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*emodeling of shear cracks in materials is critical in various engineering applications, such as the safety analysis of concrete structures
and stability analysis of rock slopes. Based on the idea of Goodman element, the elastic-plastic constitutive model of the shear cracks is
derived, and the elastic-plastic analysis of shear crack propagation is realized in the local radial basis point interpolation method
(LRPIM).*is method avoids the loss of accuracy caused by themesh in the analysis of fracture propagation, and the crack propagation
of rock brittle material is simulated. *e investigation indicates that (1) the LRPIM results are close to the FDM results, which
demonstrates that it is feasible to analyze shear cracks in rockmasses. (2) Compared with the results of the built-in oblique crack model,
when the LRPIM is used to analyze crack propagation, the results are close to the experimental results, showing that the LRPIM can
model shear crack propagation in a rock mass. (3) *e propagation path using the LRPIM is not sufficiently smooth, which can be
explained as the crack tip stress and strain not being sufficiently accurate and still requiring further improvement.

1. Introduction

Rock masses are discontinuous media that contain many
kinds of defects, such as cracks, bedding, and holes. Existing
shear cracks have a substantial influence on the mechanical
characteristics of rock masses. A rock mass with many
defects is extremely sensitive to the action of forces.
*erefore, it is necessary to analyze the influence of shear
cracks and their propagation under the action of external
forces.

Some research results have been obtained through
physical experiments. *e mechanism of crack propagation
in concrete or rock specimens containing cracks under shear
loading conditions is studied [1], and ultrasonic waves
recorded during direct shear experiments on rock joints
were employed to investigate the shear failure processes. [2].

Some methods that do not need too many criteria or
special elements have been proposed [3, 4], which have great
potential in engineering applications. Peridynamics (PD)
describes the mechanical behavior of matter by solving the
spatial integral equation, which avoids the singularity and

complexity of the traditional model based on continuity
assumption when facing discontinuity problems. It has been
successfully applied to the simulation of various disconti-
nuity problems with different scales and has become a re-
search hotspot in the current international computational
mechanics and related fields. In the simulation process of
near-field dynamics model, the phenomena of crack initi-
ation, propagation, and bifurcation are naturally generated
with the simulation process. In addition to adding a single-
bond fracture condition, there is no need for too many
judgment conditions or special elements [5, 6].

Scholars have proposed various theories and calculation
methods to study the discontinuous characteristics of rock
masses. *e main numerical methods for simulating crack
propagation are the finite element method (FEM) [7], ex-
tended finite element method (XFEM) [8], and meshless
method [9]. *e FEM was applied to study the mechanical
behavior of rock masses and concrete in references [10, 11].
When the FEM is used to study crack propagation, it is
necessary to remesh the elements, which substantially in-
creases the workload and leads to low calculation accuracy
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and efficiency. Meshing and remeshing has significantly
improved in the past years. An alternative crack propagation
algorithm has been proposed which effectively circumvents
the variable transfer procedure adopted with classical mesh
adaptation algorithms [12]. And, neural networks can be
used to compute the crack growth in fracture specimens,
which finally leads to a prediction of classical fracture
toughness parameters [13]. *ese shortcomings can also be
avoided by the XFEM proposed by Belytschko and Moes
[8, 9, 14]. *e XFEM rationally realizes accurate crack de-
scriptions and has become a popular research topic among
numerical methods for crack problems [15].

Moes et al. [9] used the XFEM to simulate bond crack
propagation with the stress intensity factor as the crack
index. Mariani et al. [16] used the XFEM to simulate qua-
sistatic bond crack propagation in quasibrittle materials.
Deb and Das [17] combined the XFEM with cohesion to
simulate shear crack slip. Zhou and Yang [18] proposed a
multiscale XFEM to study crack propagation and rock
bridge penetration under multidirectional compression, and
the conclusions were in good agreement with the experi-
mental results.

