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Bubble dissolution during the flood discharge creates high total dissolved gas (TDG) concentration zones downstream of the
dams. -e dissipation of supersaturated TDG is a very slow process. -us, the elevated TDG may remain through the water body
for hundreds of kilometers downstream and lead to gas bubble disease (GBD) and even mortality in fish. To improve the
navigation conditions of waterways, dikes (i.e., a solid structure) of varied sizes and shapes are commonly constructed. However,
this would affect the dissipation and transportation of the supersaturated TDG. It would significantly change the turbulence
intensity and hydropressure of the flow, which dominates the dissipation of TDG. -erefore, TDG distribution in the waterway
differs from that in the natural river. In this study, a numerical simulation of the TDG at the Yangtze River’s upper reaches (one of
the inland waterways in China) was conducted with the establishment of a two-dimensional TDG dissipation model. -e effect of
the dikes’ size and shape was analyzed to assess the influence of the regulation structures on the dissipation and transportation of
the supersaturated TDG. Meanwhile, simulation in the study area with the natural topography was also set as blank control. Based
on that, impact evaluation of TDG supersaturation on fish under different simulation scenarios wasmade.-is study can provide a
scientific basis for reducing the adverse effect of supersaturated TDG in fish and the construction of ecological waterway therefore.

1. Introduction

A waterway is known as any navigable body of water. Along
with the rapid pace of the GoldenWaterway of Yangtze River
and inland waterway construction, more and more giant
cascade hydropower stations are built or to be built. However,
during the discharge process, excess air would be entrained
into the water and cause supersaturation of total dissolved gas
(TDG) due to the variation of deep pressure head. Dissipation
of supersaturated TDG is known as a slight process [1]. It will
exist along the river for quite a long time, leading to gas
bubble disease (GBD) or even death to fish [2–4]. During dam
sluice of the -ree Gorges, it was observed that TDG in
section 600 km downstream, the dam was high above 117%

[5]. -e other side of channel construction is waterway
regulation by dredging, reef explosion, and the construction
of regulating structures. It may significantly change the flow
condition and lead to a difference in TDG dissipation
compared with the natural river [6–8]. Until now, there are
plenty of research studies on the environmental effects of
waterway regulating structures [9, 10], but few focused on the
effect of channel regulating structures on the transportation
and dissipation of supersaturated total dissolved gas. -ere
are numerous studies performed on the dam and reservoir
hydroenvironment models. Different studies are conducted
for the environment sustainability concerns of things hap-
pening on rivers [11–15], hydrobased energy [16–20], soil
[21], water [22], decontamination [23, 24], air/carbon-
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emission implications [25–33], precipitation [34], and
evaporation [35–40]. Some geo-hydro-environmental-based
studies that have been taken recently are tabulated in Table 1.

Lots of research works have been carried out for TDG
dissipation [58–61]. It was found that the release of su-
persaturated TDG is related to the water depth. TDG dis-
sipation can be accelerated with the decrease of water depth.
Based on prototype observation of TDG dissipation in
several rivers of China (e.g., Yangzi River, Yalong River, and
Langtang River), Feng et al. [62] computed each river’s
release coefficient using the first-order kinetic process. It was
found out that the release coefficient of supersaturated TDG
downstream the Zipingpu Dam in Min River was 0.563 h−1

～0.650 h−1, which was larger than that in the river reach
downstream the -ree Gorges in the Yangzi River, 0.014 h−1

～0.020 h−1. -e water depth downstream of the -ree
Gorges during the flood discharge period was much deeper
than that of the Min River. It was also observed that TDG
observation in the reservoir of Dachaoshan and the natural
reach downstream was 0.04%/km and 0.26%/km, respec-
tively, which means variation of water depth has a significant
effect on TDG dissipation. Water temperature is also a key
factor in TDG dissipation. TDG supersaturation is an un-
stable nonequilibrium state. -e excess gas in the water will
be released slowly to regain the equilibrium state. Tem-
perature is one of the critical factors influencing gas solu-
bility. Ou et al. [54] researched the influence of temperature
on the release of supersaturated TDG. It was found that,
under certain conditions of pressure and turbulence in-
tensity, the coefficient of 28°C water temperature was about
four times under 4°C. Moreover, wind can significantly
promote the release of supersaturated TDG, and the
quantitative relation of release coefficient and wind speed
was developed by Huang et al. [63]. Besides, turbulence
intensity, water-sediment concentration, and river mor-
phology also significantly influence the release rate of TDG
[64].

