
Research Article
Multifractal Analysis and Compressive Strength Prediction for
Concrete through Acoustic Emission Parameters

Zhiqiang Lv ,1 Annan Jiang ,1 Jiaxu Jin,2 and Xiangfeng Lv3

1School of Transportation Engineering, Dalian Maritime University, Dalian, Liaoning 116026, China
2School of Civil Engineering, Liaoning Technical University, Fuxin, Liaoning 123000, China
3School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

Correspondence should be addressed to Annan Jiang; jiangannan@163.com

Received 30 November 2020; Accepted 1 February 2021; Published 12 February 2021

Academic Editor: Wei Liu

Copyright © 2021 Zhiqiang Lv et al. *is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Acoustic emission (AE) can be applied to identify crack propagation and damage ofmaterials and structures. However, few studies
investigate the multifractal regularity and compressive strength prediction for concrete using AE parameters.*erefore, the major
objective of this research is to perform multifractal analysis of damage and develop support vector machine (SVM) for strength
prediction based on AE parameters. Meanwhile, fuzzy c-means (FCM) was implemented to identify damage mechanisms. *e
results showed that the level of damage can be revealed qualitatively and quantitatively by analyzing morphology and parameters
of multifractal. In particular, the multifractal parameter α0 has the ability to identify critical damage and primary failure surface.
Moreover, damage mechanisms were further distinguished by FCM. Finally, the results showed that the parameters of AE can
further expand the application of AE for predicting compressive of concrete. SVMprediction results using AE parameters perform
higher precision than the artificial neural network (ANN). Furthermore, a significant reduction in sample size uses AE parameters
to predict concrete strength.

1. Introduction

Concrete, as one of the most widely used groups of the
construction material, is frequently applied to structure
because of the favorable properties [1]. However, due to
exposure to severe conditions, the existence of cracks has
further expanded, resulting in degradation of the physical
and mechanical properties [2]. Moreover, there is almost no
plastic deformation and significant reduction in structural
integrity, when the stress is kept below the proportional limit
or yield point. Once the stress of concrete exceeds the yield
strength, the development of instability crack causes brittle
failure. *erefore, in order to ascertain the safety of struc-
tures in service, the reliable monitoring techniques are at the
heart of our understanding of evaluating the structural
integrity of structure [3]. Acoustic emission (AE) is a po-
tential technique to determine the behavior of concrete
according to the signal released by the crack. Recent de-
velopments in AE have heightened the need for the integrity

evaluation of material and construction in service with the
advantages of high sensitivity and accurate evaluation [4].

AE is a nondestructive monitoring method with the
functions of identifying crack growth and failure mechanism
of materials and structures. *e signals, collected by the
sensor attached to the material, are recorded and processed
by the AE system. A typical AE signal of Figure 1 is a
complex, damped, sinusoidal voltage vs. time plot [5]. *e
AE waveform originates from the elastic wave released by
the crack containing crack scale, damage mechanism, and
damage status [6, 7]. Several criterions and research studies
have been developed for evaluating the damage of concrete
based on the different waveform parameters (counts, hits,
energy, signal amplitude, and frequency) [8–10]. Kocáb has
investigated the characteristics of AE events corresponding
to the crack formation and propagation of cement.*e study
contests the claim that the qualitative relationship was
revealed between the events and cracks of concrete [11].
Aggelis acquired waveform parameters, closely following the

Hindawi
Advances in Civil Engineering
Volume 2021, Article ID 6683878, 13 pages
https://doi.org/10.1155/2021/6683878

mailto:jiangannan@163.com
https://orcid.org/0000-0003-2875-6486
https://orcid.org/0000-0003-4045-8799
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/6683878


initial microcracking to macrocracking of concrete. It is
reasonable to suggest that the waveform parameters can be
used to distinguish the different fracturing stages [12]. For
most cases, it can be observed that tensile cracks occur in
microdamages, resulting in short rise time and high fre-
quency of AE waveforms, followed by shear and multiple
shear mixed mode cracks developed in macrodamages,
resulting in long rise time and lower frequency of AE
waveforms. *us, RA and average frequency can exhibit the
dominant fracture mode and then show the level of damage
of the materials [13]. Researchers also found that statistical
analysis can further quantitatively judge on the damage of
material [14]. Carpinteri found that AE amplitude is con-
nected with the scale of fracture, following the empirical
Gutenberg–Richter’s law [15]. *e statistical characteristics
of AE amplitude can provide quantitative measurements of
damage in the whole failure process [3]. In addition,
Abdelrahman proposed a modifying index of damage to
identify the yielding point of the structure [4]. Obviously, the
statistical analysis of the AE parameters has been brought to
public attention.Monofractal andmultifractal structures can
describe the irregularity of the vibration signal as a whole
and reflect the local characteristics of vibration signal more
precisely [16]. Furthermore, the variation of dynamic
nonlinear multifractal parameters has been used to quan-
titatively describe complex systems, especially in climate
change, earthquake warning, and rock mass instability
[17, 18]. However, few writers have been able to draw on any
systematic research into the multifractal dynamic identifi-
cation of damaged concrete using AE.

