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A reliable prediction of the surface deformation of slopes is vital to better assess the fatalities and economic losses caused by
landslides. Many prediction methods have been proposed to estimate the surface deformation of landslides with nonlinear
characteristics. However, these methods have low accuracy and poor applicability. In this paper, a new hybrid method for surface
deformation prediction was proposed, which was deduced from the Wavelet Analysis, Genetic Algorithm (GA), and Elman
Algorithm. In this method, the slope surface deformation was decomposed into a trend component and a periodic component
using the time series model, which were trained and predicted utilizing the GA-Elman model. ,e predicted slope surface
deformation was the combination of the trend component and the periodic component. ,en, the predicted results of slope
surface deformation through GA-Elman were compared with the predicted results through Support Vector Machines (SVM),
Extreme Learning Machine (ELM), Back Propagation (BP), and Genetic Algorithm-Back Propagation (GA-BP) models. ,e
comparison wasmade with reference to the data retrieved from the on-site slopes and the laboratory tests.,e results revealed that
the proposed method highlighted reliability and could be used with higher accuracy to forecast the slope surface deformation in
the process of landslides.

1. Introduction

Landslide is a natural disaster, which has posed a huge threat
to people’s lives and property. At the same time, it could also
cause damage to the resource, the environment, and ecology,
especially in remote mountainous and hilly areas [1–3].
Previous studies have shown that the slope surface defor-
mation is a complicated multidimensional nonlinear dy-
namic system, which is affected by both internal and external
factors [4, 5]. As the internal development is affected by
various conditions and the external interference factors are
random, the prediction of the landslide is uncertain.

,e prediction of the slope surface deformation has
become one of the fundamental studies in slope disaster
prevention [6]. ,e employment of the on-site monitoring
data, such as inclination angle, displacement, water content,

and pore water pressure, has a higher prediction accuracy
[7, 8]. ,ere are mainly three kinds of models predicting the
variations of slope surface deformation. One kind of pre-
diction models is based on the on-site data and laboratory
test results, among which the empirical model proposed by
Saito is most widely used [9–11]. However, this model is not
suitable for the prediction of the stepped and periodic
landslides. Many researchers have established a series of
statistical analysis models considering the slope surface
characteristics and the time, which included the Verhulst
model [12], Gray model [13], and Pearl Growth model [14].
However, such prediction models are case-specific, i.e.,
applicable to only one type of slope.

Recently, a large number of neural network prediction
models, such as BP, ELM, Elman, SVM, andWavelet Neural
Network (WNN), have been employed to predict the slope
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surface deformations, which were also optimized through
Genetic Algorithm, Artificial Bee Colony Algorithm, Cha-
otic Sequence Model, and Wavelet Analysis. Du et al. (2009)
used the BP Neural Network to predict periodic component
displacement. As there are too many parameters in the
existing models, the prediction results are heavily affected by
these parameters [15]. Zhang et al. (2015) adopted the
polynomial and PSO-SVR to predict the slope surface dis-
placement. However, the proposed fitting equation cannot
reflect the internal factors of the slope [16]. Liu used SVM
and Gaussian Process (GP) to simulate the slope displace-
ment, which validated the optimization of the Gaussian
Process [17]. Some difficulties still exist in the application of
neural networks on the slope surface displacement predic-
tion, such as weak generalization ability, considering many
parameters, and so on. And the internal and external factors
have not been distinguished in some research. Besides, most
of the existing models focused on the prediction of the slope
surface displacement without considering the effects of the
inclination angle. ,e inclination angle can also reflect the
evolution of the slope, which has a linear relation with the
displacement [18, 19].

,e Wavelet Analysis was employed to deal with the
stepped variation trend of the slope surface displacement in
this paper. ,e cumulative displacement is decomposed into
trend component displacement and periodic component
displacement by the time series model, after which themodel
adapted to the prediction of the slope surface displacement
and inclination angle was established based on the Genetic
Algorithm optimized Elman Neural Network. ,e proposed
model was validated by the displacement data from the
Baishuihe landslide in the ,ree Gorges areas and the in-
clination angle data from the laboratory tests.