Based on research results of the release coefficient of TDG,
a series of calculation models for TDG release were estab-
lished and were used to simulation TDG dissipation in the
natural river. Perkins and Richmond [65] developed a depth-
averaged 2-D model to study TDG saturation distribution
downstream the Bonneville Dam and the Ice Harbor Dam.
Ma et al. [53] studied operation regulation of water replen-
ishment to deduce supersaturated TDG through a 1-D un-
steady TDG model. Shen et al. [66] established a
depth-averaged, two-dimensional model of TDG dissipation
at a river confluence and explored shelter construction for fish
at the confluence of a river to avoid the effect of TDG su-
persaturation. Feng et al. [62] carried out a width-averaged
2-D TDG model for numerical simulation of water tem-
perature and TDG distribution in a large reservoir based on
the 2-D water temperature model. Among those studies
mentioned above, the river reaches were gentrified, while only
the natural topography was considered. However, the channel
regulating structures will change the topographic condition to
a greater extent, and the flow condition would not be the same
anymore. For now, little research was conducted about the
effect of the channel regulating structures on TDG

dissipation. -e present work examined the distribution of
supersaturated TDG near the regulating structures in a nu-
merical simulation. Potential intervention for enlarging the
area of low TDG was studied in the model.

2. Mathematical Model

2.1. Numerical Model. A depth-averaged, 2D model ap-
plying the Reynolds-averaged, hydrostatic (shallow-water)
Navier-Stokes equations was used to simulate the transport
of TDG in a waterway with the contribution of the regulating
structures:
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where ζ is the difference between the surface elevation and
the mean depth, t is the time, h is the mean water depth, u
and v are the depth-averaged flow velocity components in
the x- and y-direction, respectively, g is the acceleration of
gravity, ρ is the water density, vt is an eddy viscosity co-
efficient, τs and τb are the surface wind stress and the river
bottom friction, G is the concentration of TDG, and SC �

−kTDGG is the sink dissipation of TDG, where kTDG is the
dissipation coefficient of the supersaturated TDG.

2.2. Model Verification. -e numerical model for hydro-
dynamics in our work was validated by Wang et al. [4]. To
validate the scalar transport model, we developed a simu-
lation according to a laboratory experiment by Kang [15]. In
this experiment, salt concentrations were used as a con-
servative tracer to identify tributary water. -e model grid
used 19577 grid cells in an unstructured triangular mesh, as
shown in Figure 1. Experimental data and the simulation
results are compared in Figure 2. -e error values at the
measurement points between model and experiment range
from 2.9% to 9.8%, which is a reasonable agreement.

2.3. Study Site. As a study site, we use a reach of the Jialing
River (China) 3 km downstream of the Caojie Dam and
stretches 4 km.-ere exist the typical dry rapids, Gouzuwan.
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Table 1: Some recent geo-hydro-environmental-based studies and their main achievements.

Authors Study area Main achievements
Feng et al. [41] Region of Tibetan plateau in China Implications for natural environmental response to human activities

Han et al. [42] China Pathways for cleaner electricity production, reviews on energy consumption,
economic cost, and environmental impact

He et al. [43] Beaver county, Pennsylvania Energy-water nexus for identifying environmental impacts during shale gas
operations under stochastic input

He et al. [44] China
Evaluate the ecological vulnerability, environmental and social management,

ecological conservation potential impacts of natural, social, economic,
environmental pollution, and human health elements

Liu et al. [45] Guangzhou, China Establish an environmental assessment model of construction and demolition
waste

Lu et al. [46] Western Europe Policy recommendations, consideration of socioeconomic, geo-hydrological,
climate, and groundwater factors study on the aquifer thermal energy storage

