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Modal parameters are important parameters for the dynamic response analysis of structures. An output-only modal parameter
identification technique based on Hilbert Vibration Decomposition (HVD) is developed herein for structural modal parameter
identification to (1) obtain the Free Decay Response (FDR) of a structure through free vibration or ambient vibration tests, (2)
decompose the FDR into modal responses using HVD, and (3) calculate the instantaneous frequencies and instantaneous
damping ratios of the modal responses to obtain the modal frequencies and modal damping ratios. A series of numerical examples
are examined to demonstrate the efficiency and highlight the superiorities of the proposed method relative to the empirical model
decomposition-based (EMD-based) method. )e robustness of the proposed method to noises is also investigated and proved to
be positive effect. )e proposed method is proved to be efficient in modal parameter identification for both linear and nonlinear
systems, with better frequency resolution, and it can be applied to systems with closely spaced modes and low-energy mode.

1. Introduction

Modal parameters (including modal frequency and modal
damping ratio) are important parameters for the dynamic
response analysis of structures. Accurate and convenient
identification of modal parameters is one of the research
hotspots in the engineering field. Modal parameters can
be identified by forced vibration, free vibration, or ran-
dom vibration tests under environmental excitation. For
large civil structures, the cost of forced vibration testing is
high, and the continuous external excitation load may
considerably damage the structure. )erefore, parameter
identification methods based on free vibration or random
vibration tests have attracted increasing attention. Be-
cause this kind of method does not need to measure the
input, they are often called output-only modal analysis
(OMA) methods [1].

Early OMA methods include the peak pick-up, fre-
quency domain decomposition, random decrement, and
random subspace methods. )ese methods are easy to

implement, but their abilities are limited when dealing with
structures with large damping, dense modes, or low-energy
modes. In addition, the traditional methods cannot be used
to analyze the nonlinear and nonstationary characteristics of
structural dynamic responses.

Many scholars have proposed and developed modal
parameter identification methods based on time-frequency
analysis [2], including the more classical methods based on
wavelet transform, empirical model decomposition (EMD),
and Hilbert transform [3, 4]. )e analysis results of the
wavelet transform method are sensitive to the selection of
the mother wavelet function, and no general theory is
available for choosing the mother wavelet function. )e
EMD method is a kind of adaptive signal decomposition
technology that can be combined with Hilbert transform to
form a powerful time-frequency analysis tool, usually called
Hilbert Huang transform (HHT). Many scholars have
studied modal parameter identification based on HHT
method, introducing some improved algorithms to improve
the performance of the HHT method [5].
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Although modal parameter identification based on EMD
has been widely used, it has some obvious defects: it cannot
effectively decompose dense and low-energy modes, and it
may produce pseudomodes. Hilbert vibration decomposi-
tion (HVD) [6, 7] is a more recently proposed adaptive
signal decomposition method. It overcomes some defects of
the EMD method and has been applied in vibration signal
analysis [8], structural fault diagnosis, and modal parameter
identification of linear systems [9]. Applications of HVD to
the identification of modal parameters of nonlinear systems
and its advantages over EMD are worthy of further study
[10].

In this study, a new modal parameter identification
method is proposed based on the HVD method. )rough a
series of numerical examples, the effectiveness and superi-
ority of this method are verified.

2. Hilbert Vibration Decomposition
(HVD) Process

In modal parameter identification, the multifrequency
component signal (measured vibration response or free
attenuation vibration response) must often be decomposed
into a single-frequency component signal (modal response).
Traditional signal decomposition usually adopts the EMD
method and some improved EMD algorithms [4, 5]. )e
HVD method introduced in this study is an adaptive signal

decomposition method recently proposed. Any continuous
multifrequency component signal can be expressed as

s(t) � 􏽘
K

k�1
vk(t) � 􏽘

K

k�1
Ak(t)cos 􏽚ωk(t)dt + θk􏼔 􏼕, (1)

where s (t) is the multifrequency component signal to be
decomposed, vk(t) (k� 1, . . .,K) is the kth-order component
of s (t), K is the number of decomposition layers, Ak (t) and
ωk (t) are the instantaneous amplitude and the instantaneous
circular frequency of vk(t), respectively, and θk is the initial
phase angle of vk(t). fk(t) � (ωk(t)/(2π)vk(t)) is the in-
stantaneous frequency.

2.1. Instantaneous Frequency Estimation of Single Frequency
Component Signal. First, the analytical signal of s (t) was
obtained by carrying out Hilbert transformation consider
the case of K� 2:

z(t) � A1(t)e
j 􏽒ω1(t)dt+θ1􏼐 􏼑

+ A2(t)e
j 􏽒ω2(t)dt+θ2􏼐 􏼑

.