Compared with the FEM and XFEM, the meshless
method is based on field nodes that can eliminate or partially
eliminate the difficulties caused by meshing. *e interpo-
lation (approximation) function of the meshless method
does not depend on the elements, so it has the advantages of
easy higher order approximation formation and realization
of local node encryption, bringing convenience to the nu-
merical analysis of cracks.

Belytschko [19] first used the EFGM method to analyze
crack propagation. Krysl [20] further extended the EFGM
method to crack propagation calculations in a three-di-
mensional model. Belytschko [21] applied the meshless
method to simulate dynamic crack propagation in concrete
structures, and they simulated the crack propagation di-
rection and velocity in concrete structures very well. Zhuang
Xiaoying et al. [22] realized accurate fracture modeling in a
two-dimensional model using meshless methods, the visi-
bility criterion, and level sets.

*e above applications all use the meshless EFGM, but
this method requires the background grid for integration
and is not a true meshless method. *e LRPIM [23] method
is a local weak computing method that does not require the
background grid and is a real meshless method. Little re-
search has been conducted on crack problems with the

LRPIM. *ree-dimensional shear crack propagation with
the LRPIM has not yet been studied. A three-dimensional
shear crack propagation calculation is established based on
elastic-plastic theory and fracture mechanics. *e reliability
of the method is verified through numerical experiments,
and the problems that need to be improved are discussed.

*is paper is organized as follows. Section 2 briefly
introduces the background of the LRPIM. Section 3 mainly
concentrates on the methods of modeling shear cracks with
the LRPIM. Section 4 discusses the results. Finally, Section 5
summarizes the conclusions.

2. Background: LRPIM

If only the static case is considered, the BVP of three-di-
mensional solid mechanics can be expressed as

σij,j + bi � 0,

σijnj � ti in Γt,

ui � ui in Γu,

u x, t0(  � u0(x), x ∈ Ω,

(1)

where ui, ti, and u0 are the given displacement, the given
surface force, and the initial displacement. I, j� (1,2,3)
represents x, y, z.

Considering the solid mechanics problem defined in
domain Ω, the local weighted residual method is used for
node I to satisfy the governing equation, and the local weak
equation of the node is obtained. *e form of the locally
weighted residuals is defined on the local integral domain
Ωq and the corresponding boundary Γq in the following
form


Ωq

WI σij,j + bi dΩ � 0, (2)

where Wi is a weight function or test function centered at
field node I.

*e follow formula is obtained by integral operation:


Ωq

WIσij,jdΩ � 
Γq

WItidΓ − 
Ωq

WI,jσijdΩ, (3)

where ti is the component of surface force vector on the
boundary.

We bring formula (10) into formula (6),


Γq

WItiσijdΓ − 
Ωq

WI,jσij − WIbi dΩ � 0,


Γqi

WItidΓ + 
Γqu

WItidΓ + 
Γqt

WItidΓ − 
Ωq

WI,jσij − WIbi dΩ � 0,

(4)

where Γqi is the inner boundary of the integral domain; Γqu is
the part of the natural boundary that intersects the integral

domain; and Γqt is the part of the essential boundary that
intersects the integral domain
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In the local weak meshless method based on RPIM, the
radial base point interpolation shape function is used to
obtain the displacement of the calculated point, and the
strain and stress vectors are further obtained.

ε(6∗1) � B(6∗3n)u(3n∗1), (5)

σ(6∗1) � D(6∗6)ε(6∗1) � D(6∗6)B(6∗3n)u(3n∗1), (6)

B is a differential operator,D is the material constant matrix.
*e system equation is discretized into matrix form, and

the following formula is obtained.


Ωq

VT
I σdΩ − 

Γqi

WItdΓ − 
Γqu

WItdΓ

� 
Γqt

WItdΓ + 
Ωq

WT

I bdΩ,

(7)

where WI is the weight function matrix and VT
I is the de-

rivative matrix of weight function.
Bring formulas (5) and (6) into formula (7):


Ωq

VT
I DBudΩ − 

Γqi

WT

I nDBudΓ − 
Γqu

WT

I nDBudΓ

� 
Γqt

WItdΓ + 
Ωq

WT

I bdΩ.