Wang et al. [47] Shaanxi province, Northwest
China Hydrological model and assessing the environmental impact of slope failure

Chen et al. [48] China Water pollution for agricultural irrigation resources

Chen et al. [49] United States
Multicriteria design of shale-gas-water supply chains and production systems
towards optimal life cycle economics and greenhouse gas emissions under

uncertainty
Chen et al. [50] China and the United States Water management in gas supply chains
Cheng et al. [51],
He et al. [26],
He et al. [52],

Pennsylvania and West Virginia;
United States; China

Optimal water resources management, high consumption of water resources
rowing greenhouse gas

Ma et al. [53],
Ou et al. [54] China Reduce supersaturated total dissolved gas in riverine wetlands

Piotrowski et al.
[55],
Tyrrell and
George [56],
Yang et al. [57]

China, Brazil Water quality, spatial and temporal changes of surface water quality
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Figure 1: Model grids in the validation domain for the numerical simulation of the Kang flume experiments.
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Figure 2: Comparison of the salinity between the model and the experiment.
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To improve the navigation condition in this reach, waterway
regulations were designed in 2009, consisting of cutoff
works, reef explosion, dredging, and groins construction, as
shown in Figure 3.

2.4. General Conditions and Boundary Conditions. -e
Jialing River is itself a tributary of the Yangzi River in
Chongqing Province, China. -e dam height of the Caojie
Navigation-Power junction is 56.0m. Its average water level
is 203.00m above the sea level.-e typical storage capacity is
7.54×108m3/s. -e flood discharge structures include five
scouring sluices and 15 spillways with the use of bottom-flow
dissipation. For the maximum navigable discharge,
15,000m3/s, the supersaturated TDG level is 131% [15].
Power flow rate is 3,054m3/s with TDG saturation of ap-
proximately 100%. Because of the flow rates’ disparities, full
mixing of the floods discharge with the power flow reduces
the 131.0% predicted TDG supersaturation down to 125%.
Water flow with supersaturated TDG high above 110% can
be lethal to fish. -us, the effect of waterway relation on the
dissipation of TDG is desirable. Field measurements for
velocity, mixing, and TDG in the study are not available. So,
our work focuses on comparing a baseline numerical sim-
ulation of the known river morphology with the simulation
of waterway regulation to examine how these works change
the TDG distribution.

2.4.1. Domain and Mesh Division. -e computation domain
(Figure 3) in the Jialing River extends approximately 3.0 km.
-e unstructured grid used 195,625 approximately uniform
triangular elements with an average area of 25m2 in each
element. -e flow rate of the flood discharge and the power
flow rate were 11,946m3/s and 3054m3/s, respectively. -e
TDG saturation was 125.0% and 100.0%, respectively.

2.4.2. Parameter Determination. -e Smagorinsky coeffi-
cient used for the turbulence model was 0.28, and the
Prandtl constant value was 1. -e Manning coefficient for
bottom roughness was set as 0.03. -ese values are the same
as those used in the validation experiment (Section 2.2). -e
dissipation coefficient of the supersaturated TDG was set as
1.72×10−5 s−1, whichmatches field observation results in the
Yangzi River.

3. Results and Discussion

3.1. Prediction Results. Water depth and velocity are the
main factors that affect the dissipation of supersaturated
TDG.-e simulation results of the flow field under different
calculation conditions are compared in Figure 4. A no-
ticeable difference in water depth and velocity occurred due
to the topographical boundary change, especially in the area
where three groins were constructed.Water depth before the
one # groin and the four # groins increased to 14.5m and
14.2m, respectively, while those before the regulation were
13.1m and 13.0m. Due to water contraction induced by the
groins, the mainstream was narrowed, and the maximum

velocity increased to 4.8m/s, which was 1.6m/s larger than
that before the regulation. -e area downstream of the
groins turned into the recirculation zone, and the velocity
decreased significantly. -e recirculation zones in A-1 and
A-2 were 109,466m2 and 75,145m2, which could increase
the detention time of the supersaturated TDG and provided
shelter for fishes.

