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,e rapid increase of the number of electric vehicles (EVs) has posed great challenges to the safe operation of the distribution
network. ,erefore, this paper proposes an ordered charging scheduling method for EV in the cloud-edge collaborative en-
vironment. Firstly, the uncertainty of user load demands, charging station requirements, and renewable outputs are taken into
consideration. Correspondingly, the residential distribution points, EV charging stations, and renewable plants are regarded as the
edge nodes. ,en, the load demands and renewable outputs are predicted by a model combined with the convolutional neural
network and deep belief network (CNN-DBN). Secondly, the power supply plans for charging stations are determined at the cloud
side aiming at minimizing the operating cost of the distribution network via collecting the forecasting results. Finally, the charging
station formulates the personalized charging scheduling strategies according to EV’s charging plans and the charging demands in
order to follow the supply plan. ,e simulation results show that the load peak-to-valley difference and standard deviation of the
proposed algorithm are reduced by 30.13% and 16.94%, respectively, compared with the disorderly charging and discharging
behavior, which has verified the effectiveness and feasibility of the proposed method.

1. Introduction

With the popularization of electric vehicles (EVs), the rapid
increase of charging demands has posed great challenges to
the safe operation of the distribution networks [1]. For
centralized charging stations, due to the concentrated
charging characteristic of EVs, the impact of disorderly
charging behavior on the grid cannot be ignored, especially
in case that the number of charging users is large. Specifi-
cally, as the charging behavior of EVs is highly correlated
with user’s travel habits, thus disorderly charging behavior
may cause the expansion of the peak-to-valley gap in the
distribution network and lead to a series of problems such as
active/reactive power supply and demand tensions, fre-
quency/voltage deviations, and network losses increase
[2–4]. ,erefore, how to guide the orderly charging process
of EVs and reduce the influence of charging behavior un-
certainty on the distribution network operation has received
extensive attention in recent years.

According to [5, 6], the number of EVs that need to be
charged in a day shows obvious peak-to-valley character-
istics. For example, EV charging demand is usually low
during the morning peak, while it will increase after people
getting off work. ,erefore, the distribution network must
take into account the charging demands of charging stations,
residential power load demands, and the output of dis-
tributed renewable sources when determining the powers
allocated to the charging stations in different time periods.
,en, the economic operation of the distribution network
can be realized without violating the safe operation con-
straints of the distribution network [7–9].

However, in the existing related works, the forecasting of
charging demands, residential loads, and renewable outputs
is often conducted by using the time series analysis methods
or artificial intelligence methods in the control center of
distribution network at cloud side. ,erefore, the compu-
tational burden at the cloud-side control center is usually
heavy.
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With the rapid development of edge computing tech-
nology, the perception breadth and depth of the distribution
network have been further enhanced. Specifically, it is
feasible to set up edge computing devices at the residential
distribution stations, charging stations, and renewable plants
to provide more accurate forecasting capabilities. Corre-
spondingly, the control center at the cloud side can for-
mulate a more economical and friendly charging plan based
on the predicted results and thereby improve the operation
reliability of the distribution network.

,erefore, this paper proposes an orderly charging
scheduling scheme for EVs based on cloud-side collabora-
tive architecture. ,e main contributions are summarized as
follows:

(1) A forecasting model based on convolutional neural
network and deep belief network to predict resi-
dential loads, charging demands, and renewable
outputs is proposed by installing edge computing
devices in residential areas, charging stations, and
renewable plants in the distribution network. Under
the proposed scheme, the power forecasting result of
each edge computing node is uploaded to the cloud-
side control center in distribution network to for-
mulate the orderly charging scheduling strategy for
EVs.

(2) A two-stage EV charging scheduling strategy is
proposed according to the predicted power results.
Firstly, the cloud-side control center in distribution
network formulates the overall charging plan for EV
charging stations based on the collected power
forecast results aiming at minimizing the operating
cost of the distribution network. Secondly, each EV
charging station formulates a charging scheduling
strategy for each EV according to the planned curve.

,e rest of this paper is organized as follows. Related
work is analyzed in Section 2. ,e overall power forecasting
framework based on cloud-edge collaborative environment
is given in Section 3. In Section 4, the proposed CNN-DBN
forecasting method is discussed. Orderly charging sched-
uling strategy for EVs is given in Section 5. Simulations and
results are discussed in Section 6. Finally, conclusion is given
in Section 7.