(8)

*e matrix form can be expressed as

KI( (3∗3n)(u)(3n∗1) � fI( (3∗1), (9)

where KI is the stiffness matrix of the field node I.

KI � 
Ωq

VT
I DBdΩ − 

Γqi

WT

I nDBdΓ − 
Γqu

WT

I nDBdΓ,

(10)

where fI is the nodal force vector, including the physical
force in the problem domain and the surface force on the
natural boundary.

fI � 
Γqt

WItdΓ + 
Ωq

WT

I bdΩ. (11)

*e standard gauss integral and the rectangular local
integral domain are used. *e final system equations can be
obtained by assembling all these equations based on the
system of population numbers.

K3N∗3NU3N∗1 � F3N∗1. (12)

For crack expansion, the relationship between the
nodes and Gauss integral points is constantly changing.
*erefore, the visual criterion is used to address the range
of the influence domain. If the line between the field node
and the Gauss integral point (either a solid boundary or
crack) intersects, the node is considered to be “masked”
After assembling the total rigid matrix, a penalty func-
tion is used to apply the displacement boundary
conditions.

3. Methods

3.1. Overview. A three-dimensional elastic-plastic local ra-
dial basis point interpolation method for calculating crack
propagation is established. *e key techniques used in this
section are described in detail. (1) According to the principle
of the minimum potential energy, the governing equation of
the shear crack action is derived based on the idea of the
Goodman element, which is commonly used in finite ele-
ment analysis. (2) *e elastic-plastic constitutive model of
the shear cracks is derived based on the elastoplastic theory.
(3) According to crack mechanics theory, the criterion of
shear crack propagation is obtained, which can be used for
shear crack propagation.

3.2. Derivation of the Governing Equation of the Shear Crack.
For the contact problem of shear cracks, the materials on
both sides of the crack cannot be embedded into each other.
However, to calculate the interaction between cracks, the
idea of the Goodman element, which is often used in the
FEM, is used to address this problem [19]. It is assumed that
there will be a small amount of overlap between thematerials
on both sides of the crack, and a relatively large normal
stiffness is set. When there is a small amount of overlap
between the materials above and below the crack, a large
normal force will occur. At the same time, the shear stiffness
coefficient is set to reflect the tangential force generated by
the rubbing of the crack.

*e crack profile is shown in Figure 1. *e red line is the
crack profile, the hollow dot is the field node, and the solid
point is on the crack. It should be pointed out that the points
on the crack are not directly involved in the calculation of
the model. Taking a point on the crack as the origin, the local
coordinate system is established.*e normal direction of the
crack is along the y′ axis, and the two tangent directions are
along the x′ axis and z′ axis. Two points are set up in the
positive and negative directions of the y′ axis, and there is a
small distance from the origin, which represent the material
above and below the crack, respectively.

*e energy equation considering crack interaction is
shown in equation (13), which represents the work.

Πc �
1
2


Γ
ΔuTσdΓ, (13)

where Δu is the difference in the normal displacement of the
materials on both sides of the crack. If Δu is negative, there is
an interaction between the two sides of the crack, and it is
necessary to calculate the stress-strain effect of this action.
Δv and Δw represent the difference in the displacement
between the two shear directions in the local coordinate
system.

Δu �

Δu

Δv

Δw

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

ui

vi

wi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ −

uj

vj

wj

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (14)

where ui, vi, wi, uj, vj, and wj represent the displacements of
points i and j in the local coordinate system. *e
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displacement value can be obtained by interpolation from
the displacement information of the field node. In this paper,
the radial base point interpolation method is used as follows:

ui

vi

wi

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � Φiu, (15)

where u is the displacement vector of the field node in the
support domain of the interpolation node, and the vector
length is 3n.

u � u
i
1 v

i
1 w

i
1 u

i
2 v

i
2 w

i
2 . . . u

i
n v

i
n w

i
n

 , (16)

and Φi is the displacement shape function of node i in the
following form:

