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Fracture energy is always used to represent the fracture performance of concrete structures/beams, which is crucial for the
application of concrete. However, due to the nature of concrete material and the complexity of the fracture process, it is
difficult to accurately determine the fracture energy of concrete and predict the fracture behavior of different concrete
structures. In this study, artificial intelligence approaches were tried to seek a feasible way to solve these prediction issues.
Firstly, the ridge regression (RR), the classification and regression tree (CART), and the gradient boosting regression tree
(GBRT) were selected to construct the predictive models. 0en, the hyperparameters were tuned with the particle swarm
optimization (PSO) algorithm; the performances of these three optimum models were compared with the test dataset. 0e
mean squared errors (MSEs) of the optimum RR, CART, and GBRTmodels were 0.0447, 0.0164, and 0.0111, respectively,
which indicated that their performances were excellent. Compared with the RR and CART models, the hybrid model
constructed with GBRT and PSO appeared to be the most accurate and generalizable, both of which are significant for
prediction work. 0e relative importance of the variables that influence the fracture energy of concrete was obtained, and
compressive strength was found to be the most significant variable.

1. Introduction

Because of the beneficial properties of concrete, i.e., its
excellent corrosion resistance and good compressive per-
formance, it has been used extensively in the load-bearing
members of building structures. However, during the casting
and curing process, certain amounts of voids and defects are
introduced into the concrete structures, leading to the
heterogeneity of microstructure and the low bonding
strength of the interfacial transition zone (ITZ) [1–5]. As a
result, concrete structures always fracture when bearing
tensile loads. Hence, both the analysis of the concrete
fracture phenomenon and accurate prediction of the per-
formance of concrete with respect to fractures are crucial for
the application of concrete materials. Various indices have
been proposed to represent the fracture performance of

concrete, such as the fracture energy, fracture toughness, and
tensile strength [6–8].

Due to the simplicity and accuracy of the testing and
calculating processes, fracture energy always is selected as
the fracture index of concrete. 0e International Union of
Laboratories and Experts in Construction Materials, Sys-
tems, and Structures (RILEM) recommended the use of a
standard to test and compute the fracture energy of concrete
[9]. Subsequently, many researchers became interested in
determining the best way to assess the fracture energy of
concrete beams. Based on the RILEM recommendation,
Bazant et al. analyzed the fracture energy of different sizes of
concrete to determine the relationship between fracture
energy and size, and they also found that the fracture energy
was associated with the lengths of the notches in the concrete
beams [10]. Hu found that fracture energy depends on both
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the size and geometry of the test specimen, and they pro-
posed the concept of local fracture energy to describe the
fracture along the width of a concrete beam [11]. Karamloo
et al. studied the influence of the water-to-cement ratio on
the fracture performance of self-compacting and light-
weight concrete, and they concluded that a remarkable
relationship existed between the water-to-cement ratio and
the fracture energy of concrete [12]. Kozul and Darwin
found that the fracture energy of high-strength concrete
decreases as the size of the aggregate increases and that the
fracture energy of normal-strength concrete increases as the
size of the aggregate increases [13]. Also, fracture energy was
shown to be related to the amount and coarseness of the
aggregate in the concrete. 0e compressive strength of
concrete, which always is used to evaluate the strength of
concrete, also affects the fracture energy [14–16].

It is apparent that the fracture energy of concrete is affected
by various factors, which means it is difficult for the ordinary
methods to predict the fracture energy of concrete accurately.
However, artificial intelligence (AI) methods, which mimic
human thinking, can be used to analyze such complex re-
gression problems [17, 18]. 0e artificial intelligence ap-
proaches have been used extensively in various fields. Kitouni
et al. constructed a smart agricultural enterprise system based
on the integration of the Internet of 0ings and agent tech-
nology [19]. Srinivasa et al. used the data analytics-assisted
Internet of0ings to produce intelligent healthcare monitoring
systems [20]. Biswas et al. used a hybrid model to treat the
classification problems in the Internet of 0ings environment
[21]. Also, artificial intelligence approaches have been used in
other fields, such as the determination of the solubility of gases
in different liquids [22–25], analysis of seismic fragility [26–30],
prediction of the performance of tunnel boring machine
(TBM) [31–33], and prediction of rock burst in the under-
ground space [34]. Unfortunately, the fracture performance of
concrete, which is crucial for its application, rarely has been
studied using artificial intelligence methods.

