principle of unbiasedness, there is

$$E [f_0^* - f_0] = 0.$$ \hfill (7)

Thus, the following can be concluded:

$$\sum_{i=1}^{n} \lambda_i = 1.$$ \hfill (8)

The error variance is

$$S_E^2 = E [f_0^* - f_0]^2 - [E [f_0^* - f_0]]^2$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_i \lambda_j C_{i,j} - 2 \sum_{i=1}^{n} \lambda_i C_{i,0} + C_{0,0}. $$ \hfill (9)

The partial derivative for the error variance can be calculated:

$$\frac{\partial S_E^2}{\partial \lambda_i} = 2 \lambda_i C_{i,0} - 2 C_{i,j}. $$ \hfill (10)
To minimize the error variance, the extreme value of the error variance needs to be calculated, and the Lagrangian multiplier method is used. Assume

\[F = S^2 - 2 \left(\sum_{i=1}^{n} \lambda_i - 1 \right). \]

We can calculate the partial derivatives, respectively, for \(\lambda_i \) and \(t \), which are set to be equal to zero:

\[
\begin{align*}
\frac{\partial F}{\partial \lambda_i} &= 2 \sum_{j=1}^{n} \lambda_j C_{i,j} - 2C_{i,0} - 2t = 0, \\
\frac{\partial F}{\partial t} &= -2 \left(\sum_{i=1}^{n} \lambda_i - 1 \right) = 0.
\end{align*}
\]

Equation (12) can be arranged as follows:

\[
\begin{align*}
\sum_{j=1}^{n} \lambda_j y(x_i - x_j) + t &= y_{i,0}, \\
\sum_{i=1}^{n} \lambda_i &= 1.
\end{align*}
\]

After \(\lambda_i \) is calculated from equation (15), it can be brought into equation (6) to obtain the estimated value of \(f_0^* \).

The power supply system in Sichuan Province is composed of state grid and power grids administered by local power companies, and state grid is the backbone. The Wenchuan earthquake caused severe damage to the power grid in Sichuan Province [16]. A total of 121 substations with voltage of 110 kV and above in the state grids in Deyang, Mianyang, and Guangyuan and selected areas of Chengdu such as Dujiangyan, Pengzhou, Chongzhou, Wenjiang, and Pixian and those in Aba autonomous region managed by State Grid Company were selected as the statistical analysis samples for the study on vulnerability of high-voltage electrical equipment. According to the spatial distribution of the strong motion observation stations, the instrumental seismic intensities at the substations calculated by the above Kriging interpolation method are shown in Table 1.

4. Statistical Method for Damage Rate of Various High-Voltage Electrical Equipment in Substations

All high-voltage electrical instruments outside the substations such as circuit breakers, isolating switches, voltage mutual inductors, current mutual inductors, and lightning arresters belong to porcelain-column type structure. Their earthquake damage patterns were mainly cracks and oil

\[
\begin{align*}
\sum_{j=1}^{n} \lambda_j y(x_i - x_j) + t &= y_{i,0}, \\
\sum_{i=1}^{n} \lambda_i &= 1.
\end{align*}
\]
Table 1: Substations of 110kV and above and instrumental seismic intensity.

