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*e use of machine learning techniques to predict material strength is becoming popular. However, not much attention has been
paid to instance-based learning (IBL) algorithms. *erefore, in order to predict material strength, as the direct method by
conducting tests is time-consuming and expensive and experimental errors are inevitable, an indirect method based on ele-
mentary instance-based learning algorithm was proposed. *e standard k-nearest neighbors (k-NN) with cross-validation were
utilized to develop compressive strength prediction models for some concretes and rocks by considering indirect parameters such
as physical and mechanical parameters. Results on applying this method to datasets from literature studies show that the values of
RMSE for k-NN are modest, indicating adequacy to predict compressive strength with comprehensive range values of predictors.
Additionally, the R2-values of the k-NN models were high. In other words, the models were able to explain the variance in
compressive strength for data with a wide range of input values.

1. Introduction

*e relationship between material strength and its mixture
and process can be complex. As such, the relationship which
is usually determined empirically using experiments is
problematic. Moreover, physical, mineralogical-petrographic,
index, and mechanical tests are time-consuming and ex-
pensive, and experimental errors are inevitable. Machine
learning (ML) techniques are increasingly used to model the
strength of materials, such as concrete and rock and have
become an important research area [1–10]. Additionally, the
results of these studies can help engineers and practitioners
determine the key components related to material strength
performance.

Ensemble models can provide higher performance in
predicting material strength compared to individual models.
Nevertheless, no model has been proven to be superior all
the time [11]. Moreover, if the link between input and output
is important for description, then the ensemble models can
lead to difficult interpretative problems [11, 12]. *e en-
semble model is designed based on specific and limited
samples in relation to the nature and volume of the dataset;

hence, the direct use of the ensemble model for strength
prediction should be avoided to be used for other material
types, until establishing after further complementary studies
[13]. *e main disadvantage of an ensemble is the resources
it requires: calculations, software availability, and analyst’s
skills and time investment.

In general, it is better to use a simpler model rather than
a more complex model, and selecting tuning parameters
based on numerically optimal value may result in an overly
complex model. Other options for choosing less complex
models should be investigated, as they might lead to simpler
models that provide acceptable performance. *e use of ML
techniques to predict material strength is becoming popular.
However, not much attention has been paid to instance-
based learning (IBL) algorithms [14, 15]. *erefore, the
objective of the present study is to investigate the potential of
an IBL algorithm for predicting material strength, with data
obtained from the literature. *e k-nearest neighbors (k-
NNs) are among the simplest of all ML algorithms. *e
standard k-NN was utilized to develop compressive strength
prediction models for some concretes and rocks by con-
sidering indirect parameters such as physical and
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mechanical parameters. To verify and validate the standard
k-NN models, prediction results of models reported in the
literature were compared using six datasets via the cross-
validation method to minimize the bias.

*e remainder of this paper is organized as follows.
Section 2 describes the standard k-NN approach and
resampling methods. Section 3 presents data description and
summarization. Section 4 describes the results and discus-
sion for prediction of compressive strength before our
conclusions are provided in Section 5.

2. Methods

*e model development procedure is presented in this
section. In the first part, standard k-NN models with per-
formance statistics are discussed. After that, in the second
part, the validation procedures of the standard k-NNmodels
are presented. *e models used for this study were imple-
mented by the high-level programming language R, an open-
source statistical software [16].

2.1. k-Nearest Neighbors. *e standard k-NN approach,
which is an IBL algorithm, simply predicts a new sample
using the k-closest samples from the training set [17]. *e
construction of the model is solely based on the individual
samples from the training data. To predict a new response
value yi (i.e., CS for compressive strength, and E for Young’s
modulus) for regression, k-NN identifies only k-closest
neighbors xi (x1′, x2′, . . . , xk

′) in the space of the data attri-
butes (i.e., mixture factors and process factors) and using a
predefined function (i.e., average function) of the response
values of the k-nearest neighbors [18].