In this paper, hybrid artificial intelligence approaches
were used to predict the fracture energy of concrete. 0e
classification and regression tree (CART), support vector
machine (SVM), and gradient boosting regression tree
(GBRT) were used to establish the relationships between
fracture energy and the influencing factors, and particle
swarm optimization (PSO) was used to tune the hyper-
parameters of these three models. Subsequently, the per-
formances of the three different prediction models were
compared, and the importance of each of the various
influencing factors was analyzed with the GBRT ensemble
algorithm. 0is paper is structured as follows. Section 2
presents the main details of the three machine-learning
algorithms that were used in this study and introduces the
theory of PSO algorithms. Section 3 describes the dataset
that was used formachine learning and for preprocessing the
data. Section 4 presents the procedure used to tune the
hyperparameters. Section 5 presents the results of the tests of
the performances of the different predictive models with
optimum hyper-parameters. 0e influences of different
variables on the fracture energy of concrete are compared in
Section 6, and Section 7 provides a summary of the paper.

2. Machine Learning and PSO Algorithms

2.1. Linear Regression (LR) Algorithm. 0e linear regression
(LR) algorithm is one of the simplest and most extensively
used prediction techniques. As shown in the following
equation, LR uses only one equation to describe the rela-
tionship between different variables:

Y � θ1x1 + θ2x2 + · · · + θnxn, (1)

where x1, x2, . . ., xn are the different features that are
regarded as independent variables, Y is the target variable
and it depends on the independent variables, and the values
of θi are the weights assigned to the features based on their
importance.

0e cost function, J(θi), is introduced to evaluate the
performance of the prediction equation; that is, when J(θi)
reaches its minimum value, the best equation can be ob-
tained. 0e cost function, J(θi), is defined as shown in the
following:
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where m is the size of the data, Yθ(xi) is the predicted value,
and yi is the actual value.

However, for simple linear regression, overfitting is a
problem that cannot be ignored because themodel can fit the
training data perfectly but behave poorly in the prediction of
unknown data. Hence, penalty methods are used to solve
these problems, such as the L1 regulation technique, the L2
regulation technique, and others. In this paper, we only used
the ridge regression (RR), which adds an L2 penalty term on
the cost function, J(θi). 0us, the updated cost function is
[35, 36]
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where λ represents the degree of penalty. 0e best ridge
regression model also can be obtained by minimizing the
cost function. 0erefore, for the ridge regression model, the
parameter, α, which determines λ in the L2 penalty term,
should be set before a prediction is made.

2.2. Classification and Regression Tree (CART) Algorithm.
0e classification and regression tree (CART) algorithm is a
kind of decision tree algorithm that can deal with both
classification and regression problems [37]. It uses a tree-like
graph to assist in making decisions, and it is considered to be
one of the best andmost-frequently used supervised learning
methods [38]. 0e CARTalgorithm typically consists of two
stages of procedures, i.e., the tree generation stage and the
pruning stage.

Normally, a CART is generated by splitting a dataset,
which consists of the root node, the decision nodes, the leaf
nodes, and the branches. For regression problems, the
splitting criterion that is selected is recursive binary splitting
[37], as shown in the following equations:
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where j is the data attribute to be split, x(j) is the splitting
variable, and s is the splitting point. 0e data are split into
two subsets, that is, R1 and R2; yi is the output variable, c1 is
the average value of the output variables in R1, and c2 is the
average value of the output variables in R2. Such partitioning
is required to ensure that the sums of the squared error (SSE)
of subsets R1 and R2 are minimized separately, and it is also
required that the value of the sum of SSE in R1 and R2 be
minimized. Figure 1 shows that the splitting process divides
the root node, which contains all of the data, into two
subsets. 0e attributes in each subset are as homogeneous as
possible under the condition of the biggest difference be-
tween these two subsets. It should be noted that all of the
data splitting must follow this rule during the growth of the
tree. With each partition, the complexity of the variance in
each subset is reduced, but the model becomes more
complicated. 0e partition will stop either (1) when the data
in each leaf node share the same characteristics or (2) when
the depth of the tree reaches its maximum value.