<table>
<thead>
<tr>
<th>Region</th>
<th>Transformer substation</th>
<th>Voltage class</th>
<th>Instrumental seismic intensity</th>
<th>Region</th>
<th>Transformer substation</th>
<th>Voltage class</th>
<th>Instrumental seismic intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deyang</td>
<td>Tanjiawan station</td>
<td>500</td>
<td>8.3</td>
<td>Chengdu</td>
<td>Shuzhou station</td>
<td>500</td>
<td>8.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Mengjia station</td>
<td>220</td>
<td>8.5</td>
<td>Chengdu</td>
<td>Danjing station</td>
<td>500</td>
<td>7.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Wulidui station</td>
<td>220</td>
<td>8.3</td>
<td>Chengdu</td>
<td>Longxing station</td>
<td>220</td>
<td>7.8</td>
</tr>
<tr>
<td>Deyang</td>
<td>Guicheng station</td>
<td>220</td>
<td>8.1</td>
<td>Chengdu</td>
<td>Huilong station</td>
<td>220</td>
<td>8.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Wan’an station</td>
<td>220</td>
<td>8.4</td>
<td>Chengdu</td>
<td>Yufu station</td>
<td>220</td>
<td>7.6</td>
</tr>
<tr>
<td>Deyang</td>
<td>Xinshi station</td>
<td>220</td>
<td>8.6</td>
<td>Chengdu</td>
<td>Juyuan station</td>
<td>220</td>
<td>9.0</td>
</tr>
<tr>
<td>Deyang</td>
<td>Yunxi station</td>
<td>220</td>
<td>8.8</td>
<td>Chengdu</td>
<td>Datian station</td>
<td>110</td>
<td>7.5</td>
</tr>
<tr>
<td>Deyang</td>
<td>Chengnan station</td>
<td>110</td>
<td>8.4</td>
<td>Chengdu</td>
<td>Wangcheng station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Deyang station</td>
<td>110</td>
<td>8.2</td>
<td>Chengdu</td>
<td>Yongkang station</td>
<td>110</td>
<td>7.8</td>
</tr>
<tr>
<td>Deyang</td>
<td>Jinghuang station</td>
<td>110</td>
<td>8.3</td>
<td>Chengdu</td>
<td>Guanmeng station</td>
<td>110</td>
<td>8.3</td>
</tr>
<tr>
<td>Deyang</td>
<td>Qingping station</td>
<td>110</td>
<td>8.4</td>
<td>Chengdu</td>
<td>Taiping station</td>
<td>110</td>
<td>8.2</td>
</tr>
<tr>
<td>Deyang</td>
<td>Tiantian station</td>
<td>110</td>
<td>8.4</td>
<td>Chengdu</td>
<td>Tianteng station</td>
<td>110</td>
<td>8.4</td>
</tr>
<tr>
<td>Deyang</td>
<td>Yangjia station</td>
<td>110</td>
<td>8.5</td>
<td>Chengdu</td>
<td>Linwan station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Binglinggong station</td>
<td>110</td>
<td>8.2</td>
<td>Chengdu</td>
<td>Pixian station</td>
<td>110</td>
<td>7.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Datang station</td>
<td>110</td>
<td>8.1</td>
<td>Chengdu</td>
<td>Gongpeng station</td>
<td>110</td>
<td>7.6</td>
</tr>
<tr>
<td>Deyang</td>
<td>Gaoluo station</td>
<td>110</td>
<td>8.4</td>
<td>Chengdu</td>
<td>Haikou station</td>
<td>110</td>
<td>7.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Guangshan station</td>
<td>110</td>
<td>8.6</td>
<td>Chengdu</td>
<td>Liucheng station</td>
<td>110</td>
<td>7.6</td>
</tr>
<tr>
<td>Deyang</td>
<td>Jinxing station</td>
<td>110</td>
<td>8.3</td>
<td>Chengdu</td>
<td>Guanxi station</td>
<td>110</td>
<td>9.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Lianshan station</td>
<td>110</td>
<td>8.2</td>
<td>Chengdu</td>
<td>Jinjiang station</td>
<td>110</td>
<td>9.2</td>
</tr>
<tr>
<td>Deyang</td>
<td>Luosheng station</td>
<td>110</td>
<td>8.2</td>
<td>Chengdu</td>
<td>Xujia station</td>
<td>110</td>
<td>9.3</td>
</tr>
<tr>
<td>Deyang</td>
<td>Sanxiang station</td>
<td>110</td>
<td>8.2</td>
<td>Mianyang</td>
<td>Guifeng station</td>
<td>220</td>
<td>7.8</td>
</tr>
<tr>
<td>Deyang</td>
<td>Xiangyang station</td>
<td>110</td>
<td>8.1</td>
<td>Mianyang</td>
<td>Jiaqiao station</td>
<td>220</td>
<td>7.6</td>
</tr>
<tr>
<td>Deyang</td>
<td>Xiaojian station</td>
<td>110</td>
<td>8.3</td>
<td>Mianyang</td>
<td>Yongxing station</td>
<td>220</td>
<td>8.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Banzhu station</td>
<td>110</td>
<td>8.4</td>
<td>Mianyang</td>
<td>Dukeng station</td>
<td>220</td>
<td>9.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Yuying station</td>
<td>110</td>
<td>8.3</td>
<td>Mianyang</td>
<td>Tianmeng station</td>
<td>220</td>
<td>8.4</td>
</tr>
<tr>
<td>Deyang</td>
<td>Minzhu station</td>
<td>110</td>
<td>9.0</td>
<td>Mianyang</td>
<td>Baisheng station</td>
<td>220</td>
<td>8.0</td>
</tr>
<tr>
<td>Deyang</td>
<td>Yanshi station</td>
<td>110</td>
<td>8.5</td>
<td>Mianyang</td>
<td>Anxian station</td>
<td>220</td>