*e Euclidean distance is the most commonly used as a
measure of closeness between observations xi and xj and is
defined as follows:
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whereD represents the number of attributes, xim and xjm are
components of vectors xi and xj, and N is the number of
observations. Minkowski distance is a generalization of
Euclidean distance and is defined as
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where q> 0 [19]. It is easy to see that when q� 2, then
Minkowski distance is the same as Euclidean distance.When
q� 1, the Minkowski distance is equal to the Manhattan
distance, which is a general metric used for samples with
binary predictors. *ere are many other distance measures,
such as Tanimoto, Hamming, and Cosine and are more
suitable for specific types of predictors. For example, when
using binary fingerprints to describe molecules, Tanimoto
distance is often used in computational chemistry problems
[20]. To show that the elementary version of k-NN is

intuitive and straightforward and can produce decent pre-
dictions, the Euclidean distance was used in this paper. *e
average of the response values of the k-nearest neighbors is
used for calculating the unknown response value yi:

yi � f xi(  �
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Since distances between the observations are used as a
measure of closeness, the data have to be preprocessed to
have the same mean and variance for each predictor. All
predictors are centered and scaled prior to performing k-
NN. To center the predictors, all values minus the average
predictor value. Because of centering, the mean of the
predictors is zero. Similarly, to scale the data, each value of
the predictor variable is divided by its standard deviation.
Scaling the data will force the values to have a common
standard deviation of one [17].

In order to evaluate the prediction performances of the
model, the coefficient of determination (R2) and the root
mean squared error (RMSE) were used:
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where ym and y∗m are the observed and predicted values,
respectively; y is the mean of the observed values; M is the
number of data samples. R2 provides information about the
strength of correlation between observed and predicted
values. RMSE evaluates the residual between the observed
and predicted values. When predicting numeric values,
RMSE is often used to evaluate the model. Quantitative
evaluation of statistical information (i.e. RMSE) using
resampling can help users understand how each technique
performs on new data. *e RMSE corresponding to the
values of k within a range was used to select the optimal
number of neighbors using the smallest RMSE. Further-
more, the observed and predicted values were plotted to
discover areas of the data where the k-NN model did par-
ticularly good or bad.

2.2. Resampling Methods. When there is a large amount of
data, the data can be split into training and test sets. *e
former is used to create a model, and the latter is used to
evaluate themodel performance. However, some researchers
[21, 22] showed that validation using a single test set can be a
poor choice. When the number of samples is small, a test set
should be avoided, because each sample may be needed to
build the model. In addition, the size of the test set may not
have enough power or precision to make a reasonable
judgment. Resampling methods can produce reasonable
predictions about the model’s performance in future sam-
ples. In this study, resampling methods, such as 10-fold
cross-validation (CV), leave-one-out cross-validation
(LOOCV), and repeated 10-fold cross-validation
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(RepeatedCV), were used to minimize bias (overfitting and
underfitting) associated with random sampling of training
and hold out data samples and to determine the optimal
number of neighbors to retain that minimize RMSE.

By evaluating how the model fits points that were not
used to perform regression, we can understand how the
model will function in future observations. It can evaluate
the overall operation of the model, not just the observed
data [23]. In CV, the sample was randomly divided into 10
groups of roughly equal size. A model was fit with all
samples except for the first subset (called the first fold). *e
held-out samples were predicted by the model and used to
estimate RMSE. *e first subset was returned to the
training set, the process was repeated with the second
subset held out, and so on. *e average RMSE of the 10
performance estimates would be the cross-validation es-
timate of model performance. Kohavi [24] confirmed that
ten-fold validation testing yields the optimal computa-
tional time and reliable variance. In LOOCV, the number
of fold was the number of samples (M). Because only one
sample was held-out at a time, the final RMSE was cal-
culated from the M individual held-out predictions. Some
research studies [22, 25] indicated that RepeatedCV can
effectively improve the accuracy of the estimation while still
maintaining a small bias.

3. Data Description and Summarization

*e datasets used in this study have been confirmed in some
studies of predictive models (Table 1). Based on the standard
k-NN model, this study used six experimental datasets to
investigate the prediction performance of the elementary
model. Table 2 lists the six datasets with descriptive statistics,
i.e., maximum (Max), minimum (Min), average (Ave), and
standard deviation (Std). *e response/target was CS, and
the predictor variables were the remaining attributes. *e
minimum and maximum values given in Table 2 of the
different sample properties function as the boundary con-
ditions of the some models, e.g., artificial neural networks
(ANN).

