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Pedestrian excitation may consequently cause large-scale lateral vibration of the long-span softness of footbridges. Considering the
influence of structural geometric nonlinearity, a nonlinear lateral parametric vibration model is established based on the relationship
between force and speed. Taking the London Millennium Footbridge as an example, the Galerkin method is applied to formulate
parametric vibration equations. In addition, the multi-scale method is used to analyze the parametric vibration of footbridge system
theoretically and numerically. 1e paper aims to find out the reasons for the large-scale vibration of the Millennium Footbridge by
calculating the critical number of pedestrians, amplitude-frequency, and phase-frequency characteristics of the Millennium Footbridge
during parametric vibration. On the other hand, the paper also studies the influence parameters of the vibration amplitude as well as
simulates the dynamic response of the bridge during the whole process of pedestrians on the footbridge. Finally, the paper investigates
influences of the time-delay effect on the system parameter vibration. Research shows that: the model established in the paper is reliable;
the closer the walking frequency is to two times of the natural frequency, the fewer number of pedestrians are required to excite large
vibrations; when the number of pedestrians exceeds the critical number in consideration of nonlinear vibration, the vibration amplitude
tends to be stable constant-amplitude vibration, and the amplitude of vibration response is unstable constant-amplitude vibration when
only linear vibration is considered; the following factors have an impact on the response amplitude, including the number of pedestrians
on footbridge per unit time, damping, initial conditions, and the number of pedestrians in synchronized adjustment. At last, when
considering the lag of the pedestrian’s force on the footbridge, the time-lag effect has no effect on the amplitude but has an effect on the
time needed to reach a stable amplitude.

1. Introduction

As application of new materials and requirements for land-
scape design improves continuously, more and more large-
span soft structures are applied in the design and construction
of footbridges. For example, the main span of the Millennium
Footbridge in London reaches 144 meters [1]. In addition, the
main span of S-shaped footbridge in Mianyang of Sichuan
Province reaches 200 meters. 1erefore, footbridges often
exhibit nonlinear vibration including the main resonance,
super harmonic resonance, sub-harmonic resonance, and in-
ternal resonance under coupling of footbridge caused by pe-
destrians under pedestrians’ dynamic loads. At present, the

research on pedestrian-induced pedestrian bridge vibration
mainly focuses on linear vibration, whereas few researches on
nonlinear vibration have been found. It is therefore necessary
to consider and conduct researches on the geometric non-
linearity of footbridges.

Attention has been drawn to the fact that Nakamura
considered the situation of pedestrians stopping or slowing
down under the condition of large swings. Based on the
interaction between pedestrians and footbridges, he pro-
poses a nonlinear change under modal resonance excitation
force. Jia established a nonlinear stochastic system of the
lateral vibration of the footbridge, and analyzed the stability
of the nontrivial solution of the lateral vibration of the
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Millennium Footbridge [2]. Blekherman analyzed the
London Millennium Footbridge as a double pendulum and
studied its nonlinear internal resonance [3]. Subsequently,
Blekherman emphasized that autoparametric resonance is
the cause of excessive lateral vibration, and based on the
double pendulummodel, he studied the dynamic interaction
between torsional and lateral modes of the steel arc foot-
bridge under the action of harmonic torque [4]. Based on the
coupled oscillator theory, Han assumed that the pedestrian’s
walking frequency followed the Gaussian distribution. So a
time-varying nonlinear dynamic equation was developed by
using the modal expansion method. More importantly, the
author used the model for the study of lateral vibration on
the north span of the London Millennium Footbridge [5].

1ere are few mentioned investigations that consider the
geometric nonlinear factors of the structure, but most of them
focus on the forced vibration [1, 6–8]. At present, researches on
nonlinear parametric vibration basically focus on the suspen-
sion cables of stayed cables and suspension bridges [9–11]. In
fact, some footbridges will generate excessive lateral vibration
under the excitation of pedestrian movement [11–15]. Due to
their long span, soft footbridges are generally soft structures
with low natural frequencies. 1e first-order horizontal com-
ponent of pedestrians’ walking frequency ranges between 0.8
and 1.2Hz, while the frequency of footbridge is beyond this
range, and the forced vibration to a large extent cannot induce
its large vibration. In parametric vibration, if the excitation
frequency is a multiple of the fundamental frequency of the
structure, the structure can vibrate greatly. Piccardo has studied
the parametric vibration of footbridges and proposed a new
mechanism that can trigger excessive lateral vibration when
pedestrians cross the bridge [16]. Ouyang proposed a plane
pendulum model that can show the change process of the
bridge’s lateral amplitude. 1e analysis found that when the
lateral frequency of the pedestrian load is twice the lateral
natural frequency of the bridge, intense parametric vibration
will occur [17]. Based on previous studies, Wang showed that
the process of continuous walking can be regarded as a periodic
process, which can be expressed in the form of a Fourier series
[18]. In order to predict the effect of vertical pedestrian dy-
namics on footbridges, Bassoli proposed two simulationmodels
to evaluate the structure’s response to pedestrian loads [19].
Marcelo combined walking characteristics and footbridges’
response data to propose a Biodynamic Synchronized Coupled
Model [20]. 1e current standards for pedestrian-induced
footbridge vibration are seriously lacking. 1e German foot-
bridge design guide EN03 (2007) stipulates that the sensitive
range of the lateral first-order frequency of the pedestrian bridge
is 0.5–1.2Hz [21], but it does not consider the case where the
lateral first-order frequency of the footbridge is lower than
0.5Hz. 1e first-order lateral frequency of the Millennium
Bridge is 0.49Hz, and a large lateral vibration has also occurred.
1erefore, the research in this article will play a beneficial role in
the improvement of existing standards, and provide guidance
for the design andmanagement of footbridges with a first-order
transverse frequency less than 0.5Hz.