It is of profound significance to prove whether the load
has reached the crack damage. *erefore, the only way to
avoid the abrupt failure of this structure is to reduce the load
on the structure. *ere are various modeling approaches for
prediction of concrete (CS) [19]. Artificial intelligence
techniques have strong nonlinear capability, good robust-
ness, and generalization ability by establishing a mathe-
matical model to predict concrete strength [20]. However,
among all artificial intelligence approaches, the artificial
neural network (ANN) and support vector machine (SVM),
as two popular and effective methods, have been proved to
be successful in scientific research and practical application.
SVM has a better performance in processing on a limited

number of samples compared with traditional statistical
theory. Moreover, SVM is a powerful tool to improve
generalization performance by implementing that SRM aims
at minimizing a bound on the generalization error of a
model rather than minimizing the error on the training data
only [21]. *e algorithm can be transformed into a convex
optimization problem, which can guarantee the global op-
timality of the algorithm and avoid the local minima which
cannot be solved by the neural network. Hence, SVM can
achieve robust approximation ability and generalization
ability. Several attempts have investigated the possibility of
applying SVM in concrete. Lee has been successful in using
SVM and ANN to determine concrete strength based on the
mix proportion data, and it was observed that SVM esti-
mated the CS of concrete with high prediction precision
[22]. Shih predicted that concrete strength combined
nondestructive tests and destructive tests. It was concluded
that CS of concrete can be accurately estimated based on
SVM using nondestructive parameters [23]. Nazari and Abd
verified that SVM is a potential tool for prediction of
concrete strength by adopting mixture components as input
vectors [24, 25]. However, a host of specimens are required
for the above studies. Sasikumar et al. attempted to use AE to
predict the strength of 18 fiber materials [26]. As far as
known, there are rarely reports on the application of a small
number of specimens used to predict the strength of con-
crete by using AE parameters as input vectors of SVM.

*ere are two primary aims of this study: (1) to establish
the relationship between multifractal statistical analysis of
AE parameters and the damage evolution of concrete and (2)
to develop a SVMmodel to estimate the CS of concrete based
on AE parameters. In this research, the AE activity and
signatures of concrete were recorded in the whole process of
concrete compression with AE monitoring. At first, the
damage evolution of concrete is briefly analyzed based on
AE parameters and statistical analysis of b. *en, the self-
similarity of the AE signal is explored using multifractal,
which provides quantitative and qualitative analyses to the
damage evolution. Meanwhile, damage mechanisms were
further determined with the help of fuzzy c-means (FCM) in
the deformation and fracture of concrete. In the end, the
SVM model was developed to estimate the CS of concrete
using AE parameters.

2. Experimental Study

2.1. Material and Samples Preparation. To obtain AE data of
concrete under compression, this experimental study was
carried out using concrete specimens with water-cement
ratio of 0.45. *e total amount of concrete is 15 in size
100mm× 100mm× 100mm (two specimens did not meet
the requirements). Ordinary Portland cement type 42.5 was
used as the binding material. Gravel was adopted as the
coarse aggregate (<25mm), and dry river sand was adopted
as the fine aggregate. Details of all mix proportions of
concrete mixtures are listed in Table 1. *e specimens were
placed into water saturated with calcium hydroxide at
20± 2°C for 28 days until testing.
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Figure 1: Parameters of typical AE signal [5].
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2.2. Compression Test. Compression tests of the concrete
specimens were carried out according to JTG E30-2005
standard [27]. *e CS of the specimens was tested at a
constant loading rate of 3 kN/s. At the same time, AE pa-
rameters by the specimens were recorded.

2.3. AE Monitoring of Concrete Compression Process. *e
DS5 AE testing system, including sixteen channels, was used
to monitoring of the concrete compression process. RS-2A
sensors, with the frequency response range from 60 to
400 kHz, were used here. *e RS-2A sensor is proved to be
effective in monitoring by Ma [28]. Vaseline was used as the
coupling agent between the sensors and the concrete surface.
*en, the AE sensor was fixed at the center of both sides of
the specimen. *e environmental noise can be successfully
eliminated by the setting of the AE threshold. In this study,
AE signal threshold is 180mV. *e gain of preamplifier and
main amplifier is 40 dB; sampling frequency is 3MHz; peak
identification time is 50 us; impact identification time is 300
us; and impact locking time is 1000 us. Before actual
monitoring, the pencil lead break test is essential to be
performed for determining and calibrating the test system.

3. AE Parameters Analysis Methods

3.1. b Value. *e AE peak amplitude is related to the mi-
crostructural and macrostructural cracks [28]. *e b value is
a statistical analysis of the AE amplitude during fracture. It
originates from seismology and can be used for quantitative
analysis of the fracture development in concrete [29]. *e b
value can be depicted as follows:

log10 N(M) � a − b
AdB

20
􏼒 􏼓, (1)

where AdB represents the peak amplitude of AE events, and
N (M) is the number of AE events of magnitude> �M. a and
b are the fitting coefficients related to the scale of the
structural crack [30]. During the fracture process, if small-
scale fractures are dominant, a relatively high b value is
obtained, and conversely, a low b value indicates the
prevalence of macrocrack.