Dataset 1.*e test data of 144 different concrete mix-designs
were gathered from Lam et al. [31]. *e high-performance
concrete (HPC) mixes were prepared at different ratios of
water to cementitious materials, with low and high volumes
of fly ash, and with or without addition of small amounts of
silica fume. CS was 7.8–107.8MPa. *ese samples consisted
of 24 different mixes. In each mix series, the percentage of
cement replacement by fly ash varied from 0% to 55%. *e
cementitious materials were Portland cement equivalent to
ASTM type I, low-calcium fly ash equivalent to ASTM Class
F, and a condensed silica fume commercially available in
Hong Kong.

Dataset 2. Siddique et al. [32] collected the data of 80
concrete mixes with comparable physical and chemical
composition properties from various studies. *e self-
compacting concrete mixes were made with water/powder
ratios of 0.33–0.87 that contain from 0 to 261 kg/m3 of fly

ash. Coarse aggregate content varied from 621 to 923 kg/m3.
Fine aggregate content varied from 478 to 1079 kg/m3. CS
was 10.2–73.5MPa. *e content of superplasticizer was
0–100%.

Dataset 3. A database of 104 concrete mixes used in this
experiment that was carried out by Lim et al. [26] was
produced in South Korea. *e water to binder ratio of the
HPC varies between 0.30 and 0.45, and the amount of fly ash
used varied from 0% to 20% of the total binder, and the
content of superplasticizer and air-entraining agent were
0.5–1.5% and 0.010–0.013%, respectively. Portland cement
in accordance with ASTM type I was used. *e coarse ag-
gregate used was crushed granite (specific gravity, 2.7;
fineness modulus, 7.2; maximum particle size, 19mm). *e
fine aggregate was quartz sand (specific gravity, 2.61; fineness
modulus, 2.94). CS was 38–74MPa.

Dataset 4. *e rocks were collected from the factories,
outcrops, and quarries in different locations of Turkey [27].
A series of laboratory tests including physical test, ultrasonic
velocity test, point load strength test, Schmidt hammer test,
Brazilian tensile strength test, Shore hardness test, and
uniaxial CS test were conducted on blocks or pieces taken
from fresh parts of 93 different rocks from 32 rock types. CS
was 6.64–303.67MPa.

Dataset 5. *e granite samples were taken from the face of
the Pahang–Selangor raw water transfer tunnel in Malaysia
[13]. A series of laboratory tests including physical test,
ultrasonic velocity test, point load strength test, Schmidt
hammer test and uniaxial CS test were conducted on 71
samples of granite. CS was 28.0–211.9MPa. E was
22.0–183.3GPa.

Dataset 6. A variety of sedimentary rocks including grain-
stone, wackestone-mudstone, boundstone, gypsum, and
silty marl were collected from quarries in Qom Province,
central Iran [33]. A series of laboratory tests including
physical test, ultrasonic velocity test, point load strength test,
and uniaxial CS test were conducted on 106 data sets. CSwas
6.21–160.32MPa.

4. Results and Discussion

*is section depicts predictive accuracy of proposed models
by comparing different models from literature studies. *ere
are some strong between-predictor correlations, as shown in

Table 1: Sources of datasets in the literature.

Dataset Data source Laboratory Sample
size

1 Lam et al. [31] Hong Kong 144
2 Siddique et al. [32] Canada, USA, UK 80
3 Lim et al. [26] South Korea 104
4 Teymen and Mengüç [27] Turkey 93
5 Jahed Armaghani et al. [13] Malaysia 71
6 Heidari et al. [33] Iran 106
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Tables 3 and 4. However, the percent of variance accounted
for by each principal component is more than 37% of the
variance, as shown in Table 5, indicating that there are no
redundant predictors. In order to evaluate and compare the
performance of different models, the prediction perfor-
mances of the standard k-NN models and the models de-
veloped in the literature studies are presented in Table 6. A
plot of the observed values against the predicted values helps
one to understand how well the model fits. Also, a plot of the
residuals versus the predicted values can help uncover

systematic patterns in the model predictions, such as the
trend. *ese plots for k-NN models are shown in Figures 1
and 2.