Aiming at the large-scale vibration of the low-frequency
footbridge, the paper employs a nonlinear parametric vibration
model of the footbridge under the loading of pedestrians, in

order to reveal the causes for large-scale vibration of low-fre-
quency footbridge. Based on the data measured in the experi-
ment, the relationship between dynamic load coefficient and
speed is fitted. Accordingly, in the paper, it models a nonlinear
lateral parameter vibration based on the relationship between
force and speed. Taking the London Millennium Bridge as an
example, the Galerkin approach and the multi-scale perturba-
tion approach has been employed to carry out theoretical and
numerical analysis of the large-scale vibration caused by the
parametric vibration of footbridge. Meanwhile, this paper fur-
ther studies the influence of time delay on parametric vibration.

2. Nonlinear Parametric VibrationModel of the
London Millennium Footbridge

For the beam structure under pedestrian lateral and lon-
gitudinal loads, as shown in Figure 1.

1e author takes micro-segment where the distance is x
from the beam end, assuming that the cross section is per-
pendicular to the beam axis both before and after deformation.
1e paper considers the influence of pedestrians distributed on
the footbridge to theweight of the footbridge and also noted the
impact of crowd to the damping of footbridge. In addition, the
author analyzes the force of micro-segment in Figure 1 with
elastic mechanics, as shown in Figure 2.

According to the displacement approach [22], the bal-
ance equations of longitudinal and lateral movement of
micro-segment’s centroid are, respectively, expressed as
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z
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where u(x, t) is the longitudinal displacement, w(x, t) is the
lateral displacement,N(x, t) is the axial force in the tangential
direction of neutral layer after the beam is deformed, Q(x, t)

is the shear force, ρs is themass of footbridge’s main girder per
linear meter, mpx is the mass of pedestrians per linear meter
on the footbridge, μ1 and μ2 are the vertical and horizontal
damping coefficients, respectively, ρc is the density of pe-
destrians’ movement on the footbridge, c is the influence
coefficient of crowd damping, and α is the section angle. fh

and fl are the pedestrians’ force per meter in the vertical and
horizontal directions, which are, respectively, given by

fl(t) � λαl1mpg cos ωpt ,

fh(t) � λαh1mpg cos ωpt  + λαh2mpg cos ωpt 

� λ
��������

α2h1 + α2h2


mpg sin ωpt − arctan
αh2

αh1
 .

(3)
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In which, αl1 is the first-order lateral dynamic load
coefficient, αls is the pedestrian dynamic load coefficient
related to footbridge vibration, which is related to pedes-
trians and bridges, whereas the values of coefficient will vary
under the condition of different pedestrians and footbridge.
αh1 is the first-order longitudinal dynamic load coefficient,
αh2 is the second-order longitudinal dynamic load factor,
and ωp is the pedestrian walking frequency in the vertical
and horizontal directions. In addition, λ stands for

pedestrians’ synchronous adjustment ratio, by ignoring the
pedestrians’ dynamic load coefficient concerning the foot-
bridge vibration.

Regardless of the influence of the beam’s rotation, the
shear force Q(x, t) and the bending moment M(x, t) meet
to form the following relationship, which can be expressed as

Q �
zM

zs
� cos α

zM

zx
. (4)

When equation (4) is substituted into equations (1) and
(2) to obtain equation (5) and equation (6) as
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According to the deformation of beam, maintaining the
second-order truncation, it can get:

sin θ �
zw

zx
,

cos θ ≈ 1.

(7)

Based on the assumption of equation (7), the axial force
and bending moment are obtained by integrating on the
cross section of the beam, which are given by
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Substituting zw/zx � tan θ into equation (9) leads to
bending moment, which is given by

M(x, t) � EI
z
2
w

zx
2 cos

2 θ. (10)
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Figure 1: Force analysis on micro-segment of beam under lon-
gitudinal and lateral loading.
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Figure 2: Force analysis on beam and micro-segment under
longitudinal and lateral loading by pedestrians.
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To take the second-order truncation, therefore, it is given
by

cos θ ≈ 1 −
zw

zx
 

2

. (11)

If equations (10) and (11) are inserted into equations
(5) and (6) to obtain a dynamic equation with only un-
known displacements in the vertical and horizontal di-
rections, as
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where equations (12) and (13) are coupled dynamic equa-
tions in the vertical and horizontal directions after taking
into account the geometric nonlinear effects of footbridge.
Since the longitudinal stiffness of beam is much greater than
the lateral stiffness, the longitudinal and lateral coupled
vibration of the beam is not considered, that it is to say, by
ignoring the effect of beam’s lateral movement on its lon-
gitudinal motion, in this case, equation (12) becomes a linear
vibration equation, which is given by
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Regardless of the longitudinal inertia of the beam, the
axial force is given by:
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In this way, equation (13) can be rewritten as:
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(16)

1erefore, by virtue of equation (16), we can obtain a
nonlinear parametric vibration equation which considers
the pedestrian’s influence on the mass and damping of
footbridge.