3.2. Basic /eory of Multifractal /eory. *e transformation
of structure in time and space can be described quantita-
tively and qualitatively using multifractal, which is a
promising prognostic and diagnostic tool [16]. In the part,
the multifractal of AE hits is calculated to detailed de-
scription of the occurrence and expansion of concrete failure
cracks. Suppose a correlated series of signal {uk, 1, . . .,N}, the
multifractal can be conducted with the following steps:

(1) Determine the profile Y (i) [31]:

Y(k) � 􏽘
N

k�1
uk −〈xk〉( 􏼁, k � 1, . . .∞, N, (2)

where 〈xk〉 is the average of {uk}.
(2) *e profile Y (k) is further partitioned into Ns� int

(N/s) nonoverlapping segments with equal length s.
*e same procedure is repeated from the end of the
profile for the complete use of the data. *us, 2Ns
segments are obtained.

(3) For 2Ns segments, the local trend is evaluated by the
least-square fitting polynomial, and the variance is
calculated:

F
2
(v, s) �

1
s

􏽘
s

k�1
Y[(v − 1)s + k] − yv(k)( 􏼁

2
, v � 1, . . . , Ns,

(3)

where yv (k) is the polynomial regression fit for each
of the 2Ns.

(4) *e qth order detrended (with no trend) covariance is
calculated by the average over all segments:

Fq(s) �
1

2Ns

􏽘

2Ns

v�1
[F(v, s)]

(q/2)
⎧⎨

⎩

⎫⎬

⎭

(1/q)

, (4)

where q is an index, and Fq (s) is the detrended
covariance.

(5) *e scaling characteristics of fluctuation can be
determined by analyzing the log-log plots Fq (s)
versus s for each value of q [32, 33]. *e generalized
Hurst exponent of h (q) is obtained by the slope of
the linear regression of log Fq (s) versus log (s) [34].

According to the standard allocation function, the re-
lationship between scale function τ (q) and Hust index h (q)
can be expressed as follows:

τ(q) � qh(q) − 1. (5)

*e singularity strength α and the singularity spectrum f
(α) can be calculated with the following equations:

α �
dτ(q)

dq
� h(q) + qh′(q),

f(α) � q a − hq􏼐 􏼑 + 1.

(6)

*e shape and parameters of multifractal is a way to
qualitatively and quantitatively describe the complex signal.
*e shape of the multifractal spectrum deviates to the left
side, a long tail in right called the sparse spectrum, indicating
that small signals occupy a large proportion. In other words,
the shape of the multifractal spectrum deviates to the right
side, a long tail in left called the intensive spectrum, which
indicated that large signals contribute to the dominance in
the discreteness of signals [18]. Furthermore, the overall
Hurst exponent (α0) and the width of the spectrum
(△α� αmax − αmin) demonstrate the density and degree of
signals, respectively. A high value of α0 can be considered

Table 1: Concrete mixture design.

W/b Water (kg) Cement (kg) Sand (kg) Aggregate (kg)
0.45 185 411 685 1118
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more intensive and complex than one with the opposite
characteristics [35]. Moreover, the value ofΔα can be used to
measure of the degree of multifractal of the signal. *e
asymmetry parameter r� (αmax − α0)/(α0 − αmax) of the
spectrum shape denotes the scaling behavior of fluctuations.
*ere are two forms of multifractal spectrum symmetry,
namely, (1) “left-skewed shape,” in which r is less than 1,
indicating large fluctuations in the data, and “right-skewed
shape,” where r is much greater than 1; in this case, small
fluctuations play an important role in the data [17].

3.3. /e FCM Algorithm. It is well known that the char-
acteristics of AE parameters can be used to reflect the
damage mechanisms of concrete. In the section, the FCM
clustering algorithm is attempted to identify damage
mechanisms during concrete failure. Suppose that a set of
the signal Z � {z1, z2, . . ., zn}. *e purpose of FCM is to
assign signal Z to C categories (2 ≤ c< n). Following the
principle, it is also possible to determine a fuzzy mem-
bership matrix U � [ uik]c×n and clustering center matrix
V � [v1, v2,..., vc]

T. uik satisfies uik ∈ [0, 1], 􏽐
c
i�1 uik � 1, and

􏽐
c
k�1 uik > 0. vi represents the clustering center, 1≤ k≤ n,

1≤ i ≤ c. *e objective function of the FCM clustering al-
gorithm is given by the following relation [36].

min J(U, V) � 􏽘
n

k�1
􏽘

c

i�1
uik( 􏼁

m
dik( 􏼁

2
, (7)

where m represents the weight coefficient, m ϵ [1, +∞); J (U,
V) represents the sum of squared distances from the data
samples in the c categories to each cluster center.*e smaller
the value of J (U, V), the better the clustering effect. When J
(U, V) takes the minimum value, the clustering center and
membership of the algorithm are obtained, respectively [37].