Figure 5 shows the simulation results of TDG distri-
bution in the regulated waterway compared with that in the
natural river. TDG saturation of the mainstream was only
reduced to 122.1% in the natural river while that after the
regulation was 122.0%, which was nearly the same. TDG
dissipation is a slight process; with a large flow rate, TDG
saturation in the mainstream is dominated by the inflow
boundary. However, a significant difference occurred in the
area where the groins were constructed. Due to the water
contraction and the recirculation zones induced by the
groins, the mainstreamwas narrowed.-e diffusing width of
the polluted zone with TDG saturation less than 120%
enlarged to 219m from 173m, which extended to 45.7% of
the outlet section’s width.

3.2. Effect for Fish. According to the abovementioned sim-
ulation results, there will not be a significant difference in
TDG saturation in the mainstream in the computational
domain due to the large flow rate. However, the recirculation
zones and the riverbank, as shown in Figure 5, increase the
detention time of supersaturated TDG, which was beneficial
for the release process. -us, the waterway regulation’s
construction enlarged the area of low-saturation along the
riverbank where it can provide a shelter for fish. It can
protect the fish from the damaging effects of TDG super-
saturation. According to the area statistics of TDG satura-
tion at a different level before and after the waterway
regulation, as listed in Table 2, the size of the saturation
regions of TDG saturation less than 110%, 115%, and 120%
increased 36,679m2, 56,477m2, 161,135m2, respectively.
Based on research results of fish tolerance to fish, the river
reaches the Jialing River after the waterway regulation was
expected to meet the space requirements necessary for fish to
avoid the supersaturation damaging effect of TDG.

-e numerical simulation study shows that waterway
regulation may be beneficial to the river’s ecological function
as far as TDG supersaturation is concerned. -e funda-
mental idea is installing groins along the riverbank to control
the distribution of low TDGwater downstream the dikes and
create a low TDG refuge that otherwise might not occur
because of the high-water flow rate or velocities of the
natural river. Note that the waterway regulation varies with
the waterway topography and operation features of the
hydropower station nearby. -e effect of waterway regula-
tion on the flow field is different from the distribution of
TDG. To reduce the adverse effect of waterway regulation on
the river ecosystem and maximize its benefits, we need to
investigate how 3D turbulence at the local area where the
regulation measures conducted affects the dissipation rate of
supersaturated TDG. It is of theoretical value and practical
significance in developing eco-environmentally friendly
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Figure 3: Sketch of the computational domain and the regulatory scheme for the channel.
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Figure 4: Comparison of the water depth and the local velocity distribution. (a) Before the regulation. (b) After the regulation.
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Figure 5: Comparison of TDG distribution. (a) Before the regulation. (b) After the regulation.
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waterway. In this sense, knowledge of how the trans-
portation and dissipation of supersaturated TDG can be
controlled is vital for protecting the fishes from the de-
structive effect of TDG supersaturation. Due to the com-
plexity of the inland waterway, the effect of waterway
regulation needs to be further studied in combination with
waterway regulation design and an assessment of local fish
survival.

4. Conclusions

A depth-averaged, two-dimensional model for TDG
transportation and dissipation was developed in this paper.
A flume experiment verified the model, and the results
matched well. A numerical simulation of TDG in the Jialing
River’s river reach, where the waterway regulation measures
were constructed, was conducted. Besides, simulation in the
study area with the natural topography was also set to an-
alyze the effect of the waterway regulation on the trans-
portation and dissipation of TDG. -e simulation results
showed reef explosion and dredging in the study site did not
have a noticeable effect on the distribution of TDG since
TDG release is a slight process and the inflow boundary
condition dominated that of the mainstream. However, the
groins’ construction narrowed the mainstream, and the
recirculation area was formed downstream of the dam in a
wide area. It can increase the detention time of water flow
with supersaturated TDG and allowed the low-saturation
region to remain in a particular range. -us, the area with
low saturation of TDG was enlarged.-is area could provide
refuge space for fish to avoid the damaging of supersaturated
TDG. -is study provides a scientific basis for waterway
regulation on the river ecosystem and some mitigation
measures to reduce TDG supersaturation.
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