3. Lateral Nonlinear Vibration Analysis of Mid-
Span of the London Millennium Bridge

3.1.ProjectOverview. 1eLondonMillenniumFootbridge is a
flexible suspension footbridge with a neoteric structure built on
the 1ames River in London, with a span combination of
81+144+108m. Nearly 100,000 people walked across the
footbridge on the opening day, and up to 2,000 people were
walking on the footbridge. 1e crowd density was about
1.4 people/m2. A large number of pedestrians caused problems
of large lateral vibration. 1e first-order lateral frequency of
mid-span on the footbridge is lower than 0.5Hz, while the
second-order frequency is lower than 1.0Hz. It is worth noting
that the fundamental frequency is not within the range of
pedestrian’s lateral walking frequency. According to on-site
visual observation, the maximum lateral acceleration of the
mid-span bridge is estimated to be 2m/s2–2.5m/s2. In the
paper, it simplifies the London Millennium Footbridge, takes
its equivalent stiffness, and calculates equivalent section.
Figure 3 shows the Millennium Bridge in London.

Since the author basically attempts to explain the causes
for large lateral vibration of the London Millennium Bridge
from the perspective of parametric vibration, if the second-
order factor is taken into consideration, then it is forced
vibration. Besides, the second-order frequency is beyond the
range of lateral swing frequency when pedestrians are walking
normally. In that case, only considering the first-order mode,
it is supposed that the first-order mode function is
ϕ(x) � sin(πx/L), and the solution of equation (17) reads as:

w(x, t) � w1(t)sin
πx

l
. (17)

Here, w1(t) presents the generalized coordinates of the
first-order mode shape. Substituting equation (17) into
equation (16), we employ the Galerkin approach to discretize
it, and finally obtain the single-mode vibration differential
equation of the Millennium Footbridge by taking the in-
fluence of the crowd on the footbridge’s quality into con-
sideration, so that it meets with the following equation:

€w1(x, t) + ζ1 _w1(x, t) + ω2
1w1(x, t)

− β1w1(x, t)cos ωpt  + β2w
3
1(x, t) − F0 cos ωpt  � 0,

(18)

where
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where ω1 is the frequency of the footbridge structure on
account of the influence of crowd quality. It is related to the
number of pedestrians on the footbridge. Given that pe-
destrians will exert vertical and horizontal harmonic effects
on footbridge during the walking process, the longitudinal
harmonic forces show parametric excitations on the vi-
bration of footbridge, such as the fourth term in equation
(18). However, due to the limitation of pedestrian load, the
parametric excitation of longitudinal load is considerably
weak.

On the basis of the data measured by Piccardo [16], the
relationship between dynamic load coefficient and speed is
obtained by fitting the test data, as shown in Figure 4. From
Figure 4, it can be seen that the dynamic load coefficient has
a linear relationship with speed. Meanwhile, the lateral
movement of pedestrians is harmonic motion, and therefore
it is found as:

fl(t) � λ αl1 + αlv

zw(x, t)

zt
 mpg cos ωpt , (19)

where αl1 is regarded as the dynamic load factor of the
pedestrian on the fixed platform, and αlv is the dynamic load
factor related to the lateral speed of the footbridge. Different
bridges have different values, and different αlv will cause
different amplitudes of the footbridge. According to the
result of curve fitting, αl1 � 0.04 and αlv � 0.7.

3.2. Approximate Solution of Parametric Resonance. 1e
multi-scale approach is employed to solve equation (18).
Since the pedestrian excitation frequency is not close to ω1,
small parameters are applied into the damping term,
parametric excitation term, and nonlinear term, and the
following scaling transformations are given by

0≤ ε≪ 1,

ζ1 � εζ1,
β1 � εβ1,
β2 � εβ2,

μ � O(1).

(20)

Combining the abovementioned equations with equa-
tion (19), it can be rewritten as
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+ ω2
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3
1(t) − εF0 cos ωpt  � 0.

(21)

In equation (21) ζ2 � εζ2 and ζ2 � λαlvmpg/(ρA + mp)

caused by the vibration speed of the footbridge, the third
term presents parametric vibration, which is induced by the
force from the crowd’s movement on the footbridge. Fur-
thermore, the fifth term shows the parametric vibration
generated by the pedestrian’s longitudinal load, and the
seventh term is the forced vibration of pedestrians’ walking.

1e time scales are adopted as T0 � τ and T1 � ετ. 1e
first approximate solution of equation (21) is then given by:

w1(t) � u0 T0, T1(  + εu1 T0, T1( . (22)

Differential operators of partial derivatives are expressed
as
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dt
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(24)

where Dr � z/zTr, D2
r � z2/zT2

r , Dn(n � 1, 2, 3 · · · m).
Equations (22) and (24) are inserted into equation (21), and
it is assumed that, equalizing the coefficients of the small
parameters on both sides of the equation, the following
linear partial differential equations can be obtained as

ε0: D
2
0u0 + ω2

1u0 � 0, (25)

ε1: D
2
0u1 + ω2

1u1 � −2D0D1u0 − ζ1D0u0 + ζ2D0u0 cos ωpt 

+ β1 cos ωpt u0 − β2u
3
0 + F0 cos ωpt .