2. The Method of Predicting the Slope
Surface Deformation

,e slope displacement or inclination angle was firstly
denoised and normalized to obtain the typical slope surface
deformation data.,ese data can be decomposed into a low-
frequency curve and several high-frequency curves through
the discrete wavelet. ,e deformation of the periodic
component and the trend component can be obtained
through the combination of the high-frequency curves and
the low-frequency curve. Approximately one-third of the
original data is regarded as a simulation set, and the
remaining data are regarded as a training set. ,en, the
optimized Elman Neural Network (Elman NN) based on the
Genetic Algorithm is used to train and predict the slope
deformation. Compared with the on-site monitoring date,
the optimized model was validated.,e flowchart of the data
processing is shown in Figure 1.

2.1. Time Series Model. A nonlinear relationship was found
between the slope displacement and the time (duration of
landslides). However, some research showed that the in-
clination angle during sloping had a linear relation with the
time. ,e slope deformation can be decomposed into the

deformation of the trend component, the periodic com-
ponent, and the random component [20], as follows:

X(t) � m(t) + n(t) + θ(t), (1)

where X (t) is the surface deformation monitoring value; m
(t) is the trend component surface deformation; n (t) is the
periodic component surface deformation; θ(t) is the random
component surface deformation. As the effect of the random
factor is negligible, it is not considered in this study [21].
Given the advantages of the Wavelet Analysis, the trend
component deformation data are extracted, which will be
discussed in detail in the following sections.

2.2. Discrete Wavelet Analysis. Wavelet Analysis can effec-
tively identify the primary frequency components and then
extract the local information, which can indicate the periodic
variations hidden in time series [22]. ,e slope surface
deformation data are generally discrete, which can be
expressed as the function f(kΔt). To the specific finite
energy signal or integrable function f(kΔt) ∈ L2R, the
function can be transformed as follows:

Wf(a, b) � |a|
− (1/2)Δtf(kΔt)ψ kΔt −

b

a
  , (2)

where Wf(a, b) is the coefficient of the wavelet transfor-
mation; ψ(t) is the basis wavelet function; a is the scale
factor; b is the translation factor; ψ( kΔt − ( b/a ) is the
complex conjugate function. Many researchers used the
Mallat Algorithm in the discrete Wavelet Analysis [23],
based on which the normalized slope deformation can be
decomposed into a low-frequency component and several
high-frequency components, as shown below:

xi � xl,i + xh1,i + xh2,i + · · · + xhL,i, (3)

where L is the decomposition layer, xl,i is the low-frequency
part after decomposition, which mainly represents the trend
component deformation in the slope surface deformation;
xh1,i, xh2,i, xhL,i is the first layer, the second layer, and the Lth
layer in the high-frequency parts, indicating the periodic
characteristics in the slope surface deformation.

,e Daubechies wavelet (dbN) has good positioning
ability in the time domain and the frequency, which plays an
important role in the decomposition of the discrete signals
[24]. ,e db4 wavelet function, which is flat and smooth, is
selected to decompose the signal in this study.

2.3. Optimization of the GA-ElmanModel. A context layer is
incorporated in the Elman Neural Network to achieve the
memorization property. As a typical feedback type of the
neural networks, the Elman Neural Network can make the
system have the ability to adapt to the time-varying char-
acteristics. ,e Elman Neural Network can reflect the
learning process dynamically, which is suitable for the
prediction of the time series.,e network structure is shown
in Figure 2.