Φi �

ϕi
1 0 0 ϕi

2 0 0 . . . ϕi
n 0 0

0 ϕi
1 0 0 ϕi

2 0 . . . 0 ϕi
n 0

0 0 ϕi
1 0 0 ϕi

2 . . . 0 0 ϕi
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (17)

*e shape function and displacement vector should be
integrated when solving the problem. Here, we should pay
attention to the corresponding point number. We need to
expand the form as follows:

Φ �

ϕi
1 0 0 ϕi

2 0 0 . . . ϕi
n 0 0 −ϕj

1 0 0 −ϕj
2 0 0 . . . −ϕj

n 0 0

0 ϕi
1 0 0 ϕi

2 0 . . . 0 ϕi
n 0 0 −ϕj

1 0 0 −ϕj
2 0 . . . 0 −ϕj

n 0

0 0 ϕi
1 0 0 ϕi

2 . . . 0 0 ϕi
n 0 0 −ϕj

1 0 0 −ϕj
2 . . . 0 −ϕj

n 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (18)

Here, σ is set as the node stress vector and D is the
material matrix; then, σ

σ �

τs

σn

τn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ � D × Δu, (19)

σn is the normal force, and τs and are the component forces
in the two tangent directions.

kn and ks are the normal and tangential stiffnesses,
respectively.

D �

ks 0 0

0 kn 0

0 0 ks

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (20)

It is necessary to transform the displacement of the
nodes from the global coordinate system to the local co-
ordinate system. R is a transformation matrix that converts
global coordinates to local coordinates.

R �

l1 m1 n1

l2 m2 n2

l3 m3 n3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (21)

*e displacement in the local coordinate system is ob-
tained as follows:

u′ � RΦu. (22)

A functional considering the crack energy is established
based on the principle of the minimum potential energy. Its
form is shown in the following formula:

Πc �
1
2


Γ
Δu′TσdΓ,

Πc �
1
2


Γ
Δu′TDΔudΓ.

(23)

By variational calculation,

δΠc � δuT

Γ
ΦTRTDRΦdΓ u � 0,

KC � 
Γ
ΦTRTDRΦdΓ,

(24)

KC is the stiffness matrix reflecting the action of the crack.
When there are no repeated calculation points in the field
node of the crack, the action of the crack is reflected by the
square matrix of 3(m + n) · 3(m + n). *e stiffness matrix
can be combined into the stiffness matrix established by the
local weak meshless method. In this process, we should pay
attention to the corresponding relationship between the
nodes.

*e matrix form of the crack surface energy functional is
obtained as follows:

j
z′

x′

i

y′

Figure 1: Schematic diagram of the local coordinate system.
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KC � 
Γ
ΦTRTDRΦdΓ � AiΦ

TRTDRΦ. (25)

3.3. Elastoplastic 4eory of the Shear Crack. Limited by the
strength of the crack, when the shear stress of the crack
exceeds the maximum value, the shear stress of the crack
should not continue to increase. It is assumed that the crack
is a smooth surface, which accords with the deformation
characteristics of ideal plasticity.

*e stress state of the point on the crack can be
decomposed into three directions of stress, as shown in
Figure 2. A local coordinate system is established at a node
on the crack, and the normal stress of the crack is σn. If the
resultant force of the tangential force is expressed as τs, then
the value of the shear stress in the direction perpendicular to
σn and is zero. It is assumed here that the direction of τs is the
same as that of the relative displacement of the crack.

According to the Mohr–Coulomb strength criterion, the
general form of the yield function is as follows:

f � τs


 − c − σntanφ, (26)

where c and ϕ are the cohesion and internal friction of the
crack, τs is the shear stress of the crack, and σn is the normal
direction of the crack.

zf

zσ
  �

zf

zτs

zf

zσn

zf

zτn

 

T

� 1 −tanϕ 0 
T
. (27)

*e elastic matrix of the stress displacement relationship

can be written as follows. D �

ks 0 0
0 kn 0
0 0 ks

⎛⎜⎝ ⎞⎟⎠

In elastoplastic theory, the deformation matrix includes
the elastic modulus and Poisson’s ratio in kPa. *e stress is
obtained by multiplying the matrix and the strain vector.
Here, the stiffness coefficient is in the deformationmatrix, and
its unit is kPa/m, which corresponds to the displacement
difference between the upper and lower nodes of the crack;
the unit ism, that is, the strain is replaced by the displacement.

*e plastic matrix is as follows:

Dp �
D zg/zσ  zf/zσ 

TD
A + zf/zσ 

TD zg/zσ 
. (28)

Under the ideal elastic-plastic condition, A� 0. An
adaptive flow criterion is adopted as g � f. *e elastic-plastic
deformation matrix of the shear crack surface is as follows:

Dp �
D zf/zσ  zf/zσ 

TD
A + zf/zσ 

TD zf/zσ 
�

1
S0

k
2
s ksS1 0

ksS1 S
2
1 0

0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

S0 � ks + kntan
2ϕ,

S1 � −kntanϕ.

(29)

*e elastic-plastic matrix after yielding is as follows:

Dep � D − Dp,

Dep �

ks −
1
S0

k
2
s −

1
S0

ksS1 0

−
1
S0

ksS1 kn −
1
S0

S
2
1 0

0 0 ks

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(30)

*e deformation matrix under ideal elastoplastic con-
ditions is only related to the stiffness coefficient and internal
friction angle.

From the above derivation, we can obtain the consti-
tutive relation of the shear cracks under ideal plastic con-
ditions. Before yielding, the deformation matrix is D, and
after yielding, the elastic-plastic deformation matrix is Dep.
In this way, the yield criterion and elastic-plastic constitutive
relation of the cracks are established.

In the calculation, when the crack is open, the normal
stress is zero, the crack is a free surface, and the contact effect
between the cracks is not considered. When the normal
stress of the crack is not zero, it indicates that the cracks are
in contact with each other and that there is a force effect. In
the solution, the stress state of the point on the crack is
reflected by modifying the deformation matrix.

3.4. Crack Propagation Criterion. In this paper, the maxi-
mum circumferential tensile stress theory is selected to
analyze crack propagation. For the I-II tension shear
composite mode crack [24], under the plane strain state, the
critical conditions are as follows:

kIC � cos
θ0
2

kIcos
2θ0
2

−
3
2
kIIsin θ0 . (31)

*e expansion step can be set to a fixed value, which is a
common setting method. After determining the crack cri-
terion, we can judge whether the crack tip is cracked and
determine the direction of the crack. According to previous
work, this paper simulates three-dimensional crack propa-
gation by expanding a finite number of crack front points in
their respective crack front normal planes.

*e crack is simulated by a group of small triangles, and
a group of line segments are used to simulate the crack front.
When themodel is balanced, the current stress-strain state of

n

n


s

Figure 2: Local coordinate system.
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the nodes in the calculation domain can be obtained, and the
propagation of the crack can be calculated. As shown in
Figure 3, the stress states of points B, C, and E in the crack
front edge in Figure 3(a) meet the expansion criteria and
expand in a certain direction, and a new crack tip endpoint is
established in its propagation direction. In diagram 3(b), two
new triangular planes are formed by the new tip point and
two points A and C, which realize the first step expansion of
the crack. *e extensions of points C and E are realized by
the same method, and the new crack is reconstructed, as
shown in Figure 3(d). With the expansion of the crack, the
relationship between the calculation point and the field node
will constantly change. It is necessary to recalculate the
stiffness matrix, solve the equilibrium equation, and then
carry out the next step of the expansion calculation.