2. Related Work

2.1. Load Forecasting Methods. ,e load forecasting results
are the basis for determining the capacity of distribution
network equipment and formulating the corresponding
operating conditions (e.g., transformer ratio, generator
output, shunt capacitor capacity, and EV charging plan).
,erefore, increasing the accuracy of load forecasting is of
great significance to improve the reliability and economy of
the distribution network. ,e existing load forecasting
methods can be roughly divided into traditional nonartificial

intelligence methods, machine learning methods, and arti-
ficial intelligence methods.

2.1.1. Traditional Forecasting Methods Based on Nonartificial
Intelligence Technology. Nonartificial intelligence methods
are generally based on the time-characteristics of the load
demands. ,en, statistical methods are usually used to re-
alize the long-time load demand forecasting. For example, in
[10], a short-term load forecasting method based on the
linear regression model is proposed. However, the signifi-
cant disadvantage of linear regression analysis is that the
outliers have great impacts on the forecasting accuracy. In
[11], a method based on Markov model and likelihood ratio
test is proposed. However, a drawback of the method in [11]
is the fact that it is very sensitive to the time span. In [12], a
power load forecasting model based on the combination of
finite Fourier series and time series analysis theory is pro-
posed. ,e forecasting accuracy is very sensitive to the
number of Fourier series used for load curve fitting. In
addition, with the large-scale integration of EVs and re-
newable power generation equipment on the load side, the
nonlinear characteristics, time-varying nature, and uncer-
tainties of power load changes become more and more
obvious. Considering the poor forecasting accuracy and
robustness of traditional methods, it is difficult to establish a
suitable mathematical model to clearly express the rela-
tionships among the forecasting results and influencing
variables.

2.1.2. Forecasting Methods Based on Artificial Intelligence
Technology. In recent years, the data-driven, model-free
artificial intelligence algorithms have shown great devel-
opment prospects in the power forecasting field. Random
forest [13, 14], BP neural network [15], support vector
machine [16], long short-term memory network [17], and
convolutional neural network [18] have been used in the
power forecasting by the researchers. For example, in [19], a
short-term load forecasting method based on the combi-
nation of fuzzy time series (FTS) and convolutional neural
network (CNN) is proposed. However, traditional CNN
cannot accurately capture the timing information contained
in the time series and also has long training time. In [20], a
load forecasting method with long short-term memory
network and genetic algorithm is proposed.,e input data is
selected as factors that affect the load demands while the
output is the load curve. However, the long short-term
memory network adds complex gate elements (i.e., forget
gate, input gate, candidate gate, and output gate) to each
neural unit in the hidden layers. ,erefore, the training
efficiency of LSTMmay be low. In [21], a SVMmethod based
on gray wolf optimization is proposed to forecast the load
demands. However, SVM method needs continuous data
samples, and its classification performance may not be
satisfactory when the training data size is too large.
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2.2. Orderly Charging Scheduling Strategies. In all the
scheduling strategies, based on the predicted results of the
load demands in different periods of the next day, the
benchmark operation point of the regulation equipment and
the expected charging plan of EVs are determined in order to
optimize the operation cost of the distribution network and
maximize users’ benefits. For example, in [22], a day-ahead
scheduling scheme considering the uncertainties of resi-
dential loads and EV charging behaviors is proposed. Be-
sides, a multiobjective optimization model considering
feeder reconfiguration and shunt capacitor switching is
established to reduce the operating cost of the distribution
network, active power losses, and greenhouse gas emissions.
In order to reduce the impacts of plug-in hybrid EVs
(PHEV), distributed battery energy storage systems (D-
BESS), and distributed generators (DGs) in the power
distribution system, a 24-hour power scheduling plan is
proposed in [23]. In [24], a two-stage optimization algo-
rithm to design the EV charging plan is proposed, com-
prehensively considering the interests of EV users and
distribution network operators. In [25], the uncertainty of
EV charging station load is taken into account, and a
microgrid day-ahead scheduling optimization scheme based
on Monte Carlo simulation is proposed. In [26], a robust
scheduling strategy considering the uncertainties of the real-
time charging price and EV user charging demand is pro-
posed. In [27], an optimization model for microgrid op-
eration considering the EV charging and energy storage
integration stations is proposed. ,e model predictive
control (MPC) method is used to formulate the charging
schedule with the goal of minimizing the total daily oper-
ating cost. Similarly, [28, 29] also proposed an orderly
charging scheduling scheme for EVs based on MPC.
However, the disadvantage of the MPC is that real-time
rolling optimization requires the additional computational
consumptions. When there are too many constraints and
decision variables, it may be impossible to find a suitable
scheduling strategy within a limited time. In addition, most
of the existing optimal charging scheduling strategies for
EVs are solved in the control center of the distribution
network with a centralized way. When the scale of EVs is too
large, it is difficult to determine the charging plan for each
EV. To address the problem, a feasible method is proposed
based on the hierarchical idea. Specifically, the distribution
network sets the charging plan of each charging station while
each charging station independently determines the
charging period and charging power of each EV.