Dataset 1. Pala et al. [35] studied the impact of fly ash and
silica fume replacement content on the long-term strength of
concrete by ANN. Chou and Pham [15] used six data mining
techniques, ANN, classification and regression trees
(CART), chi-squared automatic interaction detector
(CHAID), multiple linear regressions (MLR), generalized

Table 2: Descriptive statistics of datasets.

Predictor Min Ave Max Std
Dataset 1
Output Concrete compressive strength, CS (MPa) 7.8 56.63 107.8 23.77

Input

Fly ash replacement ratio, FA (%) 0.0 25.00 55.0 19.11
Silica fume replacement ratio, SF (%) 0.0 1.88 5.0 2.43

Total cementitious material, TCM (kg/m3) 400.0 436.67 500.0 45.13
Fine aggregate, ssa (kg/m3) 536.0 639.38 724.0 54.87
Coarse aggregate, ca (kg/m3) 1086.0 1125.00 1157.0 29.51
Water content, W (lt/m3) 150.0 171.67 205.0 24.00

High rate water reducing agent, HRWRA (lt/m3) 0.0 4.87 13.0 4.05
Age of samples, age (days) 3.0 60.67 180.0 61.31

Dataset 2
Output Concrete compressive strength, CS (MPa) 10.2 38.52 73.5 14.13

Input

Cement content, C (kg/m3) 160.0 271.75 427.0 66.25
Fly ash content, FA (kg/m3) 0.0 151.03 261.0 61.24

Fine aggregate (sand) content, ssa (kg/m3) 478.0 836.90 1079.0 107.34
Coarse aggregate content, ca (kg/m3) 621.0 856.05 923.0 44.06
Water to powder ratio, W/P (%) 33.0 52.05 87.0 13.12
Superplasticizer dosage, SP (%) 0.0 35.43 100.0 20.09

Dataset 3
Output Concrete compressive strength, CS (MPa) 38.0 52.68 74.0 9.43

Input

Water to binder ratio, W/B (%) 30.0 37.60 45.0 5.57
Water content, W (kg/m3) 160.0 170.00 180.0 8.24
Fine aggregate ratio, s/a (%) 37.0 46.00 53.0 3.64

Fly ash replacement ratio, FA (%) 0.0 10.10 20.0 8.30
Air-entraining agent content, AE (kg/m3) 0.036 0.054 0.078 0.015

Superplasticizer content, SP (kg/m3) 1.89 4.48 8.5 2.30
Dataset 4
Output Concrete compressive strength, CS (MPa) 6.64 104.77 303.67 64.93

Input

Point load strength index, Is (MPa) 1.15 5.44 15.73 3.00
P-wave velocity, Vp (km/s) 0.85 4.70 6.66 1.40

Brazilian tensile strength, BTS (MPa) 1.02 8.45 21.32 4.34
Schmidt hardness, SHH 16.85 47.31 65.12 11.31
Shore hardness, SSH 7.2 59.06 99.0 21.98

Unit weight, UW (g/cm3) 1.05 2.49 2.96 0.36
Dataset 5: sample size: 71

Output Granite compressive strength, CS (MPa) 28.0 115.86 211.9 42.23
Young’s modulus, E (GPa) 22.0 87.99 183.3 35.17

Input

Porosity, n (%) 0.1 0.37 0.57 0.13
Schmidt hammer rebound number, Rn 37.0 49.58 61.0 6.01

P-wave velocity, Vp (m/s) 2823.0 5586.31 7943.0 1097.18
Point load strength index, Is (MPa) 0.89 3.32 7.1 1.51

Dataset 6
Output Rock compressive strength, CS (MPa) 6.21 68.69 160.32 38.24

Input

Schmidt rebound hardness number, SHN 17.0 31.53 47.0 6.23
Block punch index, BPI (MPa) 1.89 7.84 19.02 3.75

Point load strength index, Is (MPa) 1.13 2.87 4.8 0.76
P-wave velocity, Vp (m/s) 2592.0 4345.39 6231.0 1137.96
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linear model (GENLIN), and support vector machines
(SVM) to construct individual and ensemble models. *e
number of parameter settings for the aforementioned six
single models varies from 5 to 10. Table 6 shows that top
three performing models are ANNs, CART, and CHAID.
*e standard k-NN shows modest result as MLR and

GENLIN. *e observed CS values against those predicted
from the 4-NN (RepeatedCV), as shown in Figure 1, shows
modest concordance between the observed and predicted
values, and there are about as many positive as negative
residuals and they do not show any strong patterns. *ere
are some observations fairly far from the horizontal axis, but
many more close to it. *e majority of the residuals are
within ±10MPa for CS ranging from 7.8 to 107.8MPa.