(2)

Assuming A1 (t)>A2 (t), the instantaneous amplitude
and the instantaneous circular frequency of z (t) can be
expressed as

A(t) � A
2
1(t) + A

2
2(t) + 2A1(t)A2(t)cos 􏽚 ω2(t) − ω1(t)( 􏼁dt + θ2 − θ1( 􏼁􏼒 􏼓􏼔 􏼕

1/2
, (3)

ω(t) � ω1(t) +
ω2(t) − ω1(t)􏼂 􏼃 A

2
2(t) + 2A1(t)A2(t)cos 􏽒 ω2(t) − ω1(t)( 􏼁dt + θ2 − θ1( 􏼁􏼐 􏼑􏽨 􏽩

A
2
(t)

. (4)

According to formula (4), ω (t) is equivalent to super-
imposing the high-frequency oscillation component on the
instantaneous circular frequency v1(t) of the maximum
amplitude component ω1 (t). )erefore, a low-pass filter can
be applied to ω (t) to obtain ω1 (t). ForN> 2,ω (t) expression
is more complex, but ω (t) can still be filtered to obtain the
instantaneous circular frequency of themaximum amplitude
component.

2.2. Instantaneous Amplitude Estimation of Single Frequency
Component Signal. HVD is used to calculate the instanta-
neous amplitude of the maximum amplitude component by
synchronous detection of amplitude and phase of s (t).
Generally, the instantaneous circle frequency obtained in
Section 2.1 is recorded as ωr (t). )e product of s (t) and the
two orthogonal signals of cos[􏽒ωr(t)dt] and sin[􏽒ωr(t)dt]

was shown as follows:

sk�r(t) � 0.5Ak(t) cos θk( 􏼁 + cos 􏽚ωk(t) + ωr(t) + θk􏼒 􏼓􏼔 􏼕,

(5)

􏽥sk�r(t) � 0.5Ak(t) sin θk( 􏼁 + sin 􏽚ωk(t) + ωr(t) + θk􏼒 􏼓􏼔 􏼕.

(6)

Conduct low-pass filtering for formulas (5) and (6):

sk�r(t) � 0.5Ak(t)cos θk( 􏼁,

􏽥sk�r(t) � 0.5Ak(t)sin θk( 􏼁.
(7)

)e instantaneous amplitude of the maximum ampli-
tude component is

Ak�r(t) � 2
������������������

􏽥sk�r(t)􏼂 􏼃
2

+ 􏽥sk�r(t)􏼂 􏼃
2

􏽱

. (8)
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2.3. Iterative Extraction of Single Frequency Component
Signal. )e maximum amplitude component obtained by
the methods in Sections 2.1 and 2.2 is

vr(t) � Ar(t)cos 􏽚ωr(t)dt + θr􏼔 􏼕. (9)

Subtract vr(t) from the decomposed signal to obtain the
signal to be decomposed in the next iteration:

sr(t) � sr−1(t) − vr(t), (10)

where r≥ 1 and sr (t) is the residual after the second iteration,
which is the signal to be decomposed in the (r+ 1)th iterative
step. )e standard deviation of sr (t) can be used as the
termination condition of the iteration. For example, when
σ < 0.001, the iteration is terminated.

3. Method

)e modal parameter identification method proposed in this
study can be divided into three steps: (1) obtain the free at-
tenuated vibration response (FDR) of the structure from the
random vibration signal of the structure using a free vibration
test or the random decrement method, (2) extract the modal
response from the FDR using the HVD method, and (3) cal-
culate the instantaneous frequency and damping of each modal
response and then obtain the modal frequency and damping. In
the above steps, the structural vibration test was outside the
scope of this study. )e second step was discussed in detail in
Section 2. )is section introduces the content for step 3.

Assuming that the modal response of the structure was
extracted using HVD, the instantaneous frequency and
amplitude of vi (t) can be calculated. Hilbert transform is the
most commonly used method to solve the instantaneous
frequency and amplitude of a signal. However, due to the
limitation of the Bedrosian theorem and Nuttall theorem
[11], the instantaneous frequency obtained by Hilbert
transform may have obvious fluctuations. In addition,
Hilbert transform produces an obvious end effect. To
overcome these shortcomings of Hilbert transform, some
scholars constructed improved algorithms. Among them,
the results of the empirical envelope (EE) method are stable,
the end effect is weak, and its advantages have been verified
in the literature. )erefore, the EE method was used to solve
the instantaneous frequency of modal response [12, 13].

For the time-varying damping signal, the signal damping
can be solved by sections under the assumption that the signal
damping remains constant for several periods. However, the
instantaneous characteristics of the signal damping cannot be
obtained using this method. In this study, the method in the
literature is used to calculate the instantaneous damping of a
single-frequency component signal [14].