Based on the above analysis, this paper proposes an
orderly charging scheduling method for EVs based on
cloud-edge collaboration and deep learning technology.
Firstly, the residential distribution areas, charging stations,
and renewable plants are regarded as edge computing nodes
which are used to forecast the residential loads, charging
demands, and renewable outputs, respectively. Secondly, the
control center in distribution network at cloud side proposes
the charging plan for each charging station based on the
predicted results to minimize the operation cost of the
distribution network. Finally, each charging station sets a

personalized charging plan for each EV based on the user’s
charging demand.

3. Orderly EV Charging Strategy in Cloud-Edge
Collaborative Environment

As shown in Figure 1, the distribution network usually
contains residential loads, charging stations, renewable
plants, smart breakers, communication facilities, etc. With
the rapid spread of electric vehicles, disorderly charging
behaviors will bring serious impact on the safety of distri-
bution network. ,erefore, it is necessary to reasonably
arrange the charging plan of charging station on the basis of
charging load forecasting results. Different from the tradi-
tional centralized load forecasting and scheduling schemes
which have a drawback of huge computing burden at the
cloud-side control center, in this paper, the proposed electric
vehicle charging scheduling strategy based on cloud-edge
collaboration includes the following three parts.

3.1. Power Forecasting at Edge Sides. ,e residential distri-
bution areas, centralized charging stations, and renewable
plants in the distribution network are equipped with edge
computing nodes with the capacities of data storage, cal-
culation, and analysis. ,e corresponding residential loads,
charging demands, and renewable outputs are predicted at
the edge sides and then uploaded to the cloud-side control
center.

3.2. Power Supply Plan for Charging Stations Determined at
Cloud Side. ,e control center in distribution network at
cloud side draws up the charging plans for the EV charging
stations aiming at minimizing the distribution network
operation cost including power purchase costs and renew-
able power generation revenue. In other words, based on the
forecasting results, the charging plan (i.e., power supply
plan) of each charging station can be obtained.

3.3. Orderly Charging Scheduling Strategy for EVs. Each
charging station provides a personalized charging plan for
each EV based on the remaining SoC and expected charging
time, with the goal of minimizing the implementation of the
charging plan. Specifically, the charging power and charging
period of each EV are determined.

4. Power Forecasting Based on the CNN-DBN

Because that there are many factors which affect the resi-
dential loads, EV charging demands and renewable outputs
such as season, workday/rest days, geographical factors, etc.,
it has the disadvantages as low training efficiency and poor
forecasting accuracy to directly take so many influencing
factors as input variables and extract high-dimensional
features for power forecasting in traditional learning-based
methods. ,erefore, this paper adopts the power forecasting
model based on CNN and DBN as shown in Figure 2.
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Specifically, CNN is used to extract the hidden features of
high-dimensional input data to construct a new data model
for power forecasting. DBN with a layer of back-propa-
gation neural network (BPNN) is used to establish a re-
gression model between the extracted data features and the
power forecasting results. It should be pointed out that
CNN-DBN-based models deployed in the edge computing
nodes installed in residential distribution areas, centralized
charging stations, and renewable plants adopt the same
type of input variables and network structure. ,e differ-
ences among the CNN-DBN models are the weighting
coefficients and convolutions kernels obtained from the
training processes.

4.1. CNN for Feature Extraction of InputData. ,e structures
before full-connection layer of CNN, i.e., the convolution
and pooling layers, are used to extract the hidden features of
high-dimensional input data. ,e inputs of convolution
layer are the original data while the corresponding outputs
are the results which are convolved with the convolution
kernels. Let KAB (A, B ∈N) be the convolution kernel matrix
and X� [X1, X2, . . ., XC], C ∈N, represent the input data
vector. Transfer X into a matrix with D× E dimensions,
denoted as XDE. ,en, the relationships among the inputs
and outputs in convolution layer satisfy

S(e, f) � 􏽘
A

􏽘
B

X(i + A, j + B)KAB, (1)

where S (e, f ) is the element of output matrix in convolution
layer.