After the tree is fully grown, the tree model always tends
to be overly complex. Such a model could fit the given
training data very well, but it also could have poor behavior
in predicting the outcomes of the untrained data, a phe-
nomenon known as overfitting. 0is is because some
branches of the tree are so specific that they contribute little
to the tree’s ability to generalize information. Hence, the
pruning process, which consists of prepruning and post-
pruning, is designed to remove these redundant branches.
After the tree is pruned, the simplified CARTmodel will do a
better job of predicting the untrained data. For each
decision tree, the following essential parameters should be
considered, that is, max_depth, min_samples_split, and
min_samples_leaf. 0e max_depth is used to control the
size of the tree, and the min_samples_split and the min_-
samples_leaf are set to ensure the sizes of the samples in
each leaf.

2.3. Gradient Boosting Regression Tree. During the applica-
tion of the CARTalgorithm, the high sensitivity of the data is
a big challenge. In some cases, small variations in the data
might result in the generation of a completely different tree.
0erefore, the boosting algorithm was proposed to solve this
problem by combining several base learners [39]. 0e gra-
dient boosting regression tree (GBRT) is a kind of boosting
algorithm the base learner of which is the classification and
regression tree (CART). By combining several CARTs, the
ensembled model will have better predictive performance.
0e core of GBRT is to identify an additive model that
minimizes the loss function. First, a regression tree is

generated to provide maximum reduction of the loss
function. 0en, one new tree is added to the existing model
at each iteration, and the residual is updated accordingly. It
should be noted that the iterative process is stagewise, and
the existing trees are not modified when the following trees
are added. By adding the new trees, the updated model will
perform better in the region in which the previous model did
not perform well. 0e final GBRTmodel consists of several
decision trees that have different structures. Consequently,
the predictive model becomes more robust and accurate.

In addition to the parameters set in the base learners
(CART), GBRT also uses three extra parameters, that is, the
number of base learners (n_estimators), the impact of each
additional base learner that is fitted (learning rate), and the
loss function.

2.4. Particle Swarm Optimization. Particle swarm optimi-
zation (PSO) is an evolutionary computation technology
that originated from the study of the predation behavior of
birds. 0e basic idea of the particle swarm optimization
algorithm is to find the optimal solution through collabo-
ration and sharing information between individuals in the
group [40]. 0e advantages of the PSO are its rapid con-
vergence and easy implementation, and it has been proved to
be efficient in optimizing various problems, such as opti-
mization of the objective function, optimization in a dy-
namic environment, training neural networks, and others
[41, 42].

Figure 2 shows a procedure of the PSO in a flowchart.
0e PSO algorithm starts with the random generation of
particles. Every particle has only two attributes, that is,
position x and velocity v. 0e position represents the di-
rection of movement, and the velocity represents the speed
of movement. Each particle searches for the optimal solution
separately in the search space and records it as the fitness
value f(xn

i ). 0en, by comparing f(xn
i ) with the fitness

value of pn−1
best,i (particle i’s previous best location), the current

best location is determined, and the global best location,
gn
best, can be obtained accordingly.
0e velocity, vn+1

i , and the positions of xn+1
i of particle i

can be updated based on the current best location, pn
best,i, and

the global best position, (gn
best):

Root node

Leaf node

Leaf node Leaf node

Decision node

R1 R2x(j) ≤ s x(j) > s

Figure 1: Schematic of CART.

Advances in Civil Engineering 3



v
n+1
i � wv

n
i + c1r1 p

n
best,i − x

t
i􏼐 􏼑 + c2r2 g

n
best − x

t
i􏼐 􏼑, (6)

x
n+1
i � x

n
i + v

n+1
i , (7)

where w is the inertia weight parameter, c1 and c2 are the
acceleration coefficients, and r1 and r2 are the random values
between 0 and 1. As denoted in (6), the velocity of particle i
depends on three factors, that is, the velocity at the previous
iteration, its best location, and the global best position.

When the criterion of termination is met (usually a
sufficiently good fitness or a maximum number of itera-
tions), the iteration stops, and the optimum location is
obtained.