Pi

􏽐
n
k�1 uik( 􏼁

m
xk

􏽐
n
k�1 uik( 􏼁

m ,

uik � 􏽘

c

n�1

dik

dnk

(2/m− 1)

⎡⎣ ⎤⎦
− 1

.

(8)

*e basic flow of FCM clustering algorithm is as follows:

(1) Among all the data samples, C data are randomly
selected as initial cluster center, initialize member-
ship matrix

(2) Calculating the distance between all data samples
and C cluster centers, update the cluster center and
membership matrix

(3) Determine whether the objective function value J (U,
V) reaches the minimum, if it is reached, it is the

iteration termination condition; otherwise, repeat
step 2.

3.4. SVM Model Principles. SVM is first applied to classifi-
cation problems. Subsequently, SVM is further applied to
the regression and prediction problems with the introduc-
tion of the loss function ε-insensitive [38, 39]. In this section,
the mathematical formulation can be briefly described
below.

Suppose that a set of training datasets is given as follows:
D� {(xi, yi), i� 1, 2, 3, . . ., n}, where xi is the value of the
input, yi is the corresponding value of the output, and n is the
size of the training dataset.*e optimum regression function
takes the following form:

f(x) � ω · ϕ(x) + b, (9)

where ϕ (x) is the mapping function, representing the high-
dimensional feature space nonlinearly mapped from the
input space x. ω is the weight vector, and b is the bias of the
hyperplane. *e parameters ω and b of the regression
function can be estimated byminimizing the regularized risk
function as follows [40].

Minimize

1
2
‖ω‖

2
+ C 􏽘

n

i�1
ξi + ξ∗i( 􏼁, (10)

and subject to

yi − ω · ϕ xi( 􏼁 − b≤ ε + ξi,

ω · ϕ xi( 􏼁 + b≤ ε + ξ∗i ,

ξi, ξ
∗
i ≥ 0, i � 1, 2, . . . , n,

(11)

where ξi and ξ∗i are the slack variables. *e parameter C, a
positive constant, is a prespecified SVM tolerance parameter.
*e data points will be penalized if the error is larger than
precision parameter ε [41]. ε is the insensitive loss function
and can be written in the following way:

Lε(y)
|f(x) − y| − ε, |y − f(x)|≥ ε,

0, otherwise.
􏼨 (12)

*e introduction of Lagrangian multipliers and maxi-
mizing can be used to solve the dual optimization problem.
Equation (10) can be transformed into a dual-space opti-
mization problem which can be solved by using Lagrange
multipliers. *erefore, equation (10) can be described by the
following way.

Maximize

−ε􏽘
n

i�1
αi + α∗i( 􏼁 −

1
2

􏽘

n

i,j�1
αi − α∗i( 􏼁 αj − α∗j􏼐 􏼑〈xi, xj〉 + 􏽘

n

i�1
αi − α∗i( 􏼁yi, (13)
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and subject to

􏽘

n

i�1
αi − α∗i( 􏼁 � 0, 0≤ αi, α

∗
i ≤C, i � 1, 2, 3, . . . , n,􏼨

(14)

where αi, α∗i are the Lagrangian multipliers. Once the op-
timized Lagrange multipliers are determined, ω and b of the
regression function given by equation (9) are finally achieved
as follows:

f(x) �
1
n

􏽘

n

i�1
yi − 􏽘

n

j�1
αj − α∗j􏼐 􏼑〈xi, xj〉⎛⎝ ⎞⎠,

ω � 􏽘
n

i�1
αi − α∗i( 􏼁xi,

b �
1
n

􏽘

n

i�1
yi − 􏽘

n

j�1
αj − α∗j􏼐 􏼑〈xi, xj〉⎛⎝ ⎞⎠.

(15)

It should be emphasized that only some of Lagrangian
multipliers may be zero and corresponds to error of training
object less than ε. A small number of coefficients with
nonzero, called support vectors, are applied to calculate ω
and b [42].

*e training dataset always appears as the inner product
of paired samples, and the advantage of representing the
learner in the dual form is that the number of adjustable
parameters in the representation does not depend on the
number of input attributes.*e kernel function increases the
capacity of the linear learner by mapping the data to a high-
dimensional space. It can implicitly map the nonlinear
training data to the high-dimensional space without in-
creasing the number of adjustable parameters.*erefore, the
solution of the nonlinear problem has the flexibility and
maneuverability by using proper kernel function to replace
the inner product. *e nonlinear regression function can be
written as follows:

Maximize

−ε􏽘
n

i�1
αi + α∗i( 􏼁 −

1
2

􏽘

n

i,j�1
αi − α∗i( 􏼁 αj − α∗j􏼐 􏼑K xi, xj􏼐 􏼑 + 􏽘

n

i�1
αi − α∗i( 􏼁yi, (16)

and subject to

􏽘

n

i�1
αi − α∗i( 􏼁 � 0,

0≤ αi, α
∗
i ≤C, i � 1, 2, 3, . . . , n,

⎧⎪⎪⎨

⎪⎪⎩

f(x) � 􏽘
n

i�1
αi − α∗i( 􏼁K xi, xj􏼐 􏼑􏽨 􏽩 + b.