(26)

1en, the solution of equation (25) is obtained as

Figure 3: London Millennium Bridge looking north [23].
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where cc is the conjugate complex number of the previous
equation. It can be seen from equation (28) that, if ωp ≈ 2ω1,
there will be parametric resonance in the system, while if
ωp ≈ ω1, it will generate forced vibration in the system. Here,
we generally study the first-order modal vibration of the
London Millennium Footbridge. On this basis, the inter-
action of parameters and forced vibration is analyzed in the
following, when ωp ≈ 2ω1:

A new excitation frequency tuning parameter is inserted
into the equation, and supposing that

ωp � 2ω1 + εσ. (29)

In virtue of equation (28), the conditions for eliminating
the permanent term can be given by
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Substituting equation (31) into (30), comparing its real
part and imaginary parts, and ψ is assigned a fixed value,
ψ � σT1 − 2c1, then it is easily found that
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Equation (36) presents the amplitude-frequency curve of
the nonlinear parametric vibration on the Millennium
Footbridge. To solve equations (34) and (35), the phase is
found as
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To solve equation (36), it gives
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In order to investigate the stability of equations (32) and
(33) in nontrivial solutions, themicrotorsionmethodology is
employed to assume that

an � a1 + Δa1,

φn � φ1 + Δφ1,
(39)

where Δa1 and Δφ1 represent tiny torsion momentum.
Substituting equation (39) into and equations (32) and (33)
lead to
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Figure 4: Relationship between dynamic load factor and speed
[16].

6 Advances in Civil Engineering



D1Δa1 � −
ζ1Δa1

2
−
ζ2Δa1

4
cos φ1 +

ζ2a1

4
sin φ1Δφ

−
β1Δa1

4ω1
sin φ

β1a1

4ω1
cos φ1Δφ,

D1Δφ1 �
ζ2
2
cos φ1Δφ +

β1
2ω1

sin φ1Δφ −
3β2a1Δa1

2ω1
.

(40)

By considering equations (34) and (35), and eliminating
sin φ1 and cos φ1, the characteristic equation is easily ob-
tained as

λ2 + ]1λ + χ1 � 0, (41)

with

]1 � ζ1, (42a)

χ1 �
a1

2
σ −

3β2a
2
1

4ω1
 

3β2a1

2ω1
. (42b)

Assuming ]1 � ζ1 > 0, then, when X1> 0, its nontrivial
solution is stable; otherwise, it is unstable.

3.3. Critical Conditions for Parametric Vibration of the Mil-
lenniumFootbridge. Since the parametric vibration can only
occur under certain conditions, the conditions that affect
parametric vibration of the London Millennium Footbridge
are basically damping and the number of pedestrians’
movement on the footbridge. 1e critical condition is de-
termined by the solvability of response amplitude. By virtue
of the response amplitude a1 being real numbers, then a2

1 ≥ 0,
so

4ω1σ
3β2
±
4ω1

3β2

�����������

β21
4ω2

1
+
ζ22
4

− ζ21




≥ 0. (43)

1at is

σ ≥ ±

�����������

β21
4ω2

1
+
ζ22
4

− ζ21




, (44)

where multiplying ε at both sides of equation (44), and also
considering that β

2
1/4ω

2
1 is a smaller quantity, it gives that

ζ2 ≤ 2
���������

(εσ)
2

+ ζ
2
1



, that is ζ2lim � 2
���������

(εσ)
2

+ ζ
2
1.


(45)

3.4.AeCriticalNumber. When the structural parameters of
the footbridge are fixed, in this case, the parameter vibration
caused by the crowd movements, under the condition that
certain number of pedestrians, that is, the parameter vi-
bration for certain condition is reached, the parameter
excitation of crowd can induce the large-scale lateral vi-
bration of the footbridge. To meet stability, the conditions
for walking on the Millennium Footbridge are shown as

ζ2 ≤ ζ2lim. (46)

According to Equations (45) and (46), it is indicated that

λαlvmpg

ρA + mp

≤ 2
���������

(εσ)
2

+ ζ
2
1



. (47)

It is assumed that the pedestrians on the footbridge are
evenly distributed, basically the same as the mass distri-
bution law of the footbridge volume, and it is defined as

mpL � Nmps, (48)

where N is the number of pedestrians on the footbridge,
while the influence of crowd on damping of the footbridge is
negligible. By virtue of Equations (47) and (48), it is indi-
cated that

N≤
2LρA

���������

(εσ)
2

+ ζ
2
1



λαlvg − 2
���������

(εσ)
2

+ ζ
2
1



 mps

. (49)

Figure 5 shows the relationship between the critical
number of pedestrians and the parameter excitation fre-
quency under different damping ratios. When εσ � 0, if we
change the damping ratio of the footbridge, according to the
formula (49), we can get the corresponding critical number
of pedestrians under six different damping ratios, 48, 122,
172, 251, 387, and 533, respectively. As the damping ratio
increases, the critical number of pedestrians will increase as
well. While the critical number of people has a linear re-
lationship with the damping ratio, near the parametric
resonance region, the damping ratio has a greater influence
on the critical number of pedestrians than the nonpara-
metric resonance region.1emeasured damping ratio of the
Millennium Bridge is 0.007.1e calculated critical number is
173, which is consistent with the measured critical number
178.

Where ρplim is defined as the critical crowd density, the
pedestrians are assumed to be uniformly distributed, the
critical crowd density of the footbridge caused by the pa-
rameter vibration can be determined according to the
measured parameter, so that it has a wider application for a
similar type of footbridge. 1is parameter is related to the
cross section of the footbridge, damping ratio, pedestrian
synchronization coefficient, dynamic load coefficient, and
pedestrian mass. When the relevant parameters of the bridge
and pedestrians are known, the critical crowd density loaded
by the footbridge can be obtained. 1e equation is shown as

ρplim �
N

LB
�

2ρAζ1
λαlvg − 2ζ1 Bmps

, (50)

where B is the effective walking width of the footbridge.