According to Ak (t), the instantaneous logarithmic decay
rate of vk(t) can be calculated as

δk tm( 􏼁 � ln
Ak tm( 􏼁

Ak tm−1( 􏼁
�

2πξk tm( 􏼁
���������

1 − ξ2k tm( 􏼁

􏽱 , (11)

wherem represents the number of sampling points and ξk (t)
is the instantaneous damping ratio of vk(t), and

ξk(t) �
ln Ak tm( 􏼁/Ak tm−1( 􏼁􏼂 􏼃

�������������������������

4π2 + ln Ak tm( 􏼁/Ak tm−1( 􏼁􏼂 􏼃􏼈 􏼉
2

􏽱 . (12)

For the case of small damping, ln[q (tm)/q (tm−1)]<< 2π,
formula (12) can be simplified as

ξk(t) �
ln Ak tm( 􏼁/Ak tm−1( 􏼁􏼂 􏼃

2π
. (13)

Formula (10) does not involve differential operation, is
less affected by noise, and is not affected by instantaneous
frequency results, so the calculation results are relatively
stable. Notably, the instantaneous damping ratio obtained by
formula (10) may fluctuate due to the interference of discrete
sampling and noise. In practical applications, the instan-
taneous damping ratio of the signal can be averaged over a
certain period of time (such as a single vibration period) to
increase the smoothness of the result.

For linear systems, the instantaneous modal frequency and
damping ratio are approximately constant, while they will be
changed with time for nonlinear systems. Experimental results
showed that themodal frequency andmodal damping ratio of a
large number of civil structures often change with the am-
plitude [2, 5, 14].)erefore, the instantaneousmodal frequency
and modal damping ratio can be transformed into the modal
frequency and modal damping ratio with amplitude change
using least square fitting:

Ak(t), fk(t)􏼂 􏼃⟶
Fitting

fk Ak( 􏼁, (14)

Ak(t), ξk(t)􏼂 􏼃⟶
Fitting

ξk Ak( 􏼁. (15)

For linear systems, fk (Ak) and ξk (Ak) are approximately
constant. For nonlinear systems, the variations of fk (Ak) and
ξk (Ak) reflect the variation trend of the structural modal
frequency and the modal damping ratio with amplitude.

4. Results

)eHVDmethod overcomes some shortcomings of the EMD
method, maintains the ability to decompose multifrequency
component signals, and detects the amplitude or frequency
transient changes of signals. )erefore, HVD performs better
than EMD in the decomposition or time-frequency analysis of
specific types of signals and the modal parameter identification
of certain types of structures. In this section, three numerical
examples are used to verify the effectiveness and superiority of
the modal parameter identification method. )e head and tail
results were excluded from the example results due to the
certain end effect of the decomposition results of the HVD
method. )e end effect of HVD can be weakened by means of
signal extension.

4.1. Two Frequency Component Signals with Closely Spaced
Modes. Considering a two degree-of-freedom linear system
with dense modes, its FDR is shown in formula (16), where
ξ1 � ξ2 � 0.01, f1 � 3.5Hz, and f2 � 4Hz. )e time history and
amplitude spectrum of the FDR (sampling frequency 50Hz)
shown in formula (16) are depicted in Figure 1:
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s(t) � v1(t) + v2(t) � e
−2πξ1f1t cos 2πf1t( 􏼁

+ e
−2πξ2f2t cos 2πf2t( 􏼁.

(16)

)e FDR is decomposed into two modal responses using
the HVDmethod, and the decomposition result and the real
modal response are compared in Figure 2.)e HVDmethod
can accurately decompose two modal responses in FDR.)e
EMD method was used to decompose the FDR to verify the
advantages of the HVD method, as shown in Figure 1, and
the results are shown in Figure 3. Figure 3 shows that the
EMD decomposition results overlap due to the close fre-
quency of the two modes, which leading to the two-mode
response in FDR cannot be decomposed. In addition, there
are many pseudomodes in the EMD decomposition results,
which may mislead users when dealing with practical
projects. )ese results indicated that the HVD method has
better frequency resolution than the EMD method.

)e instantaneous amplitudes of v1(t) and v2(t) are
shown in Figure 2. )e instantaneous amplitude results
agree well with the signal peak value, reflecting the recog-
nition accuracy of the instantaneous amplitude. )e iden-
tification results of the instantaneous frequency and
instantaneous damping ratio of v1(t) and v2(t) are shown in
Figure 4, which indicates a well agreement with the theo-
retical values. )e results show that this method is suitable
for the identification of modal parameters of structures with
closely spaced modes.