<td>9.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Bajiao station</td>
<td>110</td>
<td>9.4</td>
<td>Mianyang</td>
<td>Sanyuan station</td>
<td>110</td>
<td>7.5</td>
</tr>
<tr>
<td>Deyang</td>
<td>Xiaoxian station</td>
<td>110</td>
<td>8.6</td>
<td>Mianyang</td>
<td>Gaoshui station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Baimiao station</td>
<td>110</td>
<td>8.4</td>
<td>Mianyang</td>
<td>Mianyang station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Dongbei station</td>
<td>110</td>
<td>8.7</td>
<td>Mianyang</td>
<td>Nanta station</td>
<td>110</td>
<td>7.8</td>
</tr>
<tr>
<td>Deyang</td>
<td>Longqiao station</td>
<td>110</td>
<td>8.6</td>
<td>Mianyang</td>
<td>Puming station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Mianzhu station</td>
<td>110</td>
<td>8.7</td>
<td>Mianyang</td>
<td>Santai station</td>
<td>110</td>
<td>7.4</td>
</tr>
<tr>
<td>Deyang</td>
<td>Lianglutian station</td>
<td>110</td>
<td>8.8</td>
<td>Mianyang</td>
<td>Shiqiao station</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>Deyang</td>
<td>Shuangsheng station</td>
<td>110</td>
<td>8.7</td>
<td>Mianyang</td>
<td>Tangxun station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Deyang</td>
<td>Tutang station</td>
<td>110</td>
<td>8.6</td>
<td>Mianyang</td>
<td>Tieniu station</td>
<td>110</td>
<td>8.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Wanchun station</td>
<td>110</td>
<td>8.9</td>
<td>Mianyang</td>
<td>Xinza station</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>Deyang</td>
<td>Yongning station</td>
<td>110</td>
<td>8.5</td>
<td>Mianyang</td>
<td>Yuan station</td>
<td>110</td>
<td>8.1</td>
</tr>
<tr>
<td>Deyang</td>
<td>Xiangshan station</td>
<td>110</td>
<td>9.0</td>
<td>Mianyang</td>
<td>Hongren station</td>
<td>110</td>
<td>7.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Hanfan station</td>
<td>110</td>
<td>9.1</td>
<td>Mianyang</td>
<td>Changqing station</td>
<td>110</td>
<td>7.7</td>
</tr>
<tr>
<td>Deyang</td>
<td>Chuanxindian station</td>
<td>110</td>
<td>9.1</td>
<td>Mianyang</td>
<td>Weicheng station</td>
<td>110</td>
<td>7.6</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Chihua station</td>
<td>220</td>
<td>9.8</td>
<td>Mianyang</td>
<td>Xianrenqiao station</td>
<td>110</td>
<td>7.6</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Hongjiang station</td>
<td>220</td>
<td>7.8</td>
<td>Mianyang</td>
<td>Xiaojian station</td>
<td>110</td>
<td>7.8</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Baishanyuan station</td>
<td>220</td>
<td>9.7</td>
<td>Mianyang</td>
<td>Youxian station</td>
<td>110</td>
<td>7.9</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Yuanjia station</td>
<td>220</td>
<td>10.0</td>
<td>Mianyang</td>
<td>Xiaotian station</td>
<td>110</td>
<td>8.2</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Lingtang station</td>
<td>110</td>
<td>8.0</td>
<td>Mianyang</td>
<td>Huagai station</td>
<td>110</td>
<td>8.1</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Lantupu station</td>
<td>110</td>
<td>9.1</td>
<td>Mianyang</td>
<td>Jiepai station</td>
<td>110</td>
<td>8.0</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Chengji station</td>
<td>110</td>
<td>9.0</td>
<td>Mianyang</td>
<td>Erlangmiao station</td>
<td>110</td>
<td>9.7</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Jiange station</td>
<td>110</td>
<td>9.3</td>
<td>Mianyang</td>
<td>Ganxi station</td>
<td>110</td>
<td>8.5</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Saxiba station</td>
<td>110</td>
<td>9.5</td>
<td>Mianyang</td>
<td>Majiaoba station</td>
<td>110</td>
<td>10.0</td>
</tr>
</tbody>
</table>
leakage occurring in porcelain components or direct fracture of porcelain columns. The damage of the porcelain-column type structure equipment caused the aforementioned high-voltage electrical equipment to lose its normal use function. Most of the damage patterns of transformers in earthquakes were also the damage of porcelain-column type structure. The damage of the porcelain casing caused the transformer to lose its normal function. Although there was damage to oil pillow, radi-
cial voltage electrical equipment and the instrumental seismic intensity could be fitted using the cumulative Gaussian distribution function to fit the relationship curves of the equipment based on instrumental seismic intensity.