(17)

Several significant kernel functions in practices problems
are polynomial kernel, radial basis function kernel (RBF),
and sigmoid kernel functions [24]. Among them, RBF is
favorable for the capability of dealing with nonlinearity and
high-dimensional computation. RBF function can be stated
as follows [43]:

K x, x′( 􏼁 � exp −
x − x′

����
����
2

2σ2
⎛⎝ ⎞⎠. (18)

4. Results and Discussion

4.1. Crack Development. *e mechanical behavior of con-
crete is associated with the nonlinear propagation of internal
cracks. *e varying AE parameters can reflect the charac-
teristics of the crack in real time [44]. *us, the different
stages of the deformation failure process of the concrete
generally can be described by AE parameters with the rapid
release of internal energy [2]. In the part, the deformation
and compressive failure process of concretes were analyzed
by the counts and the cumulative amount of counts.

Figure 2 shows the variation of counts and cumulative
counts with axial loading. As shown in Figure 2, the damage
process of the specimen can be partitioned into three
stages: crack closure (stage Ι), stable crack propagation
(stage ΙΙ), and unstable crack propagation (stage ΙΙΙ). Stage
Ι: it is clear that the cumulative amount of counts increases
nonlinearly, and a large number of counts are observed. In
the initial stage of loading, some of the preexisting
microdefects were gradually compacted and others were
converted into microscopic cracking. It is a common
phenomenon observed in concrete containing the original
micropore and void. Stage ΙΙ: the cumulative amount of
counts is approximately linearly increasing, and there is no
significant fluctuation in counts. With the increase of in-
ternal pressure-shear stress, the counts generated from the
sliding of mortar aggregate interface, interconnection of
large pores, and matrix cracking. Stage ΙΙΙ: with the
approaching of the peak load, the cumulative amount of
counts generally shows an exponential growth and counts
suddenly increased. In this stage, the generation of mac-
rocracks of the concrete progressively increases and
multiple macrocracks branching continuously penetrated
and is unstable expansion.

4.2. B Value of Damage Evaluation. In the previous section,
the counts and cumulative amount of counts are used to
reveal a qualitative relationship between counts and the
magnitude of cracks. In the part, the statistical analysis of
amplitude of the b value was used as an index to quanti-
tatively identify damage.

Advances in Civil Engineering 5



*e result of the evolution of the b value for concrete is
presented in Figure 3. It can be seen from Figure 3 that three
distinct damage levels can be identified with the variation of
the b value. At the early stages of loading, the b values ranged
from 1.39 to 1.77, which could be explained by the dominant
of the microcrack. With the increase of load, the fluctuation
of the b value was observed in a relatively narrow range
(1.44–1.74), which may be the stable macrocrack. At the near
peak load, a sudden drop to 1.35 in the b value was observed.
*is can be interpreted as a shift from local macrocrack to
cohesive failure. As the stress increases to the ultimate load,
the b value fluctuates over a wide range due to macrocrack
and microcrack.

4.3. Multifractal Analysis of Damage Evaluation.
Although the b value analysis can be used to identify
microfractures and macrofractures, a major criticism of the
results is limited in the analysis of fracture mode charac-
terization due to the irregular multiple peaks [45]. Due to the
self-similarity and multiscale of concrete cracking, the re-
lease of AE signals may follow the fractal characteristics in
time and space distribution [15]. *erefore, the multifractal
analysis of AE signals is attempted to provide a quantitative
index of the complexity of the multiscale of crack.

For the purpose of qualitative and quantitative evalua-
tion of damage in the concrete failure process, the mor-
phology and parameters of the multifractal spectrum of AE
hits under three stages were analyzed. *e morphology of
multifractal curves is shown in Figure 4, which allows us to
compare the differences of the multifractal characteristic
curves. From Figure 4, we can see that multifractal curves in
the three stages are all asymmetrical, mainly the intensive
spectrum.*e results obtained from the preliminary analysis
of the morphology of the multifractal spectrum revealed that
the relatively large signals contributed to the dominance of
the multifractal descriptive statistics. However, this relative
size relationship was only in the statistical analysis of data.
*e more surprising correlation is with the stress level and

the multifractal characteristic curves. With the stress in-
creasing, there is a clear trend of decreasing proportion in
the left part of the spectrum due to the heterogeneity of crack
morphology.

In order to further explore the quantitative relationship
between the multifractal parameters and damage, the var-
iability of Δα, r, and α0 was calculated and is listed in Table 2.
It can be seen from the data in Table 2 that there is a clear
trend of decreasing for the variability of Δα and r and in-
creasing in α0. During the whole failure process, the value of
rwas greater than 1, which indicated a left-skewed spectrum.
*e characteristics of the left-skewed spectrum revealed the
small fluctuations in the AE signal according to multifractal
statistics. In addition, the parameter of r shows a downward
trend which suggested that the fluctuation in the data is
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increasing. *en, Δα continuous reduction from 1.04 to 0.86
indicates the degree of multifractal decrease in AE series.
However, the variability of α0 is shown to be increasing.
What is interesting in these data is that there is a significant
positive correlation between α0 and crack density. In other
words, the high value of α0 corresponded to a high cracking
density.