Furtherly, to avoid over fitting and reduce the number of
hidden features of input data, the maximum pooling
technology is used in CNN pooling layer to process the
outputs of convolution layer. ,e output of pooling layer is
shown as follows:

O(e, f) � Max(S(e, f)), (2)

whereO (e, f ) are the matrix element after pooling operation
while the dimensions of the matrix O satisfy

max(e) �
C

B
􏼦 􏼧,

max(f) �
D

A
􏼘 􏼙,

(3)

where ⌈ · ⌉ is the up-rounding operator.
Finally, considering that CNN is used to extract the

hidden features and construct a new data model for the
DBN, the final outputs of pooling layer should be converted
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Figure 1: EV orderly charging scheduling strategy in cloud-edge collaborative environment.
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into a 1-dimensional vector with max (e)×max (f ) elements,
denoted as {O1, O2, . . ., Omax (e)×max (f)}.

4.2. DBN for Power Forecasting. As shown in Figure 2, the
DBN is composed of multiple restricted Boltzmann ma-
chines (RBMs). For any RBM, there are two layers. ,e first
layer is the visible layer (denoted as V) which is used to
receive external input variables such as the outputs of CNN
or the outputs from the previous RBM. ,e second layer is
the hidden layer (denoted as H), which is used to extract the
feature information contained in the input data. Suppose the
input and output components of the ith (i� 1, 2, . . ., I) RBM
are Vi � (vi

1, vi
2, ..., vi

m) and Hi � (hi
1, hi

2, ..., hi
m). A fully

connected structure with weight coefficients is used between
the visible and hidden layers while the units on the same
layer are not connected to each other. Let the weight co-
efficients between the visible layer and the hidden layer be
wi � wi

pq􏽮 􏽯 (p� 1, 2, . . .,m; q� 1, 2, . . ., n). ,erefore, the ith
RBM can be described as θi � {Vi, Hi, wi}.

To evaluate the working status of RBM, the following
energy function is used:

E Vi, Hi|θi( 􏼁 � − 􏽘
m

p�1
a

i
pv

i
p − 􏽐

n

q�1
b

j
qh

j
q − 􏽘

m

p�1
􏽘

n

q�1
w

i
pqv

i
ph

j
q, (4)

where ai p and bi q are the activation states of the pth visible
unit and the qth hidden unit, which are represented by
variables from 0 to 1. Since the units in the same layer are not
connected to each other, the joint probability distribution of
visible nodes and hidden nodes is

P Vi, Hi | θi( 􏼁 �
e

− E Vi,Hi|θi( )

Z θi( 􏼁
,

Z θi( 􏼁 � 􏽘
Vi,Hi

e
− E Vi,Hi|θi( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where Z (θi) is the normalization factor, which is the energy
function of all possible states of the ith RBM. In addition, the
probabilities of the pth visible unit and the qth hidden unit
can be given as

P a
i
p ∣ Hi􏼐 􏼑 � σ h

j
q + 􏽘

n

q�1
b

i
qw

i
pq

⎛⎝ ⎞⎠,

P b
i
q ∣ Vi􏼐 􏼑 � σ v

j
q + 􏽘

m

p�1
a

i
pw

i
pq

⎛⎝ ⎞⎠,

(6)

where σ (x) is the sigmoid activation function, given by

σ(x) �
1

1 + e
− x. (7)

4.3. Back-Propagation Neural Network (BPNN). Finally,
BPNN is used to predict the power demands or outputs
considering the nonlinear fitting ability of BPNN. Assuming
that there are N RBMs in DBN, the final data feature

extracted by DBN is hN
1 , hN

2 , ..., hN
n􏼈 􏼉. Considering that the

output (denoted as y) of BPNN is the predicted results of
resident loads, charging demands, and renewable outputs,
therefore, the input and output of BPNN satisfy the fol-
lowing relationship:

y � 􏽘
A

q�1
ωqh

N
q , (8)

where ωq is the weight coefficient between the input neuron
and output neuron in BPNN andA is the number of neurons
in the hidden layer.

,e training method of BPNN is very mature. Literature
[30] pointed out that BPNN mostly takes the minimum loss
function as the objective function, but in order to avoid
BPNN overfitting, a regular term can be added to the loss
function:

J(ω, h, y) � J0(ω, h, y) + αΩ(ω), (9)

Ω(ω) �
1
2
‖ω‖

2
2, (10)

where ω is the weight coefficient vector between the input
neuron and the output neuron in BPNN, h is the input
feature vector,Ω is the penalty function, J0 is the original loss
function, and J is the loss function considering the penalty
function.