Dataset 2. Table 6 shows that top two performing models are
MLR and GENLIN.*e standard k-NN shows modest result
as ANN and CART. *e observed CS values against those
predicted from the 7-NN (CV), as shown in Figure 1, shows
modest correlation between the observed and predicted
values, and there are about as many positive residuals as
negative residuals, and they do not show any strong patterns.
*e majority of the residuals are within ±10MPa for CS
ranging from 10.2 to 73.5MPa.

Table 3: Correlation matrices of concrete datasets.
Dataset 1 ssa SF W ca age TCM HRWRA FA CS
ssa 1 0.040 −0.854 −0.279 0 0.479 0.682 −0.511 0.584
SF — 1 0 0 0 0 0.030 −0.203 0.082
W — — 1 0.334 0 −0.568 −0.917 0 −0.485
ca — — — 1 0 −0.965 −0.581 0 −0.484
age — — — — 1 0 0 0 0.578
TCM — — — — — 1 0.761 0 0.556
HRWRA — — — — — — 1 0.166 0.477
FA — — — — — — — 1 −0.342
CS — — — — — — — — 1
Dataset 2 W/P SP ca FA C ssa CS
W/P 1 0.138 −0.306 −0.518 0.461 −0.350 −0.466
SP — 1 0.059 −0.236 −0.124 −0.028 −0.442
ca — — 1 0.052 −0.379 0.141 −0.027
FA — — — 1 −0.612 −0.215 0.214
C — — — — 1 −0.163 0.288
ssa — — — — — 1 0.375
CS — — — — — — 1
Dataset 3 W/B s/a W FA AE SP CS
W/B 1 0.572 −0.032 −0.016 −0.958 −0.898 −0.909
s/a — 1 −0.382 −0.122 −0.622 −0.482 −0.333
W — — 1 −0.014 0.208 −0.209 −0.286
FA — — — 1 0.012 0.024 −0.068
AE — — — — 1 0.863 0.841
SP — — — — — 1 0.922
CS — — — — — — 1
*e parameters listed in the first row of datasets 1 to 3 are defined in Table 2.

Table 4: Correlation matrices of rock datasets.

Dataset 4 UW VP SHH SSH BTS Is CS
UW 1 0.866 0.801 0.647 0.629 0.545 0.589
VP — 1 0.799 0.609 0.702 0.614 0.702
SHH — — 1 0.818 0.785 0.728 0.781
SSH — — — 1 0.784 0.812 0.807
BTS — — — — 1 0.884 0.947
Is — — — — — 1 0.896
CS — — — — — — 1
Dataset 5 Is VP Rn n E CS
Is 1 0.622 0.629 −0.728 0.617 0.814
VP — 1 0.615 −0.663 0.673 0.789
Rn — — 1 −0.631 0.696 0.701
n — — — 1 −0.562 −0.885
E — — — — 1 0.739
CS — — — — — 1
Dataset 6 VP SHN Is BPI CS
VP 1 0.697 0.629 0.693 0.819
SHN — 1 0.812 0.813 0.872
Is — — 1 0.822 0.873
BPI — — — 1 0.873
CS — — — — 1
*e parameters listed in the first row of datasets 4 to 6 are defined in Table 2.

Table 5: Proportion of variance of the first three principal com-
ponents for each dataset.

Dataset PC1 PC2 PC3
1 0.4489 0.1810 0.1314
2 0.3767 0.2165 0.1834
3 0.5417 0.2103 0.1685
4 0.7799 0.1171 0.0470
5 0.7363 0.1005 0.0964
6 0.8096 0.1009 0.0470
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Table 6: Prediction performances of individual models.