There were studies on the relationships of the damage probability of the transformers and the busbars with the peak ground motion which used a logarithmic cumulative Gaussian distribution function to fit the relationship curves [9]. In addition, there were other studies on the seismic vulnerabilities of basic components and structures of reinforced concrete which found that the use of a logarithmic cumulative Gaussian distribution function to fit the relationship curves of the equipment based on instrumental seismic intensity.

If a random variable \(x \) follows Gaussian distribution with an expected value of \(\mu \) and a standard deviation of \(\sigma \), the probability density function is

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - \mu)^2}{2\sigma^2} \right).\]

The cumulative Gaussian distribution function is

\[
F(x) = 0.5 + 0.5 \text{erf} \left(\frac{x - \mu}{\sigma \sqrt{2}} \right),
\]

wherein the \(\text{erf}(x) \) function is

\[
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} \, dt.
\]

The average damage rate of various high-voltage electrical equipment in the substation and instrumental seismic intensity were fitted by formula (18) using the least squares method, and the damage rate curves of various

<table>
<thead>
<tr>
<th>Region</th>
<th>Transformer substation</th>
<th>Voltage class</th>
<th>Instrumental seismic intensity</th>
<th>Region</th>
<th>Transformer substation</th>
<th>Voltage class</th>
<th>Instrumental seismic intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guangyuan</td>
<td>Xiasi station</td>
<td>110</td>
<td>9.0</td>
<td>Mianyang</td>
<td>Sanhe station</td>
<td>110</td>
<td>8.2</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Shangxi station</td>
<td>110</td>
<td>8.6</td>
<td>Mianyang</td>
<td>Shao station</td>
<td>110</td>
<td>8.4</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Songlimpo station</td>
<td>110</td>
<td>8.1</td>
<td>Mianyang</td>
<td>Taibai station</td>
<td>110</td>
<td>8.3</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Chaotian station</td>
<td>110</td>
<td>9.4</td>
<td>Mianyang</td>
<td>Zhongba station</td>
<td>110</td>
<td>8.5</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Zhuyuan station</td>
<td>110</td>
<td>10.3</td>
<td>Mianyang</td>
<td>Jushui station</td>
<td>110</td>
<td>9.1</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Sandui station</td>
<td>110</td>
<td>10.4</td>
<td>Mianyang</td>
<td>Xiaoba station</td>
<td>110</td>
<td>8.9</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Muyu station</td>
<td>110</td>
<td>11.2</td>
<td>Mianyang</td>
<td>Yongan station</td>
<td>110</td>
<td>9.4</td>
</tr>
<tr>
<td>Guangyuan</td>
<td>Qiaozhuang station</td>
<td>110</td>
<td>11.1</td>
<td>Mianyang</td>
<td>Yuanmenba station</td>
<td>110</td>
<td>9.2</td>
</tr>
<tr>
<td>Aba station</td>
<td>Maoxian station</td>
<td>500</td>
<td>8.0</td>
<td>Mianyang</td>
<td>Leigu station</td>
<td>110</td>
<td>10.0</td>
</tr>
<tr>
<td>Aba station</td>
<td>Yinxing station</td>
<td>220</td>
<td>10.5</td>
<td>Mianyang</td>
<td>Leigu station</td>
<td>110</td>
<td>10.0</td>
</tr>
</tbody>
</table>
types of high-voltage electrical equipment under different instrumental seismic intensities could be obtained.