*e analysis of multifractal can provide information on
the density, complexity, fractal characteristics, and anisot-
ropy of crack. *us, the part sets out with the aim of
assessing the importance of multifractal parameter in
quantitative description of damage of concrete. *e cur-
vature and symmetry of multifractal spectrum indicate that
the relatively large signals occupy a large proportion.
However, the findings of the current study do not support
the previous analysis of b, which indicates that small am-
plitude events occur more frequently. A possible explanation
for the results may be attributed to the difference in sta-
tistical parameters and methods. Compared with the vari-
ability of Δα, r, and α0 in three stages, parameters vary more
from stage Ι to stage ΙΙ than they do from stage ΙΙ to stage ΙΙΙ.
*is discrepancy could be attributed to the cracking
mechanisms. In stage Ι, the AE signals are mainly due to the
closure of fissures and microcrack. However, macroscopic
cracking is the main factor of signals in stage ΙΙ and ΙΙΙ.
Table 2 shows that there has been a fall in the parameter of r.
It is necessary here to clarify exactly what is meant by
expanding macroscopic cracking.

*e most striking result to emerge from the data is α0.
Figure 5 provides the summary statistics for α0. As shown in
Figure 5, in the whole process of concrete failure, α0 shows
the characteristics of phase change, which is similar to the
trend of counts and the value b. At the initial loading stage,
there is a clear trend of increasing in α0. When concrete was
loaded from 20MPa to 43MPa, the value of α0 fluctuated
within a small range of 2.5. Finally, when concrete was
loaded to failure strength, sample had entered into the
fracture stage. *e variability of α0 is consistently greater
than 2.5, and as the stress increases, it first rises to the
maximum and then drops to 2.5. Together, these results
provide important insights into multifractal parameters to
quantitatively describe in the damage.

*e multifractal distribution characteristics of the AE
activities are associated with the formation and expansion of
crack in materials [20]. *e dynamic multifractal variability
of α0 is inevitably related to the nonlinear process of cracks.
In other words, the value α0 can be used to quantify the
generation and development of damage. In stage Ι, due to the
closure of microscopic defects and internal cracks of ma-
terial, the signal complexity increases, which results in the
discrete and decentralized in signal distribution. Figure 5

shows that there has been a considerable increase in the
discreteness of α0. When sample had entered into stage ΙΙ,
the microscopic cracking transforms into macrocrack and
stable propagation, resulting in the ratio of the strength of
the AE signals to remain stable. *erefore, the variations of
α0 floated near 2.5. With increasing stress, the unstable
expansion gradually formed the main cracking surface,
which increased the crack density and complexity. *us, α0
steadily increased. Once the main cracking surface is
formed, the discrete and disordered cracks turn into the
main failure surfaces. Figure 5 reveals that α0 has been a
gradual drop to 2.5 until the final destruction. *e present
results are significant in at least major two respects. First, α0
can be used as the damage warning point if it is continuously
greater than 2.5. Second, the maximum value of α0 indicates
the formation of the main failure surface. *is finding is of
great significance for damage identification of multifractal
parameters.

4.4. Identification Damage Classification Based on FCM.
Due to the complexity of the damage behavior of concrete,
the cluster could provide an effective and feasible method to
identify the internal damage mechanisms [46].*e pertinent
parameters of waveform signal are associated with damage
[47]. In the part, only hits and energy are considered as input
parameters of FCM to identify the type of damage mech-
anism of concrete in static compression tests. It should be
emphasized that the three clusters are divided corresponding
to three main damage mechanisms: interface cracking,
matrix failure, and instability of very few aggregates near the
ultimate strength.

According to the waveform characteristics of the ma-
terial destruction process, the quantitative distribution of
three clusters of hits and energy is shown in Figure 6. It is
clearly observed in Figure 6 that the three damage mech-
anisms can be distinguished significantly on hits, but the
difference in energy is not obvious, which is similar in [48].
*e interface cracking is roughly in the range of 0–2453 in
hits, matrix cracking is in the range of 2453–5480, and

Table 2: Multifractal values for r, Δα, and α0.

Crack
closure

Stable crack
propagation Unstable crack propagation

r 2.59 1.74 1.57
Δα 1.04 0.89 0.86
α0 2.47 2.61 2.80

0 10 20 30 40 50
1.0

1.5

2.0

2.5

3.0

Main fracture point

α 0

Stress (MPa)

Precursory fracture point

Figure 5: Multifractal parameter (α0) changes with time.
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aggregate damage is greater than 5480 in hits. It can be seen
from the above results that the damage mechanisms can be
accurately and quantitatively identified in hits and energy
based on FCM.