5. Orderly Charging Scheduling
Strategy for EVs

Based on the forecasting model proposed in Section 4, the
power forecasting values of residential distribution stations,
centralized charging stations, and renewable plants in the
distribution network can be obtained, which are denoted as
PR

r,t, PC
u,t, and PRES

z,t (where the subscripts “r”, “u”, and “z”
represent the numbers of residential distribution stations,
centralized charging stations, and renewable plants, re-
spectively; “t” represents the time period taking value from
{1, 2, . . ., 24}). ,erefore, the orderly charging strategy
proposed in this paper is divided into two stages:

(1) Setting the overall power supply plans for charging
station: the control center in distribution network at
cloud side determines the charging plan value of each
charging station aiming at minimizing the operation
cost of the distribution network according to the
predicted results from the edge nodes.

(2) Setting the charging strategy for each EV: each
charging station sets a personalized charging plan
based on the actual charging needs of each EV,
aiming at minimizing the deviation of the charging
station’s execution from the charging plan.

5.1. Power Supply Plan for Charging Stations

5.1.1. Objective Function. ,e control center in distribution
network at cloud side sets the power supply plans for
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charging stations in each period of the next day according to
the forecasting results collected from the edge nodes with the
goal of minimizing the operation cost of the distribution
network. ,e operating cost of the distribution network
includes the electricity purchase cost from the superior grid
and the income from renewable energy. ,erefore, the
objective function can be expressed as

J1 � 􏽘
24

t�1
f
power
t P

power
t − f

RES
t P

RES
t􏼐 􏼑, (11)

where P
power
t is the power purchased by the distribution

network to the superior grid; fRES
t is the purchasing price;

and fRES
t is the on-grid electricity price of renewable energy.

,e relationships among P
power
t , charging station power

supply plan (recorded as P
C

u,t), PR
r,t, and PRES

z,t satisfy equation
(10):

P
power
t � 􏽘

r

P
R
r,t + 􏽘

u

P
C

u,t − 􏽘
s

P
RES
s,t , (12)

where the charging station power supply plan is propor-
tional to the charging station charging demand PC

u,t; i.e.,

P
C

u,t �
P

C
u,t

􏽐uP
C
u,t

􏽘
u

P
C

u,t. (13)

,erefore, the power supply plan problem for charging
stations can be described as determining the power supply
plan P

C
u,t for each charging station to minimize the operation

cost of the distribution network.

5.1.2. Constraints. ,e following constraints need to be
obeyed when formulating the charging plan for each
charging station:

(1)Ae Restrictions on Renewable Energy Output. At any time
t, the output of the renewable energy generators should not
exceed the maximum allowed capacity of the distribution
transformer, which can be described as

0≤P
RES
s,t ≤P

cap
. (14)

(2) Ae Restrictions on Power Purchase in Distribution
Network. At any time t, the power purchased by the dis-
tribution network to the superior gird should not exceed the
maximum allowed capacity of the distribution transformer,
which can be described as

0≤P
power
s,t ≤P

cap
. (15)

(3) Ae Restrictions on Charging Demand. ,e power supply
plan coordination of the charging station should not be less
than the predicted value of charging demand at any time,
which can be expressed as

P
C

u,t ≥P
C
u,t. (16)

,erefore, the optimization problem of charging station
power supply plan can be described as

O.P.: min J1
s.t. equations (12)-(14).

5.2.EVUserChargingPlanFormulation. After each charging
station obtains the charging plan curve, it needs to flexibly
arrange the charging power and charging period of the EV
users who have signed the contract with the charging station,
so that the user’s overall charging load curves change with
the charging plan formulated by the control center in dis-
tribution network at cloud side. First of all, the assumptions
are made for EV users and charging station operators as
follows:

(1) EV users upload the EV statuses of charge, the rated
battery capacity, the expected statuses of charge, and
the travel plans.

(2) ,e distribution network operator reasonably ar-
ranges the charging time and charging power
according to the travel needs of the EV user and
reaches the charging statuses expected by the user
when the users start to travel.

5.2.1. Objective Function. Disorderly charging behavior may
cause the actual charging station load to be greater or less
than the planned curve, which will result in additional
purchase or load removal and create an increase in the
operating cost of the distribution network. ,erefore, the
objective function is the deviation of the charging station’s
execution and the charging plan:

J2 � 􏽘
24

t�1
􏽘

K

k�1
P
ch
k,u,t − P

C

u,t
⎛⎝ ⎞⎠

2

, (17)

where Pch
k,u,t is the charging power of the kth EV and K is the

number of EVs in the uth charging station at the period t.

