
Research Article
Indirect Determination Approach of Blast-Induced Ground
VibrationBased on aHybrid SSA-OptimizedGP-Based Technique

Zhaoxin Jiang,1 Hongyan Xu,2 Hui Chen ,3,4,5 Bei Gao,2 Shijie Jia,2 Zhi Yu ,5

and Jian Zhou 5

1Xinjiang Xuefeng Sci-Tech (Group) Co., Ltd., Urumqi, Xinjiang 830047, China
2Xinjiang Xuefeng Blasting Engineering Co., Ltd., Urumqi, Xinjiang 830047, China
3School of Geology and Mines Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China
4Key Laboratory of Environmental Protection Mining for Minerals Resources at Universities of Education Department of
Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang 830047, China
5School of Resources and Safety Engineering, Central South University, Changsha 410083, China

Correspondence should be addressed to Hui Chen; xjuchenhui@126.com

Received 23 December 2020; Revised 22 February 2021; Accepted 9 March 2021; Published 17 March 2021

Academic Editor: Haoyuan Hong

Copyright © 2021 Zhaoxin Jiang et al.+is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

+e accurate determination of blast-induced ground vibration has an important significance in protecting human activities and the
surrounding environment. For evaluating the peak particle velocity resulting from the quarry blast, a robust artificial intelligence
system combined with the salp swarm algorithm (SSA) and Gaussian process (GP) was proposed, and the SSA was used to find the
optimal hyperparameters of the GP here. In this regard, 88 datasets with 9 variables including the ratio of bench height to burden (H/
B) and the ratio of spacing to burden (S/B) were selected as the input variables, while peak particle velocity (PPV) was measured.
+en, anANNmodel, an SVRmodel, a GPmodel, an SSA-GPmodel, and three empirical models were established, and the predictive
performance was evaluated by using the root-mean-square error (RMSE), determination coefficient (R2), value account for (VAF),
Akaike Information Criterion (AIC), Schwarz Bayesian Criterion (SBC), and the run time. After comparing, it is found that the
proposed SSA-GP yielded a superior performance and the ratio of bench height to burden (H/B) was the most sensitive variable.

1. Introduction

With the development of science and technology, many rock
fragmentation technologies have been invented and applied
in the engineering area, but the blasting technique is still the
method with the best economic benefit and the highest rock
fragmentation efficiency both in the open-pit mines and
underground mines [1]. However, a previous study [2]
showed that more than half of the explosive energy was
wasted, and blast-induced vibration, flyrock, blast-induced
overpressure, etc. were caused during the blasting operation.
Among them, blast-induced vibration is considered to be the
most serious and most common blast-induced environment
issue, so it is of great significance to predict and control the
blast-induced vibration for avoiding the undesirable effects
on the neighboring building and human activities, etc.

Usually, the blast-induced ground vibration is evaluated
andmeasured by using peak particle velocity, frequency, and
duration time. Among these three indexes, peak particle
velocity (PPV) is the most common and widely used index in
the previous literature [3–5]. Aiming at the accurate pre-
diction of the peak particle velocity, some empirical equa-
tions were proposed and utilized in many cases such as
Sungun Copper Mine, Iran [6], Miduk Copper Mine, Iran
[7], Bakhtiari Dam, Iran [8], and Sinagreni Collieries
Company Limited, India [9]. But, some research studies
[10, 11] show that the predictive performance of these
empirical models is not high when being utilized in peak
particle velocity prediction.

Nowadays, artificial intelligence (AI) technology is
developing rapidly and many new artificial intelligence
technologies such as ANN, SVR, and RF are being
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proposed and applied in practical cases such as predicting
the field capacity in disaster management problems
[12–18], mining production problems [19], etc. In prac-
tice, artificial intelligence (AI) technology is also being
used to predict PPV values in many studies. For example,
Arthur et al. [20] checked the efficiency of the Wavelet
Neural Network (WNN) in predicting peak particle ve-
locity, and satisfying prediction results were obtained,
which proves the strong prediction capability of the
Wavelet Neural Network (WNN). Monjezi et al. [21] used
an artificial neural network (ANN) model which includes
an input layer, two hidden layers, and an output layer to
evaluate the ground vibration based on the Siahbisheh
project, which demonstrates the effectiveness of using an
ANN to predict the blast-induced ground vibration. Li
et al. [22] proposed two hybrid models using biogeog-
raphy-based optimization (BBO), deterministic optimi-
zation algorithm (DIRECT), and artificial neural network,
namely, BBO-ANN and DIRECT-ANN, