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Stabilized dredged sediments are used as a backfillingmaterial to reduce construction costs and a solution to environmental protection.
*erefore, the compressive strength is an important criterion to determine the stabilized dredged sediments application such as road
construction, building construction, and highway construction. Using the traditional method such as empirical approach and ex-
perimental methods, the determination of compressive strength of stabilized dredged sediments is difficult due to the complexity of this
composite material. In this investigation, the artificial neural network (ANN) model is introduced to forecast the compressive strength.
To perform the simulation, 51 experimental datasets were collected from the literature. *e dataset consists of 4 input variables (water
content, cement content, air foam content, and waste fishing net content) and output variable (compressive strength). Evaluation of the
models was made and compared on training dataset (70% data) and testing dataset (30% remaining data) by the criteria of Pearson’s
correlation coefficient (R), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). *e results show that the ANNmodel
can accurately predict the compressive strength of stabilized dredged sediments with low water content.*e cement content is the most
important input affecting the unconfined compressive strength.*e important input affecting the unconfined compressive strength can
be in the following order: cement content> air foam content>water content>waste fishing net.

1. Introduction

Vietnam has a coastline about 3260 km followed by 49 large
and small harbors with a system of estuarine serving ships.
Especially in the Mekong Delta, transportation on the river
system plays an important role in regional economic de-
velopment. *e dredged sludge needs to be treated to avoid
environmental pollution. Furthermore, the dredged sludge
amount is a challenge posed in the exploitation of estuaries
and harbors.*eMekong Delta is characterized by soft soils,
so that the requirement of soft soils improvement for
construction works is very large. Stabilization/solidification
is widely used in the treatment of contaminated sediments
by mixing binders materials into the dredged sediments.
Using stabilization/solidification technology has two pur-
poses, which are (i) treating the environment and (ii) using a
backfilling material to reduce construction costs and use of
recycled materials such as dredged sediments, respectively.

Stabilization/solidification is the improvement of the
physical dredged sediments properties such as

compressive strength, liquid limit, plastic limit, viscosity,
and permeability [1–5]. Some binders are commonly used
such as Portland cement, lime, limestone, fly ash, slag,
gypsum, phosphorus, and many other commercial
products. Considered as a construction material, Tsuchida
[6] used dredged sediments, cement, air foam, and waste
fishing net to form a lightweight material (cf. Figure 1).
Dredged sediment has high water content; light foam
nature reduces the density of stabilized dredged sediment
but increases porosity. *e waste fishing net has high shear
strength. *erefore, the compressive strength of stabilized
dredged sediments is importantly affected by the mix
design (cement, water, air foam, and waste fishing net).
*at implies to be difficult to determine empirically re-
lationship between the compressive strength and the
composition of mix design, so that, in order to formulate
the complex relationship, a suitable prediction model is
demanded.

Over the past four decades, the method of artificial
intelligence (AI) based on computer science has received a
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lot of attention from scientists applying on abundant sector
such as earth science [8, 9] and civil engineering [10, 11].
Among AI algorithms, artificial neural networks (ANN) are
often applied to solve various technical problems. Many
complex issues related to structural engineering [12] and
materials science [11, 13–17] have been successfully solved.
*erefore, in this article, the authors propose the application
of ANN model to predict compressive strength of stabilized
dredged sediments using mix design, cement, air foam, and
waste fishing net.

2. Machine Learning Method

2.1. Artificial Neural Network. *e artificial neural network
(ANN) is a mathematical model designed to perform a
specific task, based on processing information of human
brain with neurons process. Until now, ANN has been
successfully used in many areas of life [18]. Regarding
functional approximations, ANN model solutions are often
more accurate than those provided by traditional methods,
such as multivariate nonlinear regressions. *e ANN
structure is created by three or more layers including an
input layer, an output layer, and one or more hidden layers
(Figure 2). *e input layer takes the values of the input and
sends them to the available neurons in the hidden layer.
Within each neuron, a weighted input is calculated.*e sum
of this value and the deviation value is modified by the
activation function. Finally, the output signal is sent to the
neurons in the next layer.

*e mathematical process can be constructed as follows:

yj � f 􏽘
n

i�1
wijxi + bj

⎛⎝ ⎞⎠, (1)

where xi is input value I, yj is output value I, and wij and bj
are weight and deviation value.

A tangent hyperbolic function was used in this inves-
tigation, as it could lead to more accurate results. *at is
confirmed by the investigation of Karlik and Olgac [19].*is
function varies from − 1 to 1 and is expressed as follows:

yi � f(net) �
2

1 + e
− 2.net − 1, (2)

where f is the activation function according to the terms of
the calculated network value.

Neural networks need training to show effective per-
formance. Training means that the weight and deviation of
network are determined such that the minimum error be-
tween the target (actual value) and the output (network
value) occurs. *erefore, during the training of neural
networks, back-propagation algorithms (BP) are often used
to train the network. *e Levenberg-Marquardt algorithm
(LMA) is usually the fastest back-propagation algorithm for
tool training [20, 21]. *erefore, LMA is applied in this
study.

*e LM algorithm provides a solution called least
squares of the following form:

f(x) �
1
2

􏽘

m

j�1
r
2
j(x), (3)

where x � (x1, x2, . . . , xn) is vector and rj is function of
Rn⟶ R. rj is r whenm≥ n. For simplicity, f is represented
as a residual vector r: Rn⟶ Rm and is shown as follows:

r(x) � r1(x), r2(x), . . . , rm(x)( 􏼁. (4)

At this time, f can be rewritten as f(x) � (1/2)‖r(x)‖2.
*e derivative of f can be written in the Jacobi matrix and is
defined as follows:

J(x) �
zrj

zxi

; 1≤ j≤m; 1≤ i≤ n. (5)

First, consider that every function ri is linear. Here,
Jacobian is constant and therefore is given by the square root
as follows:

f(x) �
1
2
‖Jx + r(0)‖

2
. (6)

We get
∇f(x) � J

T
(Jx + r),

∇2f(x) � J
T
J.

(7)

Placing ∇f(x) � 0, we get xmin � − (JTJ)− 1JTr. *is is
the result of the normal equation. Going back xxxx“the
nonlinear case”

∇f(x) � 􏽘
m

j�1
rj(x)∇rj(x) � J(x)

T
r(x),

∇2f(x) � J(x)
T
J(x) + 􏽘

m

j�1
rj(x)∇2rj(x).

(8)

*e special property of square problems is with the
Jacobi matrix; it is possible to get the Hessian matrix ba-
sically (∇2f(x)) if possible approximate rjs by linear func-
tions ∇2rj(x) is small or small residual (rj(x)). *e Hessian
matrix in this case simply becomes

∇2f(x) � J(x)
T
J(x). (9)

*e results are the same as those for linear cases.

Dredged
sediment

Cement

Air foam

Waste
fishing

net

Figure 1: Mix design of stabilized dredged sediments using ce-
ment, air foam, and waste fishing net according to [7].
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2.2. Structure of the ANN Model. *e effectiveness of the
ANN model depends on the structure of the neural network
(NN), that is, the number of hidden layers and the number of
neurons. *e ANN structure was chosen to predict the
stabilized dredged sediments in this investigation, including
4 layers. *e input layer consists of 4 neurons corresponding
to 4 input variables (cement content, water content, air foam
content, and waste fishing net content), and the output layer
includes 1 neuron representing compressive strength.
According to [22, 23], the accuracy of the ANN model is
depends strongly on the structure of the ANNmodel such as
number of hidden layers and number of neurons in each
hidden layer. For comparison with the ANN model pro-
posed by Park and Kim [7], number of hidden layers is
assumed to be equal to 2 and number of neurons in each
hidden layer is manually chosen. *e number of neurons in
each hidden layer is varied from 9 to 12 neurons to cover the
range of neuron as suggested in previously research, such as
in the works of Neville [24] and Hush [25]. *erefore, 16
ANN architectures are built.*e performance of each model
is evaluated to determine the best ANN architecture.