,ere are m nodes in the input layers, n nodes in the
output layers, and a context layers in the Elman network.
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,e connection weights between the input layer and the
hidden layer, the hidden layer and the context layer, and the
hidden layer and the output layer are w1, w2, and w3, re-
spectively. ,e input of the network is denoted by i(k − 1),
the output of the hidden layer is represented by x(k), the
output of the context layer is represented by xc(k), and the
output of the whole network is y(x). ,en, the following
relations can be obtained:

x(k) � f w2xc(k) + w1(i(k − 1))( , (4)

where

xc(k) � x(k − 1), (5)

f represents the transfer function, which is regarded as the
sigmoid function; the equation is as follows:

Landslide surface deformation
(displacement or inclination angle)

Denoising and normalization 

Discrete wavelet transformation

1st high-frequency 
componentLow-frequency component Lth high-frequency 

component

GA-Elman neural network fitting and prediction

The trend component The periodic component

Prediction of trend component Prediction of periodic component

Prediction of total surface 
deformation

Cumulative surface 
deformation

Validation of the modified model

Figure 1: Flowchart of the WA-GA-Elman model (L denotes the number of the layer).
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Figure 2: Topology structure of Elman neural network.
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f(x) � 1 + e
− x

( 
− 1

. (6)

,e output of the neural network can be derived as
follows:

y(x) � g w3x(k)( , (7)

where g is the transfer function of the output layer, which is
a linear function, whose connection weight is the same as
that in the BP Neural Network. ,erefore, the error of the
Elman Neural Network can be obtained as follows:

E � 
m

k�1
tk − yk( 

2
, (8)

where tk is the output vector.
,e Elman Neural Network has spatial memory capa-

bilities and lag effects, which also inherits some short-
comings of the BP neural work, such as the failure of training
and overfitting. ,e Genetic Algorithm can solve these
problems. During the optimization of the connection weight
and the threshold value of the neural network, the type of
error function is not considered. Some penalty terms are
inserted into the error function, which can improve the
versatility and complexity of the network regardless of
whether the error function is differentiable or not. ,is has
great potential in the improvement of weight optimization.

During the construction of the GA-Elman algorithm, the
main things are encoding the chromosome, defining the
adaptability function, and constructing the genetic opera-
tors. Figure 3 shows the optimized algorithm structure of the
GA-Elman model. ,e optimization focuses on accelerating
the convergence and reducing training time through the
determination of the connection weights and the threshold
values, which can improve the operating efficiency of the
neural network and predict the slope surface deformation
accurately.

In the process of establishing the neural network, the
parameters in the GA-Elman Neural Network are preset.

2.3.1. Groups Encoding. ,e individual in the groups is
coded by binary, which means that the individual is a single
binary string. ,e coding length can be represented as
follows:

L � (m × h + h + h × h + h × n + n) × M, (9)

where L is the length of encoding;m, h, n represent the nodes
of the input layer, the hidden layer, and the output layer,
respectively. M is the bit number of the threshold and the
weight value in the binary coding.

2.3.2. Adaptability Function. ,e adaptability function is
allocated in the sorted method, as follows:

FitnV � ranking(obj), (10)

where obj is the output of the operated objective function.
Ranking() is the ranking function, FitnV is the adaptability
function.

2.3.3. Constructing Genetic Operators. Genetic operators
include selection operators and mutation operators. ,e
selection of the selection operators depends on the random
traversal sampling. ,e crossover operator selects the single-
point crossover operator. ,e mutation operator can de-
termine the number of mutated genes through the same
probability. ,e mutated genes can be selected, and then the
value can converse.

2.4. Accuracy Evaluation. ,e evaluation of the accuracy of
the fitting and prediction is expressed by three indicators:
Mean Absolute Percentage Error (MAPE), Root Mean
Square Error (RMSE), and goodness of fit (R2). RMSE and
R2 are used to describe the accuracy of the fitting process,
while RMSE and MAPE are employed to describe the ac-
curacy of the data prediction.