4. Nonlinear Parametric VibrationModel of the
London Millennium Footbridge

Taking the mid-span of the London Millennium Footbridge
as an example, we analyze the lateral nonlinear vibration

Advances in Civil Engineering 7



parameters. 1e parameters employed in the calculation: the
mass of the footbridge per unit length presents as
ms � 2000kg/m; the average mass of a single pedestrian, that
is, mps � 70kg; the equivalent synchronized population ratio
λ � 0.3, αl0 � 0.04, and speed-related dynamic load factor is
shown as αlv � 0.7; the fixed first-order vibration frequency
of the footbridge structure fs1 � 0.48 Hz, its span L � 144m,
and its equivalent bending stiffness EI� 8.0383×1010N·m2;
1e equivalent cross-sectional area A� 0.2548m2, and the
equivalent compressive stiffness EA� 5.3503×1010N·m2.

4.1. Analysis of Vibration Parameters of the London
Millennium Footbridge

4.1.1. Amplitude Frequency Response Curve. Figure 6 shows
the amplitude-frequency response curve corresponding to
different number of pedestrians when the damping ratio is
0.007. To be more specific, it can be seen from Figure 6 that
different number of pedestrians corresponds to different
response amplitudes; a large value is a stable solution, and a
small value is nonstable solution. When the number of
pedestrians is small, such asN� 175, the footbridge response
has two close steady-state nontrivial solutions. As the
number of pedestrians is getting larger and larger, the re-
sponse amplitude varies with the excitation frequency under
the same driving conditions. Because the horizontal first-
order natural frequency of the Millennium Bridge is 0.48Hz,
when the excitation frequency of pedestrians walking is
closer to 0.96Hz, the parameter vibration of the Millennium
Bridge will be excited. At this time, fewer pedestrians are
required to cause a large lateral vibration of the Millennium
Bridge. In the smaller range of crowd walking frequency
close to 0.96Hz, 1e Millennium Bridge will experience
severe parametric vibrations.

As the number of people on the footbridge increases, the
distance between each pair of resonance curves becomes

larger, and there are jumps and lags in the parameter res-
onance response of the Millennium Footbridge. 1e reso-
nance curve consists of a pair of nonintersecting curves. 1e
resonance area is deviated to the right, and the amplitude-
frequency curve appears as a hard spring. Furthermore, it
can be found from Figure 6 that regarding the frequency
tuning parameter σ < 0, there is only one equilibrium po-
sition; when the frequency tuning parameter is σ > 0, there
are multiple equilibrium positions simultaneously.

Figure 7 presents the relationship between the number of
pedestrians and lateral response amplitude of the footbridge
when the damping ratio is 0.007. When the frequency of
pedestrian excitation is twice that of the Millennium
Footbridge (that is,ω2 � 0.96 Hz, σ � 0), a certain number of
pedestrians N correspond to the lateral response of the
footbridge, there is a stable nontrivial solution, and ac-
cordingly, a slight excitation can even induce a large vi-
bration of the footbridge.

While the pedestrian walking frequency is less than
0.96Hz, a certain number of pedestrians N corresponds to a
stable nontrivial solution to the lateral response of the pe-
destrian bridge, and the smaller the excitation frequency, the
more pedestrians are required to stimulate the Millennium
Footbridge to vibrate; when the pedestrian frequency is
greater than 0.96Hz, there are two stable nontrivial solutions
under the condition of a certain number of pedestrians N
corresponding to a lateral response of the footbridge. Also,
the number of pedestrians required to excite the vibration
parameters of the Millennium Footbridge is independent of
the excitation frequency. For the same number of pedes-
trians, the greater the excitation frequency is, the greater the
response amplitude will be.

4.1.2. Phase Angle of Movement by Pedestrians and the
Footbridge. Figure 8 indicated the relationship between
phase angle and the mass ratio of pedestrian and bridge
motion with different damping ratios. It can be seen from
the data that as the mass ratio increases, the phase angle of
pedestrian and bridge motion will slightly vary (increases or
decreases), which can draw a conclusion that when the
damping of the footbridge is certain, the measured phase
angle according to the model is basically unchanged, ap-
proximately 90° or −90°.

4.1.3. Ae Impact of the Number of People on the Bridge per
Unit Time. Affected by the purpose, location, and peak
period of walking, the number of pedestrians on the foot-
bridge in a unit time may be different, and different human
flowwill lead to different dynamic responses of the structure.
Considering the total number of 250 people and the pe-
destrian numbers of 30, 50, 70, 90, and 110 at 400 s interval,
the transverse dynamic response amplitude of Millennium
Bridge is calculated.

It can be seen Figure 9 that, as the number of pedestrians
on the footbridge increases per unit time, the dynamic re-
sponse amplitude of the Millennium Footbridge decreases.
1is is because the fewer the pedestrians on the footbridge
per unit time, the longer the hours pedestrians spend on the
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Figure 5: 1e relationship between critical number of pedestrians
and pedestrian step frequency in different damping ratios.
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bridge. 1e easier it is to induce parameter resonance, when
the number of pedestrians on the footbridge reaches 50
people/400 s, and the dynamic response of the structure will
change slightly.