2.3. Performance Evaluation. In this investigation, the three
criteria used are correlation coefficients (R) (Pearson’s
correlation coefficient), Mean Absolute Error (MAE), and
Root Mean Square Error (RMSE) to evaluate the accuracy of
the developed ANN model [26]:

RMSE �

���������������
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����������������������������
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􏽘
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(10)

where N is the number of datasets, p0 and p0 are the actual
experiment value and the average experimental value,
and pt and pt are the predicted value and the average
predicted value, calculated according to the ANN model.
R measures the predicted and experimental value asso-
ciation; if R is closer to 1, the ANN model is more ac-
curate. RMSE calculates the square root average
difference between the expected values and the experi-
mental values and the difference between the experi-
mental and the predicted values is determined by MAE
criteria.

3. Database Construction

In this investigation, the data was extracted from [7], in
which 51 experimental pieces of data of stabilized dredged
sediments are designed with cement, air foam, and waste
fishing net. *e ANN model uses 4 input variables: (1)
cement content (% by weight), (2) water content, (3) air
foam content (% by weight), and (4) waste fishing net
content (% by weight). Output parameter is considered to
be unconfined compressive strength Pu (kN/m2). *e
dataset was randomly divided into two subdatasets, and
70% of the data were used to train the ANN models cor-
responding to 36 samples. *e remaining 30% of the data
correspond to the 15 samples used in the testing model. *e
initial statistical analysis of the dataset is presented in
Table 1.

*e used cement content ranges from 8% to 20% by
weight of untreated sediment (mean value of 12.5% and
standard deviation of 2.5%). *e water content ranges from
125% to 250% by weight of untreated sediment (mean value
of 168.2% and standard deviation of 32.5%). *e used air
foam ranges from 1% to 5% by weight of untreated sediment
(mean value of 2.4% and standard deviation of 1%).*e used
waste fishing net ranges from 0% to 0.2% by weight of
untreated sediment (mean value of 0.1% and standard de-
viation of 0.1%).

4 inputs

2 hidden layers
12 neurons + 10 neurons

Output

% water content

% cement

% air foam

% waste fishing net

Compressive 
strength

Pu

Figure 2: Architecture for the developed ANN: 4 inputs, 2 hidden layers, and 1 output.
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4. Results and Discussion

During back-propagation network training, the cycle of
sending all training samples across the network is called an
epoch.*e training process will be repeated until the error at
the network output reaches an acceptable value (less than the
initial specified error threshold). *e objective of this pro-
cess is to minimize the error between actual data and
simulation data. Training and testing processes are also used
to determine the optimal number of epochs for the model.
Figure 3 shows the best performance of the ANNmodels for
training and test processes with 500 epochs. *is number of
epochs has been chosen to prevent the proposed ANNmodel
from overfitting.

With ANN architecture containing 2 hidden layers, 16
structures are investigated, as shown in Figure 4 for the
training datasets. Figures 4(a)–4(c) show the values of R,
RMSE, and MAE, respectively. It is worth nothing that 10
neurons in the second hidden layer produce higher pre-
diction accuracy. *e best architecture containing, respec-
tively, 12 neurons and 10 neurons for first and second
hidden layers is observed to achieve the best accuracy of
training part with highest value of R and lowest values of
RMSE and MAE. *at is a good example to show that a
suitable ANN architecture should be determined before
performing any further simulations. *e best ANN archi-
tecture is used for predicting the compressive strength of
stabilized dredged sediments.

Using the ANN model [4–12], the prediction of stabi-
lized dredged sediments compressive strength for training
and testing part is shown in Figures 5(a) and 5(b) , re-
spectively. Figure 5 shows that the ANN model’s results and
experimental results are almost identical for each sample in
the training phase. It shows that the prediction capacity of
the ANN model is excellent. *erefore, the ANN model can
predict relatively accurately for the testing phase.

*e regression model for the training and testing parts is
shown in Figures 6(a) and 6(b) , respectively. From the figure
above, we can see that the prediction ability of the ANN
model is quite close to the experimental compressive
strength, but there are still high errors for testing part, high
water content such as 218% (see Table 2).

*e correlation value obtained for training is R� 0.95
and the control is R� 0.94. *is shows that applying the

ANN model for predicting the compressive strength of
stabilized dredged sediments is very feasible due to high
accuracy and low error. For training dataset, the function
“y� x − 0.15” is set to show the correlation between exper-
imental data and the ANN model’s data. Similarly, the
function “y� 1.1x+ 0.17” is set for correlation in the control
dataset. For RMSE indicators, the biggest errors are 9.1948
and 10.3390 with training and testing, respectively. ForMAE
indicators, the biggest errors are 3.9001 and 8.6535, re-
spectively, for training and testing (Table 3). *erefore, the
ability to predict is relatively high.