To investigate the identification accuracy of different
damping ratio systems using this method, the damping ratio
in formula (16) was changed to ξ1 � ξ2 � 0.02, 0.04, 0.06, and
0.08. Table 1 lists the identification results of the modal
parameters under different damping ratios. When the
damping ratio is as high as 0.06, the accuracy of the proposed

method is still satisfactory; when the damping ratio con-
tinues to increase, the identification results of the modal
frequency and modal damping ratio show some errors. Due
to the high damping ratio, the signal attenuation is fast and
the available signal is short, so the HVDmethod struggles to
accurately decompose two adjacent modes.

To investigate the influence of noise on the identification
accuracy of this method, zero mean Gaussian white noise
was added to the FDR shown in Figure 1. Table 2 lists the
identification results of modal frequency and modal
damping ratio under different signal-to-noise ratios (SNR).
)erefore, this method has good antinoise performance.

4.2. Two Frequency Component Signals with Low-Energy
Mode. )e FDR of a two-degrees-of-freedom linear system
is shown in formula (13), where ξ1 � ξ2 � 0.01, f1 � 2Hz, and
f2 � 4Hz, and the time history and amplitude spectrum of
the FDR (sampling frequency 50Hz) are shown in Figure 5.
Formula (17) shows that the v2(t) energy is only about 10%
of the v1(t) energy in FDR:

s(t) � v1(t) + v2(t) � e
−2πξ1f1t cos 2πf1t( 􏼁

+ 0.1e
−2πξ2f2t cos 2πf2t( 􏼁.

(17)

)e FDR is decomposed into two modal responses using
the HVD method, and the decomposition results and the real
modal response are compared in Figure 6. )e HVD method
can accurately decompose two modal responses in FDR. )e
EMD method was used to decompose the FDR to verify the
advantages of the HVD method as shown in Figure 5, and the
results are shown in Figure 7. Figure 7 shows that EMD cannot
decompose the twomodal response due to the low v2(t) energy
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Figure 1: Two-component signal with closely spaced modes.
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Figure 2: Modal responses of 2 degree-of-dreedom (DOF) system (Hilbert vibration decomposition (HVD) results). v1 and v2 are the
maximum amplitude components under the instantaneous frequency of f1 � 3.5Hz and f2 � 4Hz.
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Figure 3: Empirical model decomposition results with closely spaced modes.
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ratio in FDR. )e HVD method can separate low-energy
modes better than the EMD method.

)e identification results of the instantaneous frequency
and instantaneous damping ratio of v1(t) and v2(t) are
shown in Figure 8, which indicate a well agreement with the

theoretical values, thus verifying the accuracy of this
method. )e results showed that this method can be used to
identify the low-energy mode modal parameters.

)e results of modal frequency and modal damping ratio
identification under different SNR are provided in Table 3. )e
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Figure 4: Instantaneous frequency and damping ratio.

Table 1: Identification results for various damping ratios.

ξ1 � ξ2 f1 f2 ξ1 ξ2
0.01 3.50 4.00 0.010 0.010
0.02 3.50 4.00 0.020 0.020
0.04 3.50 4.00 0.010 0.010
0.06 3.50 3.91 0.061 0.063
0.08 3.56 3.76 0.082 0.074
Note. ξ1 and ξ2 are the modal damping and f1 and f2 are the modal frequency.

Table 2: Identification results for various signal-to-noise ratios (SNRs) with closely spaced modes.

SNR (db) f1 f2 ξ1 ξ2
+∞ 3.50 4.00 0.010 0.010
40 3.50 4.00 0.010 0.010
30 3.50 4.00 0.010 0.010
20 3.50 4.00 0.010 0.010
10 3.50 4.00 0.010 0.010
Note. ξ1 and ξ2 are the modal damping and f1 and f2 are the modal frequency.
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decomposition result of the low-energy modal response is easily
disturbed by noise, so its parameter identification is more
sensitive to noise.

5. Conclusions

A new method for structural modal parameter identification
based on the HVDmethod was proposed.)e HVDmethod
overcomes some defects of the EMD method, such as the
inability to effectively decompose dense modes and low-
energy modes, so it is more suitable for the decomposition
and time-frequency analysis of specific types of nonlinear
nonstationary signals. To identify the potential nonlinear
characteristics of modal parameters, the instantaneous
frequency of the modal response is calculated using the
empirical envelope method, and the instantaneous damping
ratio is calculated based on the instantaneous logarithmic
decay rate of modal response amplitude.

)rough a series of numerical examples, the effectiveness of
this method was verified, the advantages of this method
compared with the EMD-based recognition method were
highlighted, and the antinoise performance of this method was
studied. )e results showed that this method can be used to
identify the modal parameters of linear and nonlinear systems,
dense modal systems, and low-energy modal systems.
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