When the prediction value and the true value are the
same, RMSE equals 0. ,e greater the error, the greater the
value. ,e equation of the RMSE is as below:

RMSE �

����������������



N0

i�1

xold,i − yi 
2

N0

⎛⎝ ⎞⎠




, (11)

where xold,i is the monitoring slope surface deformation
data; yi is the fitted or the predicted slope surface defor-
mation data; N0 is the number of the fitting or predicted
cases. To evaluate the fitting behavior of the model better, R2
is introduced, which ranges from 0 to 1. ,e equation is as
follows:

R
2

�
1 − 

N0
i�1 y − xold,i 

2
 


N0
i�1 y − xold,i 

2 ,

MAPE �
1

N0


N0

i�1

xold,i − yi 

xold,i

⎛⎝ ⎞⎠




.

(12)

,e MAPE is the average absolute percentage error,
which is usually used to predict the performance of eval-
uation indicators. When the MAPE equals 0, the model can
predict the real situation perfectly. ,e greater the MAPE,
the greater deviation from the prediction mode.

3. Prediction on the Slope Displacement of
the Baishuihe

Frequent landslides occurred in the ,ree Gorges area in
China due to the special geographical and complex climatic
conditions and frequent water level changes. By the year
2014, more than 5000 landslide points occurred in the ,ree
Gorges area [25].,e study on the slope surface deformation
and the prediction of the sliding laws is an important way to
reduce and prevent landslide disasters [26].

3.1. Overview of the Baishuihe Landslide. ,e Baishuihe
landslide is located on the south bank of the Yangtze River in
Zigui County, the ,ree Gorges Reservoir area, which is
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56 km from the ,ree Gorges Dam site. Many bedding
landslides have occurred in the past, which belonged to the
loose accumulation landslides [27]. ,e slope is located in
the wide valley area of the Yangtze River, which is a one-
sided oblique, step-shaped, high in the south, and low in the
north.,e length in the east-west direction is 700m, and the
length in the north-south direction is 600m. ,e average
thickness of the entire slope is 30m, and the total volume is
1260×104m3, as shown in Figure 4. ,ere are 9 GPS de-
formation monitoring points setting on the slope surface.

,e recorded data of the ZG93 displacement monitoring
point from June 2003 to March 2013 is selected, whose
cumulative displacement curve is plotted in Figure 5. ,e
cumulative displacement is decomposed into trend com-
ponent displacement and the periodic component dis-
placement by the Matlab Wavelet Analysis toolbox [28].
,en, the modified GA-Elman model is employed for fitting
and prediction analysis.

3.2. Displacement Decomposition of the ZG93 Slope Dis-
placement Time Series. ,e slope displacement sequence is
decomposed into the low-frequency sequence and the high-
frequency sequence through the db4 wavelet function. After
several calculations, the cumulative displacement of the
ZG93 monitoring point from 2003 to 2013 is decomposed
into a low-frequency trend term and 5 high-frequency
curves. ,e equation is as follows:

x
ZG93
i � x

ZG93
l1 + x

ZG93
h1 + x

ZG93
h2 + x

ZG93
h3 + x

ZG93
h4 + x

ZG93
h5 .

(13)

After extracting the trend component cumulative dis-
placement curve (low-frequency curve) and recombining
the high-frequency curves, the cumulative displacement
periodic component curve of the Baishuihe can be obtained.
,e trend component displacement curve is smooth and
complete, which is also without the obvious inflection points
(Figure 6(a)). It can reflect the general trend of the dis-
placement, and the periodic component displacement can
show the obvious periodicity (Figure 6(b)).

3.3. Fitting and Prediction of the Trend Component
Displacement. ,e proposed GA-Elman Neural Network is
used to fit and predict the trend and component term. Some
model parameters in the above prediction models need to be
optimized through training (i.e., the kernel type and penalty
parameter c in the SVM, the number of nodes in hidden
layers of BP, the population size, the population size, and so
on in GA-Elman network). After obtaining the optimized
model parameters, the models are employed to predict the
test data. ,e accuracy of the fitting and prediction results
can be assessed through the accuracy evaluation indicators
mentioned above. In this case, the data from July 2003 to
June 2011 are imported into the GA-Elman for training/
fitting. After confirming the applicability of the models, we
can obtain the prediction data from July 2011 to March 2013
through the same models. Compared with the monitoring
data, the predictability of the models can be evaluated.