3. Dataset

3.1. Data Description. 0e data of 736 3-p-b concrete tests
were collected from the research published in 14 papers
[43–55]. Table 1 summarizes the items that were recorded
during the experiments, and the range of each item also is
listed. Some essential details of the items are demonstrated as
follows. S represents the span between two supports in the

3-p-b tests, W is the width of the beams, T is the thickness, a0
is the length of the initial notch, w/c is the water/cement
ratio, λ represents the distribution of aggregate size, dmax is
the maximum diameter of the aggregate, fc is the com-
pressive strength of concrete, and Gf is the calculated
fracture energy of the specimens. It should be noted that all
of the fracture energies of the 3-p-b beams were calculated
following the recommendation of the RILEM TC50-FCM
(1985) as follows:

Gf �
􏽒 P · dδ

T · W − a0( 􏼁
, (8)

where P is the load and δ is the load point displacement,
which can be obtained from the load-displacement curve of
the 3-p-b tests.

To clearly identify the characteristics of different vari-
ables, their distributions were plotted as a histogram and
analyzed with normal distribution. As shown in Figure 3, the
distributions of the input variables were unordered and
scattered, and huge differences could be found among the
distributions of different variables. Figure 4 demonstrates
the characteristics of concrete fracture energy; the values
appeared to be continuous and regular. It was difficult to
determine the connection between every input variable and
establish the relationship between output variables and input
variables. Hence, AI approaches are needed to solve such
complex problems.

3.2. Data Processing. Some preparatory work was required
before the data could be used in the predictive models. As
shown in Table 1, the different variables have different units,
and huge differences existed between the values of various
variables. Hence, normalization was used to normalize all of
the data into values that ranged from 0 to 1. 0en, the
database was split into two sets, that is, a training set and a
testing set. 0e training set was used to train the predictive
models to gain these indispensable parameters, and the
testing set was used to evaluate the performance of the
predictive models. In this study, the ratio between the
training set and the testing set was 0.7 : 0.3. 0erefore, 515
cases were used to train the model, and 221 cases were used
to test the performance of the predictive model. Note that all
of the data should be shuffled before being split to ensure the
representativeness of the datasets.

4. Construction of Predictive Models

4.1.K-FoldCross-Validation. In Section 3.2, it was suggested
that all the data should be split into a training set and a
testing set. However, in most cases for the experimental data,
the sizes of the split sets were not sufficient for the predictive
models. 0us, K-fold cross-validation was introduced to
solve this deficiency by repeatedly using the data in the
training set. Figure 5 shows that the training set was divided
evenly into K parts, none of which had an intersection.0en,
K-1 parts were chosen as the training subsets to train the
predictive model, and the remaining parts served as the
validation subset, which was used to validate the

Start

PSO initialization

Compute the fitness
value of each particle

Current fitness value is
better than pBest Update pBest

Assign pBest to gBest

Calculate velocity of
each particle

Update
particles’ position

Criterion of termination
is met

True

True

End

False

False

Figure 2: Flowchart of the PSO algorithm.
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Figure 3: Continued.

Table 1: Variables of the concrete fracture energy prediction model.

Variables Items Minimum Maximum Average Standard deviation

Input variables

S (mm) 191.0 2000.0 720.0 252.2
W (mm) 50.0 400.0 121.6 54.3
T (mm) 40.0 152.0 88.5 17.8
a0 (mm) 5.0 207.0 44.4 34.0

w/c 0.19 0.80 0.39 0.14
λ 0.17 0.56 0.28 0.05

dmax (mm) 1.0 32.0 14.9 4.7
fc (MPa) 4.0 180.0 57.9 22.2

Output variables Gf (N/m) 36.3 367.0 149.0 80.5
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Figure 3: Characteristics of various experimental conditions.
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performance of the current model. 0e above process was
repeated K times. Consequently, each part could be the vali-
dation subset once, and each part could be the training subset
K-1 times. For regression problems, the mean squared error
(MSE) is always set as the performance indicator of models.
0e value of MSE (MSEi) is assessed by the validation subset in
each fold, and the average MSE value (MSEavg) in K folds
represents the behavior of the predictivemodel. In this study, K
was set as five, as recommended by An et al. [56].