To prove the accuracy of the ANN model, Table 2 shows
the 51 experimental pieces of data of [7] and compares them
with the ANN model’s results. It can be seen that the ANN
simulation’s results give very low errors in most cases, except
for the high water content. *e biggest error of the ANN
model compared to the experiment is 382.2% and the lowest
is 0.0% for 156% of water content. *e ANN model predicts
relatively correctly with lower water content, which im-
portantly affects the accuracy of the ANN model.

In fact, the investigation of Park and Kim [7] has de-
veloped an ANN model for predicting the unconfined
compressive strength of reinforced lightweight soil. *e

Table 1: Initial statistical analysis of the dataset.

Variable Cement Water content Air foam Waste fishing net Pu
Unit % by weight % by weight % by weight % by weight kN/m2

Role Input Input Input Input Output
Count 51.0 51.0 51.0 51.0 51.0
Mean 12.5 168.2 2.4 0.1 38.0
Stda 2.5 32.5 1.0 0.1 26.5
Min 8.0 125.0 1.0 0.0 7.9
Q25 12.0 156.0 2.0 0.0 15.7
Q50 12.0 156.0 2.0 0.1 27.2
Q75 12.0 171.5 2.0 0.1 60.4
Max 20.0 250.0 5.0 0.2 100.7
aStandard deviation.
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of number of epochs.
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ANN structure in this investigation is a single hidden layer
containing 4 neurons. *e performance of this ANN model
was only evaluated through Pearson’s correlation coefficient
R, which was equal to 0.97 and 0.96 for training and testing

parts, respectively. *e number of hidden layers such as
single layer or multiple hidden layers is always a big chal-
lenge of the ANN structure [22, 23]. In our investigation, a
new ANN structure is developed consisting of two hidden
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Figure 4: Colormap of ANNwith 2 hidden layers in function of the neuron in the hidden layer for the training part with respect to (a) values
of R, (b) value of RMSE, and (c) value of MAE.
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Figure 5: Predicted compressive strength of stabilized dredged sediments by the ANN model. (a) Training. (b) Testing.
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Figure 6: ANN regression results for (a) training and (b) testing.

Table 2: Comparison of experimental results and ANN model results with error (ANN-EXP)/EXP.

Sample Dataset % cement % water % air foam % waste Experimental ANN Error (%)
01 Training 12 156 1 0.143 62.81 66.49 5.54
02 Training 12 156 1 0.179 58.9 58.90 0.00
03 Training 12 156 5 0 11.56 23.63 51.08
04 Training 12 125 2 0.036 63.02 63.02 0.00
05 Training 12 156 2 0.143 56.22 56.22 0.00
06 Training 12 156 4 0.036 23.09 23.09 0.00
07 Training 12 156 2 0.179 27.23 27.23 0.00
08 Training 20 156 2 0 80.16 116.96 31.46
09 Training 12 156 3 0.179 25.2 25.20 0.00
10 Training 16 156 2 0.036 93.14 93.14 0.00
11 Training 12 250 2 0.036 8.7 14.50 40.00
12 Training 12 218 2 0 16.24 16.24 0.00
13 Training 12 156 2 0.107 59.49 55.21 − 7.75
14 Training 12 156 1 0 57.56 57.56 0.00
15 Training 12 218 2 0.179 14.94 14.94 0.00
16 Training 12 250 2 0.107 7.93 7.93 0.00
17 Training 12 218 2 0.036 21.44 12.97 − 65.27
18 Training 16 156 2 0.107 78.19 78.19 0.00
19 Training 12 156 1 0.107 66.79 72.41 7.76
20 Training 12 125 2 0.107 61.28 81.51 24.82
21 Training 16 156 2 0.179 64.37 36.55 − 76.10
22 Training 20 156 2 0.143 100.7 100.70 0.00
23 Training 8 156 2 0.143 20.1 20.10 0.00
24 Training 12 125 2 0.143 79 79.00 0.00
25 Training 12 156 2 0 33.15 33.15 0.00
26 Training 8 156 2 0.179 9.76 9.76 0.00
27 Training 12 125 2 0 37.95 37.95 0.00
28 Training 12 156 3 0 25.06 25.06 0.00
29 Training 12 125 2 0.179 48.69 48.69 0.00
30 Training 12 250 2 0 12.2 12.20 0.00
31 Training 8 156 2 0.036 16.21 18.13 10.58
32 Training 12 187 2 0.036 29.76 29.76 0.00
33 Training 12 187 2 0.107 26.35 26.35 0.00
34 Training 12 156 3 0.107 27.4 27.40 0.00
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layers that contain 12 and 10 neurons, respectively. *e
performance of the new ANN model is considered to be
Pearson’s correlation coefficient R, Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE). Pearson’s
correlation coefficient R of the model is equal to 0.95 and
0.94 for training and testing parts, respectively. Comparing
the performance of the ANN model, Pearson’s correlation
coefficient R of this paper is slightly lower than that proposed
by Park and Kim [7]. However, the prediction of model is