,e main input control parameters in the Genetic Al-
gorithm include the population size (80), the crossover
probability (0.7), and the mutation probability (0.01) [29].
When there are 20 nodes in the hidden layers in the structure
of the Elman Neural Network and the maximum number of
iterations is set as 5000, the model has a good fitting effect.
,e fitting curves are shown in Figure 7. ,e fitting curve
agrees well with the trend component displacement. ,e R2
is 1, and the RMSE is 2.2347. ,e prediction displacement
curve is shown in Figure 8(a), and it is in good agreement
with the monitoring data recorded around 20months. ,e
RMSE is 3.9101, and the MAPE is 0.1643, which indicates
that the model can be used to predict the slope displacement.

To show the superiority of the GA-ElmanNeural Network
algorithm based on the WA, the fitting and prediction curves
obtained from some static neural network models (BP, GA-
BP, ELM, SVM) and the Elman network that has not been
optimized by the Genetic Algorithm are compared. ,e RBF
kernel function is used in the SVM Neural Network [30];
when the hidden layer nodes are 30, the ELM can perform
better prediction behavior with the use of the sigmoid
function [31]. ,e prediction curves based on different
models are shown in Figure 8. ,e evaluation values of the
different models are calculated and summarised in Table 1.

Genetic
algorithm

Modified Elman 
NN

Performance 
evaluation

Training samples

Simulating
samples

Trained Elman 
NN

Groups

Decoding

CheckCalculation
fitness degree

Encoding

Evolution

Training

Figure 3: Flow chart of GA-Elman algorithm.
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Almost all the neural networks used in this paper can fit the
trend component curve well, whose R2 are all close to 1. After
the decomposition by the Wavelet Analysis, the trend com-
ponent curve has S-shaped characteristics, which is smooth and
easy to fit. ,e prediction curves show that the GA-Elman
model has better prediction performance compared with other
models, whose RMSE andMAPE are relatively low. Compared
with the nonoptimized Elman network, the RMSE of the GA-
Elman model decreases by 50%, and the MAPE of the GA-
Elman model decreases by 75%. It shows that the optimization
of the Genetic Algorithm has significantly improved the
prediction capability of the Elman Neural Network model.,e
BP Neural Network has relatively large errors due to the
uncertainty of the initial weights and the tendency to fall into

local minimums. ,e optimized BP neural model has im-
proved the prediction accuracy.

3.4. Fitting and Prediction of the Periodic Component
Displacement. ,e periodic component displacement is fit-
ted and predicted based on the proposed model. ,e pa-
rameters used in the Genetic Algorithm are consistent with
the values in subsection 3.3. A 3-layer Elman network with 20
hidden nodes is constructed.,e fitting and prediction curves
are shown in Figures 9 and 10, respectively. It can be seen that
the periodic component curve is complicated, whose fitting
effect is worse than that of the trend term. ,e R2 is 0.9160,
and the RMSE is 31.3034. However, it can still express the
slope displacement time series of the Baishuihe landslide
completely. ,e prediction results show that the RMSE of the
monitoring point ZG93 is 4.9447, and the MAPE of the
monitoring point ZG93 is 27.0301, which means that the
prediction accuracy is high. ,en, other neural network
models are employed to fit and predict the slope surface
deformation. ,e results are shown in Figures 11 and 12. ,e
evaluation indicators are summarised in Table 2. We can
know that the GA-Elman model has the best prediction effect
and the highest prediction accuracy. ,e fitting effects of
periodic component displacement through the neural net-
works are similar. When it comes to the prediction, the RMSE
and MAPE through the original Elman model are 50% higher
than those through the optimized Elman model, which in-
dicates that the Genetic Algorithm plays an important role in
the prediction. Compared with other networks, Elman and
SVM can predict the trend of the periodic component more
accurately. ,e BP network falls into a local minimum value
after training, which results in a large deviation of the peak
displacement in the prediction curve. In a word, the proposed
GA-Elman model has the best prediction capability and
optimization performance.