4.2. Hyperparameter Tuning. Sections 2.1, 2.2, and 2.3 illus-
trated the theories of the RR, CART, and GBRT algorithms,
respectively. In this section, the K-fold cross-validation and
PSO are combined to tune the hyperparameters of these two
algorithms. Due to the significant influence on the structure of
the algorithm and the performance of the model, the alpha was
tuned for the Ridge Regression model, the max_depth,
min_samples_split, and min_samples_leaf parameters for
CART and two additional parameters n_estimators, learning
rate for GBRTmodel. Here, the average MSE value (MSEavg)
in K folds is regarded as the fitness value of the particles, and
the least MSEavg criterion is applied to searching the optimum
parameters.

First, the RR, CART, and GBRTwere trained and validated
with training data from the 3-p-b tests. Figure 6 shows the
evolution of MSEavg with progressing iterations. It is apparent
that the variations of the three algorithms are different, that is,
for both the convergent rate and the optimum value of MSEavg.
0e RR converged to a stable state in only one iteration with
0.0445 MSEavg value, the CART algorithm converged to stable
within two iterations, and the optimum MSEavg was 0.0155; it
took five iterations for GBRT to become stable, and the opti-
mumMSEavg converged from0.0195 to 0.0116. It was concluded
that the PSOwas efficient in tuning the hyperparameters of these
three models. 0e convergence rate of RR was the fastest due to
its simple structure and fewer parameters. With the increase of
parameters, the time of convergence also increases. Although the
GBRT was the slowest to converge, its MSEavg value was the

smallest among the three models, which means the GBRT had
the best performance in the training process.

When the maximum number of iterations is met, the
optimum MSEavg is obtained, and the current hyper-
parameters are regarded as the optimum parameters. 0en
these parameters will be used to build the predictive models.
0e optimum hyperparameters of different models are
provided as follows:

RR: alpha� 0.266
CART: max_depth� 16, min_samples_split� 5,
min_samples_leaf� 2
GBRT: max_depth� 6, min_samples_split� 5, min_-
samples_leaf� 10, n_estimators� 230, learning
rate� 0.453
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Figure 6: Minimum MSE value versus iterations in the training
process.
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Figure 5: Schematic of 5-fold cross-validation.
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5. Testing of Predictive Models

It is well known that an excellent predictive model must both
fit the training data well and accurately predict the unknown
data. 0at is to say, a predictive model must have both low
training error and low generalization error. 0e hyper-
parameters, that is, RR, CART, and GBRT, were determined
in Section 4, and the predictive models can be designed
accordingly. Before the predictive models can be used, it is
essential to test their performances, especially their ability to
generalize based on the available information. In this study,
221 pieces of data were used to verify the predictive capa-
bilities of the three models. 0e MSE and the R2 values were
selected to quantify the behaviors of the three models.0e R2

value can be calculated as follows:

R
2

� 1 −
􏽐

N
n�1 yn − 􏽢yn( 􏼁

2

􏽐
N
n�1 yn − yn( 􏼁

2, (9)

where R2 is the coefficient of determination of the predictive
model, yn is the experimental results, 􏽢yn is the predictive
results, yn is the average value of the experimental results,
and N is the total number of data.

Figure 7 compares the experimental data and the pre-
dicted results, and it also provides the MSE and R2 values.
During the testing process, the RR model obtained the MSE
value of 0.0447 and R2 value of 0.3120, the CART model
achieved theMSE value of 0.0164 and R2 value of 0.7468, and
the GBRTmodel got the MSE value of 0.0111 and R2 value of
0.8167. Based on these results, it was concluded that the
GBRT and PSO hybrid model was more successful than the
RR and CART model in establishing the relationship be-
tween the concrete fracture energy and the factors that
influenced it.

0en, the performances of various predictive models in
the testing process were compared with their performances
in the training process with the index of MSE. Table 2 shows
the differences between the MSE values in the training
process and the testing process for these three models. 0ese
observations highlighted the importance of the generaliza-
tion ability of the predictive models. 0e GBRT model
produced the smallest MSE value that was obtained in the
testing process, and this model also produced a smaller MSE
value during the training process. However, the RR and
CARTmodels produced higher MSE values, which indicated
that those two models were unable to accurately predict the
unknown data because of the poor generalization. By the
addition of several different CARTmodels as base learners,
the GBRT models, with their optimum hyperparameters,
had improved performances on the test dataset and on
future predictions.