successful with lower water content and the large error focus
on the high water content of dredged sediment. Overall, it is
shown that the performance of the ANN model using two
hidden layers seems obviously no greater than that using a
single hidden layer.

Figure 7 shows the dependence of unconfined com-
pressive strength Pu for each input. *e most important
input is the cement content used for stabilizing sediments.
*e least important input is the waste fishing net content.
*e influence of air foam content on unconfined com-
pressive strength is more important than that of water
content.

5. Conclusion

In this paper, the ability of artificial intelligence (AI)
techniques to predict the compressive strength of stabilized
dredged sediments was tested. *e dataset used for simu-
lation is collected from experimental results that have been
published in literature. To save time and money for con-
ducting experiments, an ANN model was developed. In
addition, to confirm and verify the performance of the ANN
model, an artificial neural network (ANN) was created and
adjusted by back-propagation algorithm (BP) with Leven-
berg-Marquardt (LMA) algorithm. *e compressive
strength of stabilized dredged sediments has been predicted
by ANN models with network structure [4–12]. *e results
show that the ANN model can accurately predict the
compressive strength of stabilized dredged sediments with
low water content. *erefore, this algorithm is a good ap-
proach that can be applied for mix design for stabilization/
solidification of dredged sediments. *e important input
affecting the unconfined compressive strength can be in the
following order: cement content> air foam content>water
content>waste fishing net. It seems to be very interesting to
perform a comparison of performance between the actual
model and the new model including normalized inputs,
other activation functions, and other learning algorithms in
future research.

Table 2: Continued.

Sample Dataset % cement % water % air foam % waste Experimental ANN Error (%)
35 Training 12 156 2 0.036 61.86 48.14 − 28.51
36 Training 12 156 5 0.143 15.2 15.20 0.00
37 Testing 20 156 2 0.107 89.82 106.17 15.40
38 Testing 16 156 2 0.143 76.01 71.65 − 6.08
39 Testing 12 250 2 0.143 8.17 11.94 31.57
40 Testing 12 156 4 0.107 25.06 15.35 − 63.29
41 Testing 12 156 5 0.179 11.71 12.52 6.46
42 Testing 12 187 2 0.143 32.06 36.16 11.34
43 Testing 8 156 2 0 10.86 17.17 36.76
44 Testing 12 218 2 0.143 17.50 3.63 − 382.2
45 Testing 12 187 2 0 10.15 30.94 67.20
46 Testing 12 156 4 0.179 14.42 28.16 48.79
47 Testing 12 156 3 0.036 23.85 26.76 10.87
48 Testing 12 156 3 0.143 31.70 23.20 − 36.66
49 Testing 12 187 2 0.179 13.95 7.33 − 90.24
50 Testing 12 156 5 0.036 16.81 12.93 − 30.03
51 Testing 12 156 1 0.036 54.87 68.95 20.43

Table 3: Pearson’s correlation coefficient (R), Mean Absolute Error
(MAE), and Root Mean Square Error (RMSE).

Training Testing
RMSE 9.1948 10.3390
MAE 3.9001 8.6535
R 0.95 0.94
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