3.5. Calculation of the Shear Crack Propagation in a Rock
Mass. Combining the solution of the local weak meshless
method, crack propagation, and shear crack interaction, the
program is compiled according to the discrete rectangular
form. *e calculation process is as follows:

(1) *e initial conditions are set, including the ar-
rangement of the nodes, the definition of the ma-
terial parameters, the application of the boundary
conditions, and the application of the loads.

(2) Applying the nth-order load, the substiffness matrix
of the joint and the stiffness matrix of the shear crack
are calculated. *e stress-strain state of the whole
model is obtained by solving the equilibrium con-
vergence of several iterative steps.

(3) After entering the expansion step, we can judge
whether the crack is expanding and determine the
direction of the crack propagation according to the
stress state at the crack tip. If the crack tip meets the
crack criterion, crack propagation is realized, and the
iterative calculation is carried out again in step 2. If the
crack does not expand, then proceed to the next step.

(4) Judge whether level N load has been applied. If so,
terminate the calculation; otherwise, return to step②.

*e calculation module of shear crack propagation is
integrated with the meshless LRPIM program.

4. Results: Case Studies

*e correctness and stability of the calculation method are
verified by the following three examples. Example 1 verifies
the calculation method and realizes the force transfer effect
of cracks, and case 2 verifies the influence of oblique shear
cracks on the deformation characteristics of themodel under
different tangential stiffnesses to verify the correctness of the
calculation results. In case 3, the propagation path of the
built-in inclined crack under axial compression is obtained.

4.1. Model Information. *e information for the example
model is as follows: the dimensions are 50mm × 50mm×

100mm, the deformation parameters include an elastic

modulus of 1.6GPa, and a Poisson’s ratio of 0.25; the upper and
lower surfaces of the model are fixed, and a vertical dis-
placement is applied on the upper surface; and the displace-
ment value is 1mm.

According to whether the interaction between the cracks
is considered, the experimental calculation is carried out in
two groups. *e first experiment does not use the developed
calculation module, and the other test uses the developed
calculation module. *e normal stiffness is set to 20 times
the elastic modulus, and the tangential stiffness is set to 0.1
times the elastic modulus. *e node distribution of the
model is shown in Figure 4.

If the interaction between cracks is not considered, the
calculated displacement nephogram is shown in Figure 5(a).
*e upper part of the model has a consistent vertical dis-
placement value of 1mm. Because the interaction between
the cracks is not considered, the upper part of the model
cannot transfer the force to the lower part, so the dis-
placement value of the lower part is 0mm because there is no
force on the lower part. *is calculation result is consistent
with the expected results.

If the interaction of cracks is considered, the vertical
displacement nephogram of the model is obtained, as shown
in Figure 5(b). *e displacement of the model presents a
regular ladder shape, and the force between the cracks is
effectively transferred. *is shows that the local weak
meshless method considering the interaction between crack
surfaces is effective, and the established calculation method
can effectively calculate the interaction between the two sides
of the crack.

4.2. Oblique Crack Model

4.2.1. Elastic CrackModel. *ere is an oblique through crack
in the middle of the model in Figure 6, which divides the
model into two parts. *e parameters and boundary con-
ditions of the model are consistent with those of test 1, but
the crack is oblique. *e normal stiffness is 20 times the
elastic modulus, and the tangential stiffness changes. *e
correctness of the algorithm is verified by setting different
tangential stiffness coefficients. Five test models are set, and
the tangential stiffness is set to 0 times, 0.05 times, 0.1 times,
0.15 times, and 0.2 times the elastic modulus.

It should be noted that the crack is implicit in this al-
gorithm. *e results do not include crack information, only
field node information. *e field node at the crack of the
displacement nephogram is not on the crack surface. In
addition, the value shown in the legend is not the maximum
and minimum value of the cloud map but the segmented
value. *e maximum values of the calculated results are
compared in Table 1.

*e horizontal displacement nephograms of the five test
results are shown in Figure 7. *e maximum horizontal
displacements are approximately 7.069e-2mm, 6.829e-
2mm, 6.604e-2mm, 6.393e-2mm, and 6.195e-2mm. It can
be understood that, due to the increasing tangential stiffness,
the deformation of the model on both sides of the crack is
constrained, resulting in the decrease in the lateral
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Figure 3: Geometric sketch of crack propagation [25].