To further explore the accuracy of mechanism identi-
fication, the cumulative hits of damage and stress are shown
in Figure 7. AE activity corresponding to the interface was
found during the loading process. It should be emphasized,
however, that only the interface cracking signal exists in the
initial damage stage. *is could explain the degradation in
interface properties. *e intuitive results show that the
matrix cracking generates as it begins from approximately
27MPa. *e slope of cumulative hits of matrix cracking is
constant between 27MPa and 47MPa, due to stable evo-
lution of crack. With the continuing increase of stress until
failure, the number of hits corresponding to the matrix is
significantly increasing, due to the dramatic nonlinear ex-
pansion of cracks in the matrix. Moreover, the activities
corresponding to aggregates appear and rapid growth.

4.5. Development of SVM for Prediction of CS

4.5.1. SVMModel Preparation and Preprocessing. SVM is an
effective technology for estimation. Mixture components of
concrete are frequently regarded as the main input pa-
rameter to predict the strength of concrete [23]. In this
study, AE parameters of cumulative counts (CC), cumulative
energy (CE), and cumulative hits (CH), in the concrete
compression process, are used as input parameters to predict
the CS of concrete.*e corresponding AE data (CC, CE, and
CH) in the compression process are shown in Figure 8. It can
be seen from Figure 8 that CC, CE, and CH have different
orders of magnitude. *us, in order to implement SVM
models, the database is randomly selected with 60 data from
the collected data and was partitioned into two subsets: 40

training and 20 testing. Training and testing databases are
listed in Table 3.

*e training is required to develop the model of rec-
ognizing the patterns between input and output data. *e
testing is used for the evaluation of the performance of
developed models. *e speed and accuracy of prediction
calculations can be increased by normalizing the input data.
Hence, the input and output data are normalized before
being used in the SVR model as follows [49]:
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where xa
i and xn

i are the ith input vectors before and after
normalization, respectively. xmax

i and xmin
i are the maximum

and minimum values of the corresponding input vector.
As mentioned previously, the database was partitioned

into two subsets: training and testing. *e SVM model
randomly selected 40 data of the total database. 80 data were
trained, and the other 20 data were for testing. *e AE
parameters (CC, CE, and CH) were used as the input data of
the SVM model, and the corresponding CS was used as the
output data.

ParametersC, ε, and σ are the key parameters of the SVM
model, which can affect the calculation speed and accuracy
of the model. In the present study, optimal values of pa-
rameters (C, ε, and σ) are selected by grid search. *e
training and testing process of one specimen is shown in
Figure 9.

*e reliability of the SVMmodel is also evaluated via the
following statistical parameters: RMSE, MAPE, and the
correlation coefficient of between predicted and actual re-
sults (R2). *ese statistical parameters can reflect the ac-
curacy of predicting results. *e calculation formulas of
RMSE, MAPE, and R2 have been given in literature [49, 50].

4.5.2. Analysis of the SVM Prediction Performance. To
further expand the application of AE for predicting com-
pressive of concrete. SVM is developed to estimate the
concrete CS based on AE parameters as inputs. Figure 10
illustrates the typical characteristics of the relationship be-
tween the prediction results and the actual concrete CS. We
obtained the correlation coefficients R2 approximately equal
to 1. It is indicated that CS obtained from the proposed SVM
model is in pleasurable agreement with the experimental
value.

Figure 11 compares MAPE and RMSE values in ANN
and SVM. It can be seen from Figure 11 that SVM obtains
the superior value of MAPE and RMSE compared to ANN.
ANN and SVM have the same application to regression
problem, whereas SVM has a firmly theoretical and math-
ematical foundation compared to ANN, which reply on the
designer’s empirical knowledge and prior knowledge. SVM
implements the SRM principle which aims at minimizing a
bound on the generalization error of a model rather than
minimizing the error on the training data only. *is dif-
ference equips SVM with a greater ability to avoid over-
training and has better generalization capability than the
ANN model [21]. In addition, the performance of the ANN
model depends too heavily on the sample size in the process
of model training. In most cases, the sample size is limited.
However, SVM can achieve higher generalization ability
with a limited number of samples in comparison to ANN.
*us, it is a broad indication that SVM can be regarded as a
useful modeling tool for concrete.

4.5.3. Performance Comparison of AE Parameters and
Others. In order to highlight the superiority of AE pa-
rameters as model input, the results of this study were

Table 3: Training and testing databases.