4.1.4. Ae Influence of the Footbridge Structure Damping
Ratio on Lateral Vibration. In Figure 10, it takes 200 pe-
destrians on the footbridge as an example to calculate the
dynamic response changes of the Millennium Footbridge
under different damping ratios of the structure. It can be
seen from the above figure that when the structural damping
is considerably high, the lateral vibration response of the
Millennium Footbridge will be smaller; while the structural
damping is considerably low, the Millennium Footbridge
undergoes parametric vibration, and its vibration response
will increase sharply. When damping ratios of the structure
are more than 0.01, 200 people are walking at the same time,
the parametric vibration cannot be aroused, and the forced
vibration is the main reason. Increasing the damping of the
structure has no obvious effect on reducing the lateral vi-
bration response. It can be seen from equation (38) that the
amplitude of the footbridge parameter vibration caused by
pedestrians increases as the resistance ratio of the footbridge
decreases. It can be seen from equation (49) that the critical
number of people decreases as the damping ratio of the
footbridge increases. After the damping ratio of the pe-
destrian bridge structure makes the pedestrian bridge reach
the critical condition of parametric vibration, if the damping
ratio continues to decrease, it will cause a large lateral vi-
bration of the pedestrian bridge, and the dynamic response
amplitude caused by the forced vibration is smaller than the
parametric vibration. 1e impact of the bridge damping
ratio on the Millennium Bridge is different from that of the
Japanese T bridge, because the vibration of the Millennium
Bridge is mainly caused by parametric vibration, while in the

case of the Japanese T bridge, it is resonance caused by
forced vibration. 1erefore, increasing the damping ratio of
the Millennium Bridge can effectively avoid parametric
vibration.

4.1.5. Influence of Initial Conditions on Lateral Vibration.
Figure 11 shows the time-history diagram of the lateral
displacement amplitude of the Millennium Footbridge
under different initial conditions. It can be seen from the
figure that when the parameters are in resonance, the initial
conditions have no effect on the vibration amplitude in the
final stable state. Generally, the initial displacement has no
effect on vibration response, whereas the initial speed has a
significant influence on the vibration response of the Mil-
lennium Footbridge. Furthermore, at the same initial dis-
placement, the greater the initial speed is, the shorter is the
time required to reach a stable vibration response.

4.1.6. Effect of Synchronization Coefficient on Lateral
Vibration. Figure 12 presents the relationship between the
critical number of pedestrians and synchronization coeffi-
cient under a certain damping ratio and parameter reso-
nance. To bemore specific, as the synchronization coefficient
increases, the critical number of people decreases. In the case
of a low synchronization coefficient, as the synchronization
coefficient increases, the critical number of pedestrians
decreases faster. When the synchronization coefficient
reaches 0.5, the increase of the crowd synchronization co-
efficient will have little effect on the critical number of
pedestrians.

4.2. Numerical Analysis. To rewrite equation (20) into the
form of the following differential equations, it gives
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Figure 6: Amplitude frequency response curve (ζ1 � 0.007, ε � 0.5,
SS: stable solution, USS: unstable solution).
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_w1(t) � v1(t),

_v1(t) � −εζ1v1(t) + εζ2 cos ωpt v1(t) − ω2
1w1(t)

+ εβ1 cos ωpt w1(t) − εβ2w
3
1(t)

+ εF0 cos ωpt .

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(51)

1e paper introduces MATLAB language; further, the
fourth-order Runge–Kutta method is used to get the second-
order nonlinear vibration differential, equation (51). 1e
purpose is to provide a specific solution by the built-in
function ODE45 of MATLAB. Figure 13 shows the London
Millennium Footbridge time history curve of lateral vibra-
tion displacement, lateral vibration velocity, and lateral

vibration acceleration when there are 50 pedestrians, 120
pedestrians, 175 pedestrians, and 250 pedestrians crossing
the footbridge. In this way, the initial displacement is
0.001m and the initial speed is 0.001m/s, while the damping
ratio is the measured value 0.007.

It is worth calling attention to the fact that parametric
vibration cannot be excited in the case of small number of
pedestrians, generally forced vibration. Accordingly, the
vibration response is an equal period response, as shown in
panels (a) and (b) in Figure 13.1e time history curve decays
first and then vibrates at a constant amplitude; when the
number of pedestrians is around 175, the corresponding
parameter vibration is excited. And, the time history curve
diverges slowly, as shown in Figure 13(c). When the number
of pedestrians exceeds the critical number of people, it is
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possible that the parameter vibration is obvious, even with a
little disturbance. A large parametric vibration is aroused
faster, this is largely due to parametric vibration control, and
the time history curve diverges faster, which is consistent
with the phenomenon actually observed on the spot, and the
more pedestrians on the footbridge, the faster the vibration
response changes; see Figure 13(d). 1e lateral displacement
will be enlarged continually when the Np� 175. Since the
author considered the influence of nonlinearity in themodel,
the lateral displacement becomes constant when the time
reaches 5000 s. However, even assuming that the force of the
crowd on the pedestrian bridge is linear with the bridge
vibration speed, lateral displacement of the structure will not
be enlarged continually when the Np� 250, so the vibration
response tends to be stable at 700 s.