Figure 4: Model and field node distribution diagram.
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Figure 5: Vertical displacement nephogram (m).
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Table 1: Horizontal displacement of the model.

Tangential stiffness (Pa) 0.0E 0.05E 0.1E 0.15E 0.2E

Maximum horizontal displacement (mm) LRPIM 7.069e− 2 6.829e− 2 6.604e− 2 6.393e− 2 6.195e− 2
FDM 6.997e− 2 6.887e− 2 6.782e− 2 6.682e− 2 6.585e− 2

Error (%) 1.0 0.8 2.6 4.3 5.9
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Figure 7: Continued.
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Figure 6: Schematic diagram of oblique through crack.
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Figure 7: Continued.
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deformation, which is consistent with the expected calcu-
lation results.

As shown in Table 1, the maximum horizontal dis-
placement decreased with increasing tangential stiffness, and
the calculation results obtained by the two algorithms were
very close.

*e above derivation and calculation results assume that,
under elastic conditions, the material and crack have no yield
criterion or constitutive relation under elastic-plastic condi-
tions. *e model considering the plastic deformation of cracks
will be calculated and analyzed in the following section.

4.2.2. Elastoplastic Crack Model. *e interface elements in
FLAC3D also adopt the Mohr–Coulomb strength criterion
and ideal plastic constitutive model. *e contact surface
parameters include the normal stiffness, tangential stiffness,
cohesion, internal friction angle, tensile strength, and ex-
pansion angle. *e tensile strength and expansion angle of
the contact surface are not considered in this paper.

*e crack is set as elastic-plastic, the cohesion is 0 kPa, and
the friction coefficient is 0.01. A normal stiffness of 20 and
tangential stiffness of 0.1 times the elastic modulus are set.

*e calculation results of the LRPIM and FLAC3D are
shown in Figure 8.*e results of the two numerical examples
have the same displacement nephogram. As shown in
Table 2, under ideal plastic conditions, the maximum
horizontal displacement of the model using the LRPIM is
7.051e− 2mm.*e results of the two methods are close, and
the error is only 0.8%.

4.3. Built-In Inclined Crack Model. For shear cracks, the
stress intensity factor is KI � 0 because there is no relative
displacement in the normal direction. According to the
maximum circumferential stress theory, θ � 70.5°.

Under the action of axial pressure, the cracks of brittle
rock with built-in inclined cracks will expand, and the crack
propagation pattern is shown in Figure 9 [26].

*e model parameters are the same as the parameters of
common marble. *e model information is set as follows:
dimensions of 62mm× 25mm× 110mm, elastic modulus of
17GPa, Poisson’s ratio of 0.25, internal friction angle of 30°,
and fixed displacement of the upper and lower surfaces of
the model. *e angle between the crack and the horizontal
plane is 45°, and the crack length is 20mm. *e cohesive
force of the model material is 20.9 kPa, the cohesive force of
the crack is 2 kPa, the friction coefficient is 0.01, the normal
stiffness is twice the elastic modulus, and the tangential
stiffness is 0.01 times the elastic modulus. *e force diagram
of the model is shown in Figure 10.

A vertical displacement of 0.2mm is applied on the upper
surface of the model to simulate the stress state of compression
and promote the expansion of cracks. Figure 11 shows the
vertical displacement nephogram and stress nephogram in the
initial state. *ere is discontinuity in the model, while the
vertical stress at the crack tip is obviously larger.

Figure 12 shows the crack morphology calculated by the
LRPIM, and the two ends of the crack are curved and extend
upward, which demonstrates the propagation process of the
wing crack.