As discussed above, the fracture energy of 3-p-b concrete
beams is influenced by various factors, and the relationships
between these factors are difficult for simple ridge regression
methods to describe. By adding different CARTs that focused
on various regions, the hybrid models with GBRT and PSO
provided higher accuracy and better generalization ability.

By comparing the AI approaches with the empirical
calculation of the fracture of concrete, the AI approaches had

several merits. Assumptions always are needed for the
simplification and application of an empirical equation, but
this requirement is avoided in AI. 0e size effect phe-
nomenon of concrete fracture energy, which always is
troublesome for the empirical calculation, is directly in-
corporated into the AI predictive models. Hence, the AI
approaches seem to be more accurate in determining the
fracture energy of concrete.

6. Relative Importance of Influencing Variables

Since the GBRT and PSO models with optimum hyper-
parameters had the best performance, they were selected to
study the influence of different input variables on the
fracture properties of concrete. For such regression prob-
lems, the mean squared error represents the impurity of a
model. 0e importance of the variables was evaluated by
their contributions to the reduction of the model’s impurity,
and the result was represented by a relative importance
score. A higher score indicated a feature that had a stronger
influence. For each feature, the importance score was cal-
culated in every single base learner of GBRT, and then the
relative importance score was obtained by averaging the
scores over all CARTs. Figure 8 illustrates the influence of the
input variables on the fracture energy of the concrete beams.

When the importance scores of different influencing
variables were compared, it was apparent that compressive
strength, with the score of 0.425, had the strongest influence
on the determination of the fracture energy of the concrete
beams. 0is high relevance between fracture properties and
compressive strength has been proved repeatedly in the
literature, and many empirical equations have been estab-
lished between them [57, 58]. Compressive strength always
is regarded as the universal index for concrete performance
in various countries. Hence, when it is not convenient to test
the tensile or fracture properties, they can be obtained based
on the empirical relationship between the fracture properties
and compressive strength.

0e importance scores of the aggregate distribution and
maximum aggregate size were 0.175 and 0.150, respectively.
0ese two influencing variables are parts of the character-
istics of the aggregate that can reflect the microstructure of
the concrete. For most laboratory 3-p-b tests of concrete, the
specimens are too small to be regarded as homogeneous
[59]. 0erefore, the effect of aggregate on fracture energy
cannot be ignored. Especially, when the laboratory tests are
expected to predict the failure of large structures, the ag-
gregate characteristics should be quantified and considered.

0e span, width, thickness, and length of the initial notch
can be unified as the geometric parameters of a specimen.
Normally, the length of the ligament (width minus initial
notch length) is regarded as the size of a concrete specimen,
and it has proven to be relevant for the fracture energy of the
3-p-b specimens [60, 61]. However, the results in Figure 8
appear to be different, and this may have been caused by the
limited range of the width and length of the initial notch,
which should be considered carefully in future work. Also,
the water/cement ratio should be considered carefully
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Figure 7: Comparison of the predicted and experimental values of concrete fracture energy: (a) RR; (b) CART; (c) GBRT.
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during the prediction of concrete fracture energy because it
has an impact on the hydration degree of the concrete, which
will determine the fracture process of concrete beams.

7. Conclusions

Research related to concrete fracture properties is very
important in order to address the durability issues in the
application of concrete. In this study, the ridge regression,
CART algorithm, and the ensemble GBRT algorithm were
adopted to develop predictive models, and the metaheuristic
method (PSO) was used to tune their hyperparameters. 0e
fracture energy of concrete was set as the output variable,
and eight influencing parameters were set as the input
variables. After the optimum predictive model was obtained,
the relative importance of the various influencing variables
was analyzed. 0e main conclusions are summarized as
follows:

(1) 0e PSO algorithms were proved to be efficient in
seeking the optimum hyper-parameters of three
machine learning algorithms in this study, and these
three predictive models all converged to the stable
state within a small number of iterations