5. Results of Vulnerability Curve Fitting for Various Types of High-Voltage Electrical Equipment

Using the substations listed in Table 1 as the samples, the damage rate-instrumental seismic intensity relationship could be fitted for transformer, circuit breaker, isolating switch, current mutual inductor, voltage mutual inductor, and lightning arrester to derive parameter values \(\mu \) and \(\sigma \) of cumulative Gaussian distribution function curves for these 6 types of high-voltage electrical equipment, as shown in Table 2.

The fitting goodness index \(R_{\text{New}} \) was used to represent the fitting goodness of the relationship between the damage rate of high-voltage electrical equipment and the instrumental seismic intensity. The formula for \(R_{\text{New}} \) is

\[
R_{\text{New}} = \frac{\sum (y - y^*)^2}{\sum y^2},
\]

where \(y \) is the actual observed value and \(y^* \) is the predicted value by the fitted function.

According to equation (20), the fitting goodness of the relationship curve between the damage rate of various high-voltage electrical equipment and the instrumental intensity is shown in Table 3:

The curve fitting goodness of the relationship between transformer damage rate and instrumental seismic intensity is 0.809, that of circuit breaker and voltage mutual inductor is about 0.7, and the curve fitting goodness of arrester, isolating switch, and current mutual transformer is about 0.6. It can be concluded that the fitted result could basically reflect the relationship between the instrumental seismic intensity and the damage rate of various types of high-voltage electrical equipment.

The fitted damage rate curves and original data samples of various high-voltage electrical equipment are shown in Figures 2(a)–2(f). It can be seen from Figure 2 that (1) for transformers, the damage rate was close to 20% when the instrumental intensity was VII, about 40% when the instrumental intensity was VIII, above 80% when the instrumental intensity was IX, and close to 100% when the instrumental intensity was X; (2) although damage occurred in other types of equipment other than the transformers when the instrumental seismic intensity was VII, the damage rate was very low, not exceeding 5%, and the damage rate was below 15% when the instrumental intensity was VIII; when the instrumental seismic intensity was IX, the damage rate was about 40%; the damage rate of circuit breakers reached 80%, and the damage rates of transformers, isolating switches, and lightning arresters basically ranged between 45% and 60% when the instrumental seismic intensity was X; (3) the dispersion of damage rates for various types of high-voltage electrical equipment in substations was still large under different instrumental seismic intensities; for example, the damage rate for transformer in some substations had reached 100% within the instrumental intensity range of VI-VII, while no damage occurred in other substations. From the fitted curve, the damage rate of transformers was less than 30%; (4) since the maximum number of transformers in a substation did not exceed 3, the damage rate values were only concentrated in several limited fixed values under various intensities; while there were usually more sets for other types of equipment in a substation, there were more sample points shown in the Figures 2(b)–2(f) for these types of equipment.

The damage rates and probability density distribution curves for various types of equipment were compared, respectively, as shown in Figures 3 and 4.

It could be seen from the comparison diagram in Figure 3 that the transformer was the most vulnerable to earthquake than other types of high-voltage electrical equipment, and its vulnerability was significantly higher than those for other types of equipment; the circuit breaker was the second most vulnerable in other types of equipment, and the damage rate curves of lightning arresters, mutual inductors, and isolating switches were close to each other.

It could be seen from Figure 4 that the probability density of damage rate of transformers reached a peak value when the instrumental seismic intensity was VIII, and the number of damaged transformers increased rapidly. The probability density of damage rate of circuit breakers reached a peak value when the instrumental intensity was IX, and the number of damaged circuit breakers increased the most; the probability density of damage rates of isolating switch, lightning arrester, current mutual inductor, and voltage mutual inductor reached peak values when their instrumental intensities were X, and the number of damaged sets for these types of equipment increased rapidly. Figure 4 illustrates that on the one hand, different types of equipment had their respective damage-resistant strengths as the
Figure 2: Damage rate fitted curves and samples distribution of high-voltage electrical equipment. (a) Transformer. (b) Circuit breaker. (c) Isolating switch. (d) Lightning arrester. (e) Current mutual inductor. (f) Voltage mutual inductor.

Figure 3: Damage probability curves for all kinds of high-voltage electrical equipment.