3.5. Prediction of Cumulative Displacement. ,e cumulative
displacement of the slope is the sum of the trend component
and the periodic component when the random component is
ignored. ,e fitting displacement is consistent with the
monitoring displacement, and the predicted displacement is
also close to the monitoring displacement (Figure 13). ,e
R2 of the ZG93 monitoring point is 0.9900 for fitting, and
the RMSE is 7.5834 for the prediction.,e prediction results
based on the GA-Elman model through Wavelet Analysis
are better than those through other neural models.

4. Slope Surface Monitoring Test
(Inclination Angle)

To illustrate the applicability of the proposed GA-Elman
model on the prediction of the slope surface deformation,
laboratory slope tests are conducted.,e length of the model
is 1165mm, the width is 700mm, and the height is 400mm
(Figure 14). ,e base layer and the surface layer are both
prepared with the Edosaki sand. ,e thickness of the surface
layer is 100mm, and the inclination angle is 36°. Five tilt
sensors are placed on the surface.,e artificial rainfall with a

ZG93 GPS monitoring
point number and 
displacement
(Unit: mm)

Figure 4: 2D map of Baishuihe landslide.
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constant intensity of 70mm/h is applied, which can cause
the failure of the slope.

During the gradual failure of the slope, the tilt sensor T5
at the bottom of the landslide can monitor the acceleration
tilt stage. ,e T4 and T3 can monitor a similar movement
phenomenon. In the prediction of this slope, the data from
T5 are used.

,e laboratory test can describe the whole development
process of the landslide from the slipping to the destruction.
Nonexternal factor-induced periodic change exists. ,ere-
fore, the decomposition of the time series model is not
necessary for the preprocessing. ,e inclination data can be
directly inputted into the optimized GA-Elman model.

In this test, the total time of recorded data for the slope
inclination is around 1716s. In the first 1334s, the inclination

angle continues changing, which changes from the creep state
to the destruction state. ,en the inclination angle does not
change. To ensure the validity of the measured data, the ad-
jacent inclination angle variations in the selected 1334 sets of
data are analyzed. Finally, 245 sets of data are selected for
fitting.,e data of the first 200 sets are regarded as the training
data, during which the inclination data of every continuous 5s
is set as training input and the inclination data of the 6th
second are considered as the expected output. ,e remaining
45 sets of data can be regarded as the prediction data, which is
used to predict the inclination angle of the slope.

,e proposed GA-Elman model is used to predict the
inclination data from the model tests, where the number of
the individuals is set to 60, the maximum genetic algebra is
set to 50, and other parameters are the same as the above.
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Figure 6: Results of wavelet analysis: (a) the trend component displacement after decomposition; (b) the periodic component displacement
after decomposition.
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,e fitting and prediction curves are shown in Figures 15
and 16, which are compared with those obtained from other
static neural network algorithms. ,e evaluation indexes
from different models are calculated and summarised in
Table 3.

Figure 17 shows that the fitting curves are very similar to
all models, which can show the variations of the slope in-
clination angles during the landslide. Among the prediction
curves of the inclination angles, the predicted results from
GA-Elman performed the best (Figure 18). ,e values of

2003/06 2005/02 2006/09 2010/012008/04 2011/09
–400

400

–300

300

–200

200

–100

100

0

D
isp

la
ce

m
en

t (
m

m
)

Time (year/month)

ZG93 observed
GA-Elman

Figure 9: Fitting performance through GA-Elman model on point ZG93 in the Baishuihe landslide displacement.
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Figure 8: Prediction performance of different models: (a) GA-Elman model; (b) other models.

Table 1: Comparisons of the evaluation indicators on point ZG93 of the trend component displacement prediction models.