Dataset ML technique RMSE R2 Literature

1

Concrete compressive strength
ANN 5.867 0.993

Chou & Pham [11]

CART 7.860 0.983
CHAID 8.307 0.980
MLR 11.735 0.961

GENLIN 11.596 0.962
SVM 13.145 0.950

4-NN (RepeatedCV) 10.693 0.808
4-NN (CV) 10.782 0.805

5-NN (LOOCV) 10.829 0.803

2

Concrete compressive strength
ANN 7.104 0.832

Chou & Pham [11]

CART 7.312 0.848
CHAID 10.040 0.699
MLR 5.161 0.917

GENLIN 5.163 0.917
SVM 10.954 0.726

7-NN (CV) 7.437 0.756
8-NN (RepeatedCV) 7.525 0.762
8-NN (LOOCV) 7.734 0.743

3

Concrete compressive strength
ANN 1.548 0.987

Chou & Pham [11]

CART 1.837 0.982
CHAID 1.994 0.979
MLR 1.996 0.979

GENLIN 1.996 0.980
SVM 2.012 0.981

Stepwise regression 2.020 0.956

Ahmadi-Nedushan [38]2-NN (LOOCV) 1.747 0.966
2-NN (CV) 1.834 0.967

2-NN (RepeatedCV) 1.856 0.965

4

Rock compressive strength
ANN N/A 0.921

Teymen and Mengüç [27]
MRA N/A 0.953

8-NN (CV) 21.954 0.896
9-NN (RepeatedCV) 21.956 0.899
9-NN (LOOCV) 22.476 0.887

5

Granite compressive strength
ANN 26.203 0.804

Jahed Armaghani et al. [13]
MRA 13.818 0.891

3-NN (CV) 14.509 0.885
3-NN (RepeatedCV) 14.867 0.872
3-NN (LOOCV) 15.576 0.862

Granite Young’s modulus
ANN 21.022 0.643

Jahed Armaghani et al. [13]
MRA 22.192 0.596

7-NN (CV) 21.850 0.630
7-NN (RepeatedCV) 21.876 0.638
7-NN (LOOCV) 22.654 0.580

6

Rock compressive strength
ANN 7.58 0.96 Jalali et al. [30]
MRA 10.80 0.91 Heidari et al. [33]

2-NN (LOOCV) 10.387 0.926
2-NN (RepeatedCV) 10.466 0.929

2-NN (CV) 10.758 0.927
Highlighted ones in bold denote the k-NN model and performance measure.
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Dataset 3. Table 6 shows that top two performing models are
ANN and k-NN. *e observed CS values against those
predicted from the 2-NN (LOOCV), as shown in Figure 1,
show good concordance between the observed and predicted
values, and there are about as many positive residuals as
negative residuals, and they do not show any strong patterns.
*e majority of the residuals are within ±2MPa for CS
ranging from 38 to 74MPa.

In the study of Chou and Pham [11], the IBM SPSS
modeler [36] was used in ANN analyses with the standard
feedforward backpropagation, the gradient descent algo-
rithm, and three hidden layers (20, 15, and 10 neurons). *e
best individual model in predicting HPC compressive
strength using three experimental datasets was ANN, which
achieved 45.1%, 4.5%, and 11.4% better error rates than
those of the standard k-NN model for datasets 1 to 3, re-
spectively.*e standard k-NNmodel achieved 18.7%, 32.1%,
and 13.2% better error rates than those of the lowest per-
forming model, SVM, for datasets 1 to 3, respectively. One
significant limitation of the work done by Chou and Pham is
that it used the IBM SPSS modeler with default settings in
the single and ensemble models. *erefore, further studies
are needed to determine optimum values of parameters.

Siddique et al. [32] adopted the procedure for parti-
tioning the neural-network connection weights proposed by
Garson [37] to determine the relative importance of the
various inputs. *e enhanced ANN model yielded an RMSE
of 5.557MPa and achieved 21.8% better error rates than
those of the standard ANN model for dataset 2.

Ahmadi-Nedushan [38] used differential evolution al-
gorithm to find the optimal k-NNmodel parameters, such as
number of neighbors, distance function, and attribute
weights. *e best enhanced model, with optimal attribute
weighting, yielded an RMSE of 1.174 and achieved 32.8%
better error rates than those of the standard k-NNmodel for
dataset 3 because the Euclidian distance function in the
standard k-NN model assumed that all the attributes were
equally important. Sometimes, the right choice of neighbors
depends on modifying the distance function to favor some
predictors over others. *is is easily accomplished by in-
corporating weights into the distance function.