Training sample CC (×105) CE (×105) CH (×108) CS (MPa)
1 2.76 7.01 1.00 52.74
2 2.70 6.85 0.96 52.64
3 2.68 6.81 0.96 52.62
4 2.65 6.70 0.95 52.59
5 2.65 6.70 0.95 52.59
6 2.64 6.68 0.95 52.59
7 2.61 6.52 0.94 52.57
8 2.53 6.32 0.91 52.47
9 2.51 6.29 0.90 52.46
10 2.48 6.21 0.89 52.44
11 2.48 6.20 0.89 52.44
12 2.38 5.85 0.87 52.37
13 2.38 5.84 0.87 52.36
14 2.33 5.68 0.85 52.24
15 2.31 5.64 0.84 52.18
16 2.31 5.64 0.84 52.18
17 2.25 5.49 0.80 51.97
18 2.24 5.46 0.80 51.96
19 2.18 5.28 0.77 51.83
20 2.12 5.14 0.73 51.61
21 2.10 5.09 0.72 51.53
22 2.10 5.07 0.72 51.52
23 2.08 5.03 0.71 51.43
24 2.04 4.93 0.69 51.29
25 2.03 4.92 0.68 51.25
26 2.00 4.85 0.66 51.13
27 1.97 4.78 0.64 50.97
28 1.84 4.52 0.56 50.56
29 1.75 4.32 0.50 50.14
30 1.70 4.21 0.48 50.00
31 1.70 4.21 0.48 49.98
32 1.68 4.16 0.47 49.90
33 1.67 4.14 0.46 49.88
34 1.66 4.11 0.46 49.83
35 1.62 4.03 0.43 49.65
36 1.62 4.02 0.43 49.63
37 1.61 4.00 0.42 49.56
38 1.56 3.90 0.40 49.35
39 1.38 3.41 0.31 48.51
40 1.36 3.39 0.30 48.42
41 1.33 3.31 0.29 48.19
42 1.31 3.27 0.28 48.01
43 1.29 3.25 0.27 47.88
44 1.29 3.24 0.26 47.81
45 1.18 2.84 0.22 46.69
46 1.16 2.82 0.21 46.55
47 1.16 2.82 0.21 46.53
48 1.14 2.77 0.20 46.07
49 1.11 2.71 0.19 45.77
50 1.10 2.70 0.19 45.75
51 1.08 2.65 0.18 45.30
52 1.08 2.65 0.18 45.21
53 1.07 2.64 0.18 45.17
54 1.04 2.57 0.16 44.62
55 0.93 2.34 0.13 43.43
56 0.92 2.31 0.13 43.24
57 0.92 2.31 0.13 43.23
58 0.91 2.29 0.13 43.13
59 0.86 2.10 0.11 42.14
60 0.81 2.00 0.10 40.24
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compared with the literature [23, 51, 52]. *e input pa-
rameters of Shih, Aiyer, and Cheng are ultrasonic and the
composition of 6 and 8 mixtures [23, 51, 52]. *e quanti-
tative description of the accuracy of prediction results can be
characterized by MAPE and RMSE.

Figure 12 shows the tendencies of MAPE and RMSE
values with AE parameters and other three different input
data. It can be seen from Figure 12 that the values of RMSE

and MAPE of SVM using AE parameters as input were
0.74MPa and 1.00%, respectively. Nevertheless, the values of
RMSE reached separately 4.21MPa and 8.85MPa in [51, 52],
and the values of MAPE reached separately 6.77%, 3.75%,
and 6.77% in [23, 51, 52]. It can be concluded that AE
parameters as input data give the excellent value. In this
context, AE parameters and corresponding loads in the
concrete compression process are adopted as input and
output of the SVM model, which can effectively reduce the
number of concrete samples while meeting enough training
and test samples, compared with other three input pa-
rameters. *erefore, it means that AE parameters, as the
input of the model, can be used to predict CS.

Table 4 lists two differences between this study and the
others, input and sample size. As can be seen from Table 3,
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AE parameters are taken as the input of SVM, and the
number of specimens is significantly reduced. In this study,
only 16 samples are needed, which is far less than the
number of samples in [23, 51, 52]. *is is related to the
sample selection of training and testing database of SVM.
*e characteristic of SVM is that it requires a sea of samples
for training. In this study, 60 data were selected as inputs and
extracted from AE data in the process of compression. Of
course, more data could be extracted. One of the main
advantages of AE parameters is to reduce the number of
samples as much as possible with guaranteed accuracy.

5. Conclusion

*is project was undertaken to establish multifractal damage
analysis of AE series and propose a SVM model to predict
the CS of concrete by AE parameters. Meanwhile, FCM is
applied for the identification of mechanisms in concrete.
Based on the investigation, the following conclusions can be
drawn.

*e analysis of multifractal undertaken here has ex-
tended our knowledge of the statistical methods of AE series.
*e morphology of the multifractal spectrum of AE pa-
rameters makes several noteworthy contributions to pro-
portional relation of signal size with the damage level. *is
work contributes to quantitatively distinguish the differ-
ences of damage levels. *e decrease of parameters Δα and r
suggests that the degree of multifractal decreases and the
fluctuation increases in signals. *e increase of parameter α0
is positively correlated with the density of multiple cracking.
α0> 2.5 indicates unstable cracks have been developed for
specimen. In addition, an implication of this is the possibility
that the maximum value of α0 is a fair quantitative indicator
of the primary failure surface. Meanwhile, FCM has been
successful in discriminating the damage mechanisms.

SVM is a powerful computational approach for ana-
lyzing the complex relationship between AE parameters and
predicting concrete CS. It is found that AE parameters as
input of SVM have the higher precision than others by
comparing MSE and MAPE. Moreover, AE parameters as
inputs can greatly reduce the number of samples. In terms of
forecasting models, it should be emphasized that the pre-
diction performance of SVM is very advantageous compared
with ANN. *erefore, SVM could be utilized to predict the
actual failure load of concrete and may be further applied to
strength prediction for civil engineers and concrete con-
struction fields.
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