(2) 0e relationship between fracture energy and its
influencing factors is complex, and it cannot be
predicted accurately by the simple Ridge regression
or single CART prediction models

(3) Using the PSO algorithm and the ensemble method,
the hybrid GBRT predictive models gained an im-
proved generalization ability, and they had the best
performance in predicting the fracture energy of
concrete

(4) 0e compressive strength of concrete was found to
have a significant influence on the predictive models,
which should be considered carefully during the
prediction of the fracture energy of concrete

Although the fracture properties of concrete have been
predicted accurately by artificial intelligence approaches,
there are still some limitations in comparison with other
previous works [62, 63]. First, the dataset used in this study is
limited, and some cases even are removed. A large and
multinational dataset should be used to enhance the accu-
racy of the predictive models. 0en, although the optimum
models get a high accuracy in predicting the concrete
fracture energy, there still exists obvious prediction error
around the boundaries of variables range, and the effect of
variables’ distribution and boundaries on the performance
of predictive models should be carefully considered.
Moreover, other optimization algorithms are suggested to be
tried in the future work, such as firefly algorithm, ant colony
optimization algorithm, and iterated greedy algorithm.

Data Availability

0e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

0e authors declare that there are no conflicts of interest
regarding this publication.

Acknowledgments

0is work was supported by the National Key R&D Program
of China (2018YFC0808700 and 2018YFC0808706). 0e
author XY Han acknowledges the support of China
Scholarship Council (201707000075) for part of his Ph.D.
research at the University ofWestern Australia (UWA) from
2017 to 2019.

References

[1] T. C. Hansen, “Influence of aggregate and voids on modulus
of elasticity of concrete, cement mortar, and cement paste,”
Journal Proceedings, vol. 62, no. 2, pp. 193–216, 1965.

[2] H. S. Wong, A. M. Pappas, R. W. Zimmerman, and
N. R. Buenfeld, “Effect of entrained air voids on the micro-
structure and mass transport properties of concrete,” Cement
and Concrete Research, vol. 41, no. 10, pp. 1067–1077, 2011.

[3] T. Zhou, J. B. Zhu, Y. Ju, and H. P. Xie, “Volumetric fracturing
behavior of 3D printed artificial rocks containing single and
double 3D internal flaws under static uniaxial compression,”
Engineering Fracture Mechanics, vol. 205, pp. 190–204, 2019.

[4] A. Elsharief, M. D. Cohen, and J. Olek, “Influence of aggregate
size, water cement ratio and age on the microstructure of the

Table 2: Comparison of the different models based on different
datasets.

Models RR CART GBRT

MSE value Training 0.0445 0.0155 0.0116
Testing 0.0447 0.0164 0.0111

0

1

2

3

4

5

6

7

8

In
flu

en
ci

ng
 v

ar
ia

bl
es

0.1 0.2 0.3 0.40
Importance score

Figure 8: Relative importance of various influencing variables:
(1: span; 2: width; 3: thickness; 4: length of the initial crack; 5: water/
cement ratio; 6: aggregate size distribution; 7: maximum aggregate
size; 8: compressive strength).

10 Advances in Civil Engineering



interfacial transition zone,” Cement and Concrete Research,
vol. 33, no. 11, pp. 1837–1849, 2003.

[5] K.-Y. Liao, P.-K. Chang, Y.-N. Peng, and C.-C. Yang, “A study
on characteristics of interfacial transition zone in concrete,”
Cement and Concrete Research, vol. 34, no. 6, pp. 977–989,
2004.

[6] X.-Z. Hu and F. H. Wittmann, “Fracture energy and fracture
process zone,” Materials and Structures, vol. 25, no. 6,
pp. 319–326, 1992.

[7] Y. S. Jenq and S. P. Shah, “A fracture toughness criterion for
concrete,” Engineering Fracture Mechanics, vol. 21, no. 5,
pp. 1055–1069, 1985.

[8] J. M. Raphael, “Tensile strength of concrete,” Journal Pro-
ceedings, vol. 81, no. 2, pp. 158–165, 1984.

[9] D. R. Rilem, “Determination of the fracture energy of mortar
and concrete by means of three-point bend tests on notched
beams,” Materials and Structures, vol. 18, no. 106, pp. 285–
290, 1985.
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