Dataset 4. In the study of Teymen andMengüç [27], MRA and
ANN models were made with the help of IBM SPSS modeler
and Matlab [39], respectively. Gradient descent with mo-
mentum and adaptive learning rate backpropagation algorithm

0 20 40 60 80 100

0

20

40

60

80

100

Observed

Pr
ed
ic
te
d

20 40 60 80 100

–20

–10

0

10

Predicted

Re
sid

ua
l

(a)

10 30 50 70

10

20

30

40

50

60

70

Observed

Pr
ed
ic
te
d

30 40 50 60

–20

–10

0

10

20

Predicted

Re
sid

ua
l

(b)

Pr
ed
ic
te
d

40 50 60 70

40

50

60

70

Observed
40 50 60 70

–2

–1

0

1

2

Predicted

Re
sid

ua
l

(c)

Figure 1: Left: predicted versus observed CS values for concrete datasets; right: residuals versus the predicted values. (a) Dataset 1.
(b) Dataset 2. (c) Dataset 3.
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Figure 2: Left: predicted versus observed CS values for rock datasets; right: residuals versus the predicted values. (a) Dataset 4. (b) Dataset 5.
(c) Dataset 6.
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and one hidden layer with three neurons were used. All binary
combinations of the six independent variables were tried as
input parameters. According to the performance index as-
sessment, the weakest model was the one with Vp and SSH as
input and yielded an R2 of of 0.874 and 0.834 for ANN and
MRA, respectively. *e most successful model was the one
with BTS and Is as input and yielded an R2 of 0.921 and 0.953
for ANN and MRA, respectively, as shown in Table 6. Nev-
ertheless, k-NN with the six independent variables as input
yielded a larger R2 of 0.931, 0.917, and 0.905 for 7-NN (CV), 5-
NN (ReapeatedCV), and 5-NN (LOOCV), respectively. k-NN
is a highly automated data-driven method. *erefore, the al-
gorithm of k-NN is intuitive, straightforward, and easy to
implement and can produce decent predictions. *e observed
CS values against those predicted from the 7-NN (CV), as
shown in Figure 2, show good concordance between the ob-
served and predicted values, and there are about as many
positive as negative residuals and they do not show any strong
patterns. *ere are some observations fairly far from the
horizontal axis, but many more close to it. *e majority of the
residuals are within ±20MPa for CS ranging from 6.64 to
303.67MPa.

Dataset 5. Table 6 shows that there is no clear winner or loser
for predicting E in the three models, k-NN, ANN, and
multivariate regression analysis (MRA). k-NN andMRA can
predict CS with a high degree of accuracy. *e observed CS
values against those predicted from the 3-NN (CV), as
shown in Figure 2, show good concordance between the
observed and predicted values, and there are about as many
positive residuals as negative residuals, and they do not show
any strong patterns. *e majority of the residuals are within
±20MPa for CS ranging from 28 to 211.9MPa.

To overcome shortcomings such as the slow rate of
learning and entrapment in local minima, Jahed Armaghani
et al. [13] built an ANN enhanced with the imperialist
competitive algorithm (ICA) [28, 29] to predict CS and E.
*e performance of the ICA-ANN can predict CS with a
high degree of accuracy and E with a suitable degree of
accuracy. *e enhanced ANN model yielded an RMSE of
12.454MPa and achieved 52.5% better error rates than those
of conventional ANN for dataset 4. However, Jahed
Armaghani et al. [13] mentioned that the proposed ICA-
ANN predictive model is designed based on theCS of granite
samples; hence, the direct use of the ICA-ANNmodel for CS
prediction of other rock types is not suggested.

Dataset 6. In the study of Jalali et al. [30], Matlab software
was used in ANN analyses with the standard feedforward
network, the Levenberg–Marquardt algorithm, and one
hidden layer with 5 neurons. Table 6 shows that ANN is top
performing model. *e predictive performances of MRA
and k-NN show both models are comparable. *e observed
CS values against those predicted from the 2-NN (LOOCV),
as shown in Figure 2, show good concordance between the
observed and predicted values, and there are about as many
positive residuals as negative residuals, and they do not show
any strong patterns. *e majority of the residuals are within
±15MPa for CS ranging from 6.21 to 160.32MPa.