5. Discussion

5.1. Simulation Analysis of Shear Cracks Using the LRPIM.
Under certain assumptions, the governing equation of the
shear cracks under three-dimensional conditions is derived
and discretized into a programmable mode to realize the
solution and expansion of shear crack propagation in the
LRPIM.
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Figure 7: Horizontal displacement nephogram (m).
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*e constitutive relation of the shear cracks is established
according to elastic-plastic theory. *e elastic-plastic stress-
strain relationship and yield criterion of the cracks are
derived according to the Mohr–Coulomb strength criterion,
which is commonly used in rock mechanics. Based on the
above theory, the incremental iteration method is used to
solve the problem.

*e results of several numerical examples are basically
consistent with the expected results, which verifies the cor-
rectness of the relevant algorithms. *e horizontal through
crack model verifies that the crack realizes force transfer. A
model of the oblique through cracks is established, and the
deformation of the cracks in the elastic and elastic-plastic
conditions is calculated. Compared with the FDM results, the
source of the difference is analyzed. Compared with the cal-
culation results of the classical model with built-in inclined
cracks, the ability of this method to simulate the propagation of
shear composite cracks is verified.

*e results of the numerical model calculation show that
the developed method can effectively simulate the shear
crack and its propagation in the rock mass and can accu-
rately calculate the force between the two sides of the crack.

5.2. Comparative Analysis. In the simulation of crack
propagation, compared with the results of classical physical
experiments, the crack propagation is not sufficiently
smooth, which indicates that the calculation accuracy needs
to be improved. In meshless computing, there are many

6.9949E − 05
6.0000E − 05
5.0000E − 05
4.0000E − 05
3.0000E − 05
2.0000E − 05
1.0000E − 05
0.0000E + 00
−1.0000E − 05
−2.0000E − 05
−3.0000E − 05
−4.0000E − 05
−5.0000E − 05
−6.0000E − 05
−6.9914E − 05

(a)

6.0472E − 05
5.1870E − 05
4.3268E − 05
3.4666E − 05
2.6065E − 05
1.7463E − 05
8.8606E − 06
2.5870E − 07
−8.3432E − 06
−1.6945E − 05
−2.5547E − 05
−3.4149E − 05
−4.2751E − 05
−5.1353E − 05
−5.9955E − 05

(b)

Figure 8: Horizontal displacement nephogram (m). (a) FLAC3D. (b) LRPIM.

Table 2: Horizontal displacement comparison.

Method LRPIM FLAC3D

Maximum horizontal displacement (mm) 7.051e− 2 6.995e− 2
Error (%) 0.8

Shear fracture

θ

Figure 9: Crack propagation under uniaxial compression [26].
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Figure 10: Schematic diagram of cracks subjected to uniaxial
compression.
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factors that affect the accuracy of the model, and the in-
fluence law is complex. Different distributions of model
nodes may result in different calculation results, which may
affect the crack propagation path of the model. When
simulating the crack propagation of a rock mass, the crack
representation methods used are all implicit. However, this
representation is more flexible than other methods. Because
there are no nodes on the crack, the stress-strain state of the
crack cannot be accurately obtained. In the future, the
display method can be used to characterize cracks.

6. Conclusion

In this paper, the governing equation of the shear cracks
under three-dimensional conditions is derived. *e con-
stitutive relation of the shear cracks is established according
to elastic-plastic theory. *e stress-strain relationship of the
model material and crack is unified, and the solution is
solved by the incremental iteration method, which realizes
the solution and expansion of shear crack propagation in the
LRPIM. *e second development in the LRPIM program is
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Figure 11: Nephogram of the model subjected to unidirectional compression. (a) Vertical displacement (m). (b) Vertical stress (Pa).

Figure 12: Crack propagation under uniaxial compression.
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carried out to establish the related computing ability. Several
numerical examples are used to verify the reliability and
accuracy of the algorithm. Compared with the calculation
results, the source of the difference is analyzed.

*e research results show that the LRPIM, as a real
meshless method, can simulate the shear crack of a rock
mass and avoid the inconvenience of meshing, so it has great
application potential. *e experimental results show that
further work is needed to improve the calculation accuracy.
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