5.2.2. Constraints. For the charging station, the reasonable
arrangement of the charging power and charging time of
each EV needs to meet the following constraints:

(1) Charging Power Constraint. EV charging power at time t
has the upper and lower limits; i.e.,

P
ch
u,t ≤P

ch
k,u,t ≤P

ch
u,t, (18)

where Pch
u,t and P

ch
u,t are the minimum and maximum

charging power of the EV, respectively.

(2) State of Charge (SoC) Constraint. ,e SoC level of EV
battery guarantees the user’s maximum travel distance. In
addition, to avoid overcharging of the EV battery that
affects the service life, the SoC is not allowed to exceed
100% when participating in the charging scheduling
process. Secondly, the charging station needs to ensure
that the EV reaches the setting SoC level before the user’s
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expected travel starting time. Finally, after reaching the
expected SoC preset by the EV user, the charging station
will immediately stop charging the EV. ,erefore, the
constraints are shown as

SoC
0
k,u,t + 􏽘

t
setting
k,u

t�t0
k,u

δk,u,tP
ch
k,u,tΔTk,u,t

C
rated
k,u

× 100%

≤min SoC
setting
k,u,t , 100%􏽮 􏽯,

(19)

argmax
t

ΔTk,u,t􏽮 􏽯≤ t
setting
k,u , (20)

where SoC0
k,u,t and SoCsetting

k,u,t are the starting SoC and ex-
pected SoC of the kth EV, respectively; δk,u,t are the 0–1
decision variables which determine whether to charge the
kth EV at time t; ΔTk,u,t is the charging time of the kth EV in
the time period t; Crated

k,u is the rated capacity of the EV
battery; t0k,u is the initial charging time of the kth EV; tsettingk,u is
the expected charging end time set by the user of the kth EV;
argmax (g (x)) returns the variable x that the function g (x)
takes the maximum value.

(3) Constraint on the Number of Charging Times. Frequent
charging of the EV battery within a day is also harmful to its
service life. ,erefore, the number of charging times of any
EV in a day has the following constraint:

Num δk,u,t � 1􏼐 􏼑≤M. (21)

,erefore, the EV charging scheduling strategy opti-
mization problem at the charging station level can be de-
scribed as

O.P.: min J2
s.t. equations (16)-(19).
Note that there exists a multiplicative relationship be-

tween the variables ΔTk,u,t and δk,u,t; therefore, the optimal
charging scheduling scheme is a nonlinear integer pro-
gramming problem. ,e method proposed in [24] is used
here to obtain the final results.

6. Simulations and Results

A 10.5 kv distribution network in a province in North
China is taken as an example in this section. ,e distri-
bution network has three branches. As shown in Figure 3,
each node has edge computing capabilities. ,ere are
distributed renewable energy power stations based on
wind turbines (WTs) and photovoltaic panels (PVs) at the
ends of the upper and lower branches. ,e installed ca-
pacity of WTs is 1.5MVA and the capacity of PVs is
1.0MVA. Nodes 5 and 11 are EV charging stations with the
capacity of 2.0MVA.

6.1. Experimental Parameters. All algorithms are run in the
same software and hardware environment.,e experimental
equipment is Windows10 64-bit operating system, the
processor is Intel i7-7700 CPU @ 3.60Hz, the running

memory is 8GB, the software platform is Python 3.7.3, and
the Keras deep learning framework is adopted. ,e input
variables and output variables of CNN-DBN are shown in
Table 1, and the training parameters of CNN-DBN are
shown in Table 2.

6.2. Analysis of Experimental Results

6.2.1. Load Forecasting Results. In this case, all edge nodes
have computing ability and can predict residential loads,
charging demands, and renewable outputs. ,e long short-
term memory (LSTM) network model proposed in [20] and
the linear regression (LR) method proposed in [10] are
selected as comparison algorithms. ,e comparison of the
forecasting results and the real values is shown in Figure 4. It
should be pointed out that the curves in Figure 4 are the sum
of the results obtained from the edge computing nodes of the
residential load areas.

As shown in Figure 5, for the traditional load forecasting,
the results with proposed CNN-DBN method are more
consistent with the real value. ,e average absolute errors of
the three algorithms are 0.064MW, 0.092MW, and
0.174MW, respectively. Compared with the other two al-
gorithms, the average absolute errors of the proposed CNN-
DBN method forecasting results are reduced by 30.34% and
62.85%. From the box plot and the fitted normal distribu-
tion, it can be seen that the forecasting error distribution of
the proposed CNN-DBN method is more concentrated and
the fluctuations are also smaller. In addition, in terms of

1 2 3 4 5 6 7

11 12 13

8 9 10

User load node Electric vehicle
charging station

Wind power
station

Photovoltaic
power station

Cloud-side 

Edge-side 

Server

Console

Figure 3: ,e distribution network branches.
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local maximum errors, the maximum absolute error of DBN
is only 0.128MW for the residential load while the maxi-
mum absolute errors of the other two algorithms are
0.199MW and 0.320MW, respectively. ,e numerical re-
sults show that, with the proposed CNN-DBN method, the
forecasting accuracy within a day can be maintained at a
high level.