4.3. Simulation Analysis of the Pedestrian Boarding Process of
the London Millennium Footbridge Experiment. Assuming
that the number of pedestrians on the bridge increases by
50 every 400 s, and by 2000 s, the number of pedestrians
increases to 250. Figures 14–17 present the number of pe-
destrians on the footbridge, the time history curve of mid-
span displacement, the time history curve of mid-span
speed, and medium acceleration time history curve, re-
spectively. By 2000 s, the maximum displacement amplitude
reaches 37mm, while the maximum velocity is 0.11m/s, and
the maximum acceleration is 0.33m/s2. Among them, it can
be observed that the calculated speed value is close to the test
value, accordingly the test speed is 0.135m/s, which shows
that the numerical simulation has high reliability and the
parameter values are more reasonable. From Figures 14–17,
it was found that before the number of pedestrians on the
footbridge reaches the critical number of persons, the
footbridge’s response is small; in addition, the change of
response is not obvious. When the number of people on the
footbridge exceeds the critical number of people, the bridge’s
response rapidly increases. In other words, when the number
of persons on the Millennium Footbridge reaches the critical
value, its lateral amplitude reaches the critical value, which
causes the lateral vibration response to increase rapidly.
Figures 15–17 show that the vibration responses will con-
tinually increase; however, since the author considered the
influence of nonlinearity in the model, they will become
constant after 2400 s when the Np� 250. In this experiment,
the vibration model accounts for the great vibration of mid-
span on the London Millennium Footbridge.

5. Nonlinear Parametric Vibration Analysis of
the Footbridges considering the Time-
Lag Effect

In the process of pedestrians’ movement, the force exerted
by pedestrians on the footbridge cannot be immediately
reflected on the pedestrian bridge, and there is a time lag,
which is the phenomenon of time lag. In this article, the
focus is on the three major causes of time lag. One is the
impact of pedestrians’ own factors, that is, the time that
persons need to respond; the other cause is the contact
between pedestrians and the footbridge, and the pace of
pedestrian adjustment and footbridge vibration cannot be
achieved simultaneously. In addition, the third cause is
regarded as parameters of the footbridge itself, such as the
classification, span, quality, stiffness, feature, and thickness
of the footbridge. Investigation shows that the thinner and
harder the contact material between the pedestrian and the
bridge deck, the smaller the time lag [24, 25]. 1e current
research on time lag basically focuses on the application of
time lag phenomenon for vibration reduction control. It is
therefore concluded that the time lag phenomenon can help
reduce vibration of the structure, and change stability and
bifurcation behavior of linear and nonlinear vibration of the
structure [26–31]. However, there are few researches re-
ported on the time lag phenomenon in the human-induced
bridge vibration. 1e Nakamura model was used by Lin and
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Zhen to analyze the time lag in the forced vibration, which
will help reduce vibration of the footbridge [24, 25]. Hence,
it is of great significance to analyze the influence of time lag
on the vibration of bridge parameters caused by pedestrians.

5.1. Nonlinear Parametric Vibration Aeory considering the
Time-Delay Effect. On the basis of the nonlinear parametric
vibration model of the footbridges derived previously, the
time-lag effect is introduced to analyze and investigate the
impact of time lag on the parametric vibration of the
footbridges. Omitting the longitudinal effect, the nonlinear
vibration equation of lateral parameters in consideration of
time lag phenomenon can be expressed as

€w1(t) + εζ1 _w1(t) − εζ2 cos ωp(t − τ)  _w1(t − τ)

+ ω2
1w1(t) + εβ2w

3
1(t) − εF0 cos ωp(t − τ)  � 0.

(52)

Multi-scale approach is applied to solve equation (52);
the first approximate solution of equation (52) now gives

w11(t) � u0 T0, T1(  + εu1 T0, T1( , (53)

w11τ(t) � u0τ T0, T1(  + εu1τ T0, T1( . (54)

Substituting equations (23), (24), (53), and (54) into (52),
assuming that the coefficients of the small parameters ε on
both sides of the equation is equal, the linear partial dif-
ferential equation reads as follows

ε0: D
2
0u0 + ω2

1u0 � 0, (55)

ε1: D
2
0u1 + ω2

1u1 � −2D0D1u0 − μ1D0u0

+ μ2D0u0τ cos ωp(t − τ)  − β2u
3
0

+ F0 cos ωp(t − τ) .

(56)

1erefore, to assume the solution of equation (55), it
gives

u0 T0, T1(  � A T1( e
jω1T0 + A T1( e

−jω1T0 . (57)
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1e time lag is presented as

u0τ T0, T1(  � Aτ T1( e
jω1 T0− τ( ) + Aτ T1( e

− jω1 T0− τ( ).

(58)

Rewriting μ2D0u0τ cos(ωp(t − τ)) and F0 cos(ωp(t − τ))

into plural form, and further substituting equation (57) and
(58) into (56) leads to

D
2
0u1 + ω2

1u1 � − 2D1Ajω1 + μ1Ajω1( e
jω1T0

+
μ2jω1

2
Aτe

j ωp+ω1(  T0− τ( ) − Aτe
j ωp−ω1(  T0− τ( ) 

− β2 A
3
e
3jω1T0 + 3A

2
Ae

jω1T0 

+
F0

2
e

j ωpT0−ωpτ( 
+ cc.

(59)

In which, cc is regarded as the conjugate complex
number of the previous expression. From equation (60), it
can be found that the time system has parametric vibration
when ωp � 2ω1, and the time system is forced vibration
when ωp � 2ω1. It is likely for the pedestrians’ lateral force to
simultaneously appear 1 : 2 parametric resonance and 1 :1
forced vibration. To state more clearly, the following part is
devoted to analyze 1 : 2 parametric vibration considering the
time-lag effect, and also to study the impact of time lag on
the footbridge vibration.

Inserting new excitation frequency tuning parameters, it
reads

ωp � 2ω1 + εσ. (60)

Based on equation (59), the condition for eliminating the
permanent term can be obtained

2D1Ajω1 + μAjω1 +
μ2jω1

2
Aτe

jσT1e
− j ω1+εσ( )τ

+ 3β2A
2
A � 0.