Models
ZG93

Fitting data Prediction data
RMSE R2 RMSE MAPE

BP 6.4716 0.9999 8.6142 0.3254
ELM 0.1679 0.9900 3.9101 0.1643
Elman 2.9044 0.9900 7.9343 0.3421
SVM 11.3004 0.9996 11.9867 7.8607
GA-BP 18.1316 0.9995 2.1376 0.0735
GA-Elman 2.2347 0.9900 2.4907 0.0877
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Figure 10: Prediction performance through the GA-Elman model on point ZG93 in the Baishuihe landslide displacement.
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Figure 11: Fitting performance through other models on point ZG93 in the Baishuihe landslide displacement.
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Figure 12: Prediction performance through other models on point ZG93 in the Baishuihe landslide displacement.
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Figure 13: Predicted cumulative displacement through different models for point ZG93 in the Baishuihe landslide.
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Figure 14: ,e cross-section of the slope model and the setup of apparatuses in the laboratory test.

Table 2: Comparisons of the evaluation indicators on point ZG93 of the periodic trend displacement prediction models.

Models
ZG93

Fitting data Prediction data
RMSE R2 RMSE MAPE

BP 26.8591 0.9346 31.4256 249.1131
ELM 24.0227 0.9375 21.2309 172.2863
Elman 23.8016 0.9680 7.8800 54.4847
SVM 16.4935 0.8405 16.5443 148.0590
GA-BP 25.6514 0.8945 22.3957 175.6390
GA-Elman 31.3034 0.9160 4.9447 27.0301
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RMSE and MAPE are 0.5608 and 3.0822, respectively.
Compared with other models, the prediction accuracy im-
proved a lot. ,e optimized Elman Neural Network has
better prediction capability than the original Elman Neural
Network, which indicates that the determination of initial

weight and the threshold play an important role in the
prediction. ,erefore, the proposed model can predict the
inclination angle well.

5. Conclusions

,e Elman Neural Network optimized by Wavelet Analysis
and Genetic Algorithm is proposed, which is employed to
predict the slope surface deformation (displacement and
inclination angle). ,e proposed model is validated by the
displacement data of the Baishuihe slope and the inclination
data of the laboratory tests. ,e main conclusions are as
follows:

(a) ,e slope surface deformation is affected by both the
internal and external factors, which can be decom-
posed through Wavelet Analysis and the time series
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Figure 15: Fitting inclination angles through GA-Elman model.
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Figure 16: Prediction performance of GA-Elman on the incli-
nation angle of T5.

Table 3: Comparisons of the evaluation indicators on the incli-
nation angle of T5 through different models.

Models
T5

Fitting data Prediction data
RMSE R2 RMSE MAPE

BP 0.4416 0.9914 3.6805 13.5462
ELM 0.2967 0.9961 1.6457 8.6666
Elman 0.3439 0.9948 1.0416 4.6987
SVM 0.5132 0.9888 1.0753 3.4309
GA-BP 0.7052 0.9801 1.4801 4.5226
GA-Elman 0.3097 0.8955 0.5608 3.0822
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Figure 17: Fitting inclination angles through other models.

210 220 230 240 250
–40

–30

–20

–10

0

Time (s)

In
cli

na
tio

n 
an

gl
e (

de
g)

T5
BP
ELM

Elman
SVM
GA-BP

Figure 18: Prediction performance of other models on the in-
clination angle of T5.
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model. ,e prediction accuracy can improve a lot.
,is method can be used to preprocess the slope
surface deformation data.

(b) Based on the on-site monitoring displacement data
of the ,ree Gorges area and the inclination angle
data of the laboratory tests, the proposed GA-Elman
Neural Network model can predict the slope surface
displacement and inclination angle with high
accuracy.

(c) Compared with the prediction results from other
models, the optimized Elman Neural Network has
better performance in the prediction of the nonlinear
slope surface characteristics. ,e BP Neural Net-
work, optimized by the Genetic Algorithm, performs
better than the traditional BP Neural Network in the
prediction.
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