Figure 4: Probability density curves of damage rate for all kinds of high-voltage electrical equipment.
ground motion intensity increased; on the other hand, the
damage of each type of equipment around this intensity
value was disperse under the influences of various incidental
factors.

6. Conclusion

According to the strong motion acceleration records of
Wenchuan earthquake, the Kriging interpolation method is
used to calculate the instrumental seismic intensities at
locations of a total of 121 110 kV and above substations in
affected areas of Mianyang, Deyang, Guangyuan, and
Chengdu in Wenchuan earthquake. The Gaussian dis-
tribution cumulative function is used to fit damage rate-in-
strumental seismic intensity relationship curve for
transformer, circuit breaker, voltage mutual inductor, current
mutual inductor, isolating switch, and lightning
arrester to form vulnerability curves of high-voltage
electrical equipment outside the substations based on the
instrumental seismic intensity. The fitting results show that
the transformers have the highest seismic vulnerability and
endure certain levels of damage rate even under low in-
strumental intensity. The second most vulnerable equip-
ment is the circuit breaker, followed by the lightning
arrester, transformer, and isolating switch, and the seismic
vulnerability curves for these types of equipment are rel-
atively similar. The fragile link in the substations is mainly
the transformer, which becomes the most important factor
for the substations to maintain their functions in the
earthquakes. It is necessary to speed up the research ac-
tivities to improve the seismic capacity of the transformer
through enhancing its shock absorption and seismic iso-
lation performance.

At present, construction of a rapid seismic intensity
reporting system is being vigorously promoted and devel-
oped in China, and a rapid reporting network has been
formed in some provinces and regions, which can be used to
timely disseminate the reporting information of the intensity
after an earthquake. Instrumental seismic intensity will be
widely used in earthquake emergency response efforts and
disaster assessment. The vulnerability curve for high-voltage
electrical equipment can be used for rapid assessment of
seismic damage and economic loss of power equipment and
can also provide reference for equipment emergency repair
in power industry after an earthquake.

Wenchuan earthquake had a wide impact and heavy
seismic damage. Many seismic damage samples have been
obtained in regions with different levels of intensity, which
provided a wealth of basic information for the study of the
vulnerability of high-voltage electrical equipment. Due to
sparse distribution of strong earthquake observation stations
during Wenchuan earthquake, the instrumental seismic
intensity values in locations of substations cannot be directly
obtained. However, the instrumental seismic intensity values
of substations estimated by the interpolation method must
have certain errors compared with the actual values, which
will bring some errors to the vulnerability statistics of high-
voltage electrical equipment based on instrumental inten-
sity. At the same time, the fitting of vulnerability curves
needs to be further enriched by accumulating more seismic
samples in the future, especially the samples in high-in-
tensity regions of intensities X and XI need to be further
enriched.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that they have no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This study was supported by the Special Fund for Basic
Scientific Research Expenses of Institute of Engineering
Mechanics (2018A02) and National Key R&D Program of
China (no. 2018YFC1504602).

References

reliability research in electric power system,” Journal of
control strategy based on base isolation and tuned mass
damper on porcelain equipment,” Proceedings of
The Chinese Society for Electrical Engineering, vol. 39, no. 13,
response and rehabilitation of critical substation equipment,”
in Proceedings of 13th World Conference on Earthquake En-
gineering, IAEE, Vancouver, B. C., Canada, August 2004.
seismic performance of large transformer,” Transformer,
[5] T. Anagnos, Development of an Electrical Substation Equip-
ment Performance Database for Evaluation of Equipment
Fragilities, Pacific Earthquake Engineering Research Center,
Davis Hall, UW. UC Berkeley, 1999.
[6] ATC, ATC 13 Earthquake Damage Evaluation Data for
California, Advanced Technology Council, Redwood, CF, USA,
1985.
Agency and National Institute of Building Science, Wash-
ington, DC, USA, 1999.
fragility analysis of transformers,” World Earthquake Engi-
[9] Y. Hu and Q. Xie, ”Seismic Vulnerability of substation
equipment interconnected by rigid bus,” Electric Power Construction,
[10] H. He, J. Guo, and Q. Xie, ”Vulnerability analysis of power
equipment caused by earthquake disaster,” Power System
vulnerability analysis of porcelain equipment,” Power System