(61)

For the lateral vibration of the footbridge caused by
pedestrians, the time lag τ is not obviously large. Whereas, in
the case of small value ε, according to the Taylor series, Aτ
and Aτ can be defined as

Aτ T1(  � Aτ(εt) � A(εt − ετ) � A T1 − ετ( 

� A T1(  − ετA′ T1(  +
1
2
ε2τ2A’′′ T1(  ≈ A T1( .

(62)

Hence, the equation can be written as

2D1Ajω1 + μAjω1 +
μ2jω1

2
A T1( e

jσT1e
− j ω1+εσ( )τ

+ 3β2A
2
A � 0,

(63)

A(T1) is written into exponential form, and it gives

A T1(  �
a1 T1( 

2
e

jc1 T1( ). (64)

Substituting equations (64) into (63), comparing its real
part and imaginary part, and assuming ψ � σT1 − 2c1, it can
be found:

D1a1 � −
ζ1a1

2
−
ζ2a1

4
cos φ cos ω1 + εσ( τ( 

−
ζ2a1

4
sin φ sin ω1 + εσ( τ( ,

D1φ1 � σ +
ζ2
2
sin φ cos ω1 + εσ( τ( 

−
ζ2
2
cos φ sin ω1 + εσ( τ(  −

3β2a
2
1

4ω1
.

(65)

Furthermore, with the fixed value of D1a1 � 0, D1φ1 � 0,
it reads

ζ1a1

2
� −

ζ2a1

4
cos φ cos ω1 + εσ( τ( 

−
ζ2a1

4
sin φ sin ω1 + εσ( τ( ,

(66)

σ −
3β2a

2
1

4ω1
�
ζ2
2
cos φ sin ω1 + εσ( τ( 

−
ζ2
2
sin φ cos ω1 + εσ( τ( .

(67)

Equations (66) and (67) are squared and added, and
therefore,

ζ21 + σ −
3β2a2

1
4ω1

 

2

�
ζ22
4

. (68)

Equation (68) is the amplitude-frequency curve of
nonlinear parametric vibration considering the time-lag
effect. Compared equation (36) with (68), in virtue of the
small value of β1. In the nonlinear parametric vibration of
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the Millennium Bridge, the time lag has no effect on am-
plitude of the structure.

5.2. Numerical Analysis. Taking 250 people on the Millen-
nium Bridge as an example, the time history analysis of the
parameter vibration of the Millennium Bridge considering
the time lag is carried out. Figure 18 shows the time history
curve of displacement response considering the time lag and
the initial conditions.

It is generally observed that Figure 18 indicates the
lateral vibration displacement of the London Millennium
Footbridge in case of different time lags. Comparing Fig-
ures 9 and 18, it can be concluded that the response am-
plitude of the Millennium Footbridge does not vary with the
existence of the time-lag effect and the time lag, which is
consistent with the theoretical approximation solution. 1e
structural vibration response obtained is similar to the actual
measurement regardless of considering or without consid-
ering the time delay. Accordingly, the critical number of

pedestrians obtained is also the same, which proves that
theoretical analysis is correct.

However, when the time lag τ takes different values, the
time required to reach the peak value and the stable am-
plitude will vary without any obvious principles, reflecting
the fact that the time lag has a complicated influence on the
time needed to reach the peak value and stable amplitude.
1is is because in parametric vibration, the response of the
structure depends on the time variable. Even if there is time-
lag effect, its influence on the amplitude can be coved as the
change of time. It is worth calling attention to the fact that it
is the difference between parametric vibration and forced
vibration.

6. Conclusions

1is paper takes the London Millennium Footbridge as an
example, considering the influence of pedestrian quality on
the frequency of footbridges. A detailed nonlinear transverse
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Figure 18: Lateral displacement in various conditions. (a) r� 0.2. (b) r� 0.5. (c) r� 1.0. (d) 2.0.
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parametric vibration model is proposed in consideration of
the relationship between force and speed. Using Galerkin
and multi-scale perturbation approach, the investigation
also analyzes the large-scale vibration caused by the com-
bination of human-induced footbridge parametric vibration
and forced vibration. After the experiment on the causes of
the large-scale vibration phenomenon of the Millennium
Footbridge, the following conclusions can be drawn:

(1) 1is model can better and further explain that, when
the fundamental frequency of the Millennium
Footbridge is far away from the pedestrians’ lateral
walking frequency, still large lateral vibrations will
occur. In additionally, the theoretical calculation of
the critical number of pedestrians is close to the
measured value, indicating that the established
model has a considerably high reliability.

(2) 1e closer the walking frequency is to two times the
natural frequency of the footbridge, the smaller the
number of pedestrians required to excite large vi-
brations. As long as a slight excitation, the pedestrian
bridge will also vibrate significantly.

(3) When the structural damping is relatively low, the
Millennium Footbridge undergoes parametric vi-
bration, and the vibration response increases
sharply; when the parametric resonance occurs, the
initial conditions have no effect on the vibration
amplitude in the final steady state; as the synchro-
nization coefficient increases, the critical number of
pedestrians decreases.

(4) As for the Footbridge parameters with regard to
vibration caused by pedestrians, when only con-
sidering the lag of pedestrians’ force on the foot-
bridge, the time-lag effect has no effect on the
amplitude, but has an effect on the time needed to
reach a stable amplitude [32].
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