As shown in Figures 6–8, for the EV charging demands,
the forecasting results of the proposed CNN-DBN algorithm
also have better forecasting results. Specially, for charging
station 1, the average absolute errors of the three algorithms
are 0.016MW, 0.024MW, and 0.051MW, respectively.
Compared with the other two algorithms, the average ab-
solute error of the CNN-DBN method is reduced by 32.67%
and 69.15%, respectively. For charging station 2, the average
absolute errors of the three algorithms are 0.016MW,
0.026MW, and 0.028MW. Compared with the other two
algorithms, the average absolute errors of CNN-DBN
method are reduced by 38.92% and 42.68%, respectively. It
can also be seen that the differences between the upper and
lower quartiles of forecasting results with CNN-DBN are
both less than 0.02MW in charging station 1 and charging
station 2, while the quartile differences of other forecasting
methods are above 0.023MW.,erefore, the distribution of
forecasting errors with CNN-DBN method is more con-
centrated, and the forecasting accuracy fluctuates less. In
addition, some results about the local maximum error are
analyzed. For charging station 1, the maximum absolute
error of CNN-DBN is only 0.031MW, while the other two
algorithms are 0.050MW and 0.125MW, respectively; for
charging station 2, the maximum absolute error of CNN-
DBN is only 0.029MW, while the maximum absolute errors
of the other two algorithms are 0.050MW and 0.061MW,
respectively. ,erefore, the algorithm proposed in this paper
is obviously better.

In summary, whether it is for residential load or EV
demands with large demand fluctuations, the proposed
CNN-DBN based forecasting method has obvious advan-
tages compared with the traditional LR and LSTM methods.
,erefore, the proposed CNN-DBN method can give full

play to the computing capacities of the edge computing
nodes to obtain more accurate forecasting results which can
be used for the subsequent orderly scheduling of EVs.

6.2.2. Renewable Output Forecasting. Similarly, the outputs
of renewable plants (i.e., the wind and PV plants) are
forecasted at the edge computing nodes. ,e forecasting
results are shown in Figures 9 and 10. ,e forecasting
conducted by the proposed CNN-DBN algorithm for re-
newable plants is analyzed. It can be seen that the CNN-DBN
algorithm has a smaller deviation from the true value and is
significantly better than the other two algorithms. ,e ab-
solute error box-plot is shown in Figure 11.

For the forecasting results of photovoltaic power
generation, the average absolute errors of the three al-
gorithms are 0.006MW, 0.014MW, and 0.019MW, re-
spectively. Compared with the other two algorithms, the
average absolute errors of the proposed CNN-DBN
method are reduced by 55.548% and 66.862%, respec-
tively. For the forecasting results of wind power genera-
tion, the average absolute errors of the three algorithms
are 0.023MW, 0.043MW, and 0.056MW, respectively.
Compared with the other two algorithms, the average
absolute error of the proposed CNN-DBN method is
reduced by 45.73% and 58.58%, respectively. From the
box-plot and the fitted normal distribution, it can be seen
that whether it is between the upper and lower quartiles or

Table 1: Input and output variables of CNN-DBN.

Variables Symbols Variable name

Environment variables (inputs)

x1 Pressure
x2 Temperature
x3 Relative humidity
x4 Wind speed
x5 Solar radiation intensity
x6 Latitude

Temporal variables (inputs)

x7 Month
x8 Week
x9 Holiday
x10 Working day

Outputs y Residential loads/charging demands/renewable outputs

Table 2: Training parameters.

Parameter Value
Convolution kernel size of CNN 3× 3
Convolution level of CNN 6
Number of RBMs in DBN 3
Training times 200
Training sample size of CNN 5000
Learning rate of RBM 0.001
Training sample size of RBM 5000
Learning rate of BPNN 0.001
Training sample size of BPNN 5000
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the overall error distribution, the forecasting error of the
proposed CNN-DBN method is more concentrated and
the fluctuations are smaller, and the forecasting results are
more stable. In addition, in terms of local maximum
errors, for photovoltaic power generation, the maximum
absolute error of the proposed CNN-DBN method is
0.039MW, while the maximum absolute errors of the
other two algorithms are 0.058MW and 0.090MW, re-
spectively. For wind power generation, the maximum
absolute errors of the other two algorithms are 0.098MW
and 0.115MW, while the error of CNN-DBN method is
0.050MW, which are significantly smaller than the other
two algorithms.