Generally, parametric methods will tend to outperform
nonparametric approaches when there are a small number of
observations per predictor. For example, MLR, GENLIN,
and MRA outperform nonparametric approaches for
datasets 2, 4, and 5. However, algorithms for predicting
material strength based on conventional regression analysis
and statistical models may be unsuitable because it is highly
complex and correlations give good results only in similar
materials [40–42].

Residual plots show that the resulting predictions of k-
NN are always reasonable within a reasonable range. *is is
because the final prediction is based on the actual value of
the neighbor. Keep in mind that regression and neural
networks may produce impossible results because the pre-
diction range is from negative infinity to positive infinity,
and the range of reasonable values may not be so extreme.
*e k-NN technique produces reasonable values with many
distinct values. However, the range of predicted values is
narrower than the range in the dataset. *is is due to the
averaging combination function, which smooths out the
maximum and minimum values.

No resampling method is uniformly better than another.
However, putting computational issues aside, a less obvious
but potentially more important advantage of 10-fold CV is
that it often gives more accurate rate than does LOOCV.*is
has to do with a bias-variance trade-off. Since themean value
of many highly correlated predictors has a higher variance
than the mean value of many non-highly correlated pre-
dictors, the test error estimate produced by LOOCV tends to
have a higher variance than the test error estimate produced
by 10-fold CV.

5. Conclusions

*is study has examined the use of an elementary ML
technique to predict compressive strengths of some con-
cretes and rocks. As seen in Table 6, the values of RMSE for
k-NN are modest, indicating adequacy to predict com-
pressive strength with comprehensive range values of pre-
dictors. Additionally, the R2-values of the k-NNmodels were
high. In other words, the models were able to explain the
variance in compressive strength for data with a wide range
of input values. One benefit of this approach is its simplicity,
which allows us to use rigorous analysis to guide our in-
tuition and research goals. Furthermore, k-NN does not
require that the data satisfy some predefined model. k-NN
requires neither temporary parameters nor background
knowledge. Aha [34] showed that when combined with
noisy example pruning and attribute weighting, IBL per-
forms well compared with other methods. In short, k-NN
with cross-validation is a simple, general, effective technique
which yields high quality predictions by combining the
predicted values of the k-nearest neighbors and weighting
them by distance. However, finding a computationally ef-
fective means for calculating these weights requires further
research.

Removing irrelevant predictors is a key preprocessing
step for k-NN. Expert knowledge should first be applied to
obtain relevant data for the required research objectives.
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Furthermore, in an attempt to remove noninformative or
redundant predictors from the model and to find only the
most relevant predictors in a given problem, many different
types of feature selection methods have been proposed [43].

Table 6 indicates that the results obtained by ANN are
better than k-NN techniques. However, the tuning of pa-
rameters such as momentum, learning rate, and number of
hidden layers, makes ANN easy to overfit the data at hand.
Furthermore, the application of some subject matter ex-
pertise to the data preparation improves model perfor-
mance. In dataset 4, the most successful model was the one
with BTS and Is of the six independent variables as input and
yielded an R2 of 0.921 for ANN. Nevertheless, k-NNwith the
six independent variables as input yielded a larger R2 of
0.931.*erefore, the algorithm of k-NN ismore intuitive and
straightforward.

Sometimes one of simple models will be the best pre-
dicting model available; but in many cases, these models will
serve as benchmarks rather than the model of choice.*at is,
any predicting model might be compared to these simple
models to ensure that the new model is better than these
simple alternatives. If not, the new model is not worth
considering.

In model selection, whenever possible, analysts should
not rely on a single data mining method. *ere is no single
model that will always do better than any other model.
Choosing between multiple models largely depends on the
characteristics of the data and the type of questions being
answered. *erefore, it is customary to apply several dif-
ferent methods in data mining and then choose the most
useful method for the current goal. *e k-NN model that
reasonably approximates the performance of the more
complex methods could be used as a tool to support decision
making because the standard k-NN is easy to implement and
has potential applications in material science.

Data Availability

*e data used in the study were collected from different
research papers in modelling aspect.
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