In summary, in terms of average error, global error
distribution, and local maximum error, the forecasting effect
of the algorithm proposed in this paper is significantly better
than the traditional LR and LSTM methods.

6.2.3. Orderly Scheduling for EVs. ,e charging load curves
after scheduling in charging stations 1 and 2 are shown in
Figures 2 and 3, respectively. ,e disordered charging
method and the orderly scheduling method proposed in [22]
are adopted as the comparison algorithm. From Figures 12
and 13, it can be seen that for the two EV charging stations,
after the orderly scheduling with the goal of minimizing the
operation cost of the distribution network, the actual
charging load curve fits well with the planned curve, and the
load follows the input changes well.,is method has obvious
advantages compared with the disordered charging method
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and the method proposed in [22]. For charging station 1, the
maximum absolute error of the orderly scheduling result is
only 0.033MW compared with the planned curve, which
occurs at about 0:00 at night.,e planned output curve value
at this time is too high, and the scheduling is not flexible at
this time period, which makes the charging load lower than
the planned load in this situation. However, the charging
load curve in the day can basically follow the planned value
completely, and it can still basically follow the load when the
planned load changes rapidly. For example, if the plan meets
the sudden drop at around 6:00 in the morning, the orderly
dispatch method in this paper can still basically follow the
planned load curve, but the maximum absolute error of the
method used in [22] reaches 0.095MW. For charging station
2, the orderly scheduling charging load curve proposed in
this paper can still follow the changes, and the effect is better
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than that of the method used in [22], and the maximum
absolute error is only 0.025MW compared to the planned
curve. In addition, for charging station 1, the root mean
square error between actual charging load curve and
planned load curve is 0.02MW. Compared with the
scheduling method proposed in [22] and the disorderly
charging method, the root mean square error between the
two curve is reduced by 25.35% and 54.51%, respectively.
Similar conclusions can be drawn in charging station 2.

Figure 14 shows the total load curve after conducting the
orderly scheduling for charging stations 1 and 2. It can be
seen that the total load curve of EVs has been optimized after
conducting the orderly scheduling. Partially, the total load of

each wave peak has been weakened. In order to supplement
the weakened controllable load, the total load of each trough
is filled. As shown in the internal load curve of the solid line
ellipse in Figure 14, the total load of each wave peak is
weakened, and the total load of each valley inside the dotted
ellipse is filled. ,e average orderly scheduled load is almost
the same as the planned average load. ,e daily average load
of planned dispatch is 2.682MW. After orderly scheduling,
the average daily load becomes 2.683MW, so the difference
is only 0.001MW. In terms of load fluctuations, after using
the scheduling method proposed in this paper, the maxi-
mum peak-to-valley difference of the load fluctuation within
a day is 2.261MW, which is 30.13% less than the result of
disordered charging and 3.16% less than the result of the
method used in [22]; the overall deviation is 0.667MW,
which is reduced by 0.136MW compared with disordered
charging and by 0.026MW compared with the method used
in [22]. And the curve becomes smoother after orderly
scheduling.

In summary, based on the goal of minimizing the dis-
tribution network operation cost, the EV scheduling method
proposed in this paper can not only realize the effective
follow-up of the planned load curve, but also optimize the
total load curve of the overall distribution network. Using
this strategy, the daily load curve of the distribution network
is smoothed, and the adverse impact of load fluctuations on
the distribution network are reduced at the same time.

7. Conclusion

Aiming at reducing the influence of disorderly charging
behaviors of large-scale EVs on the safe operation of dis-
tribution networks, this paper proposes an orderly charging
scheduling strategy for EVs based on cloud-side collabo-
ration and deep learningmethod. Based on the forecasting of
residential loads, charging demands, and the renewable
outputs at the edge computing nodes, the control center in
distribution network at cloud side formulates a power supply
plan for each charging station. ,en each charging station
reasonably arranges the charging power and charging time
period of each EV according to the power supply plan curve.
Case studies show that, compared with the conventional
algorithms, the proposed algorithm has better performance
in improving the power forecasting accuracy and sup-
pressing the load peak-to-valley differences. In the future, we
will further study the method to improve the forecasting
accuracy based on deep learning and EV charging sched-
uling strategy that considers more actual operation con-
straints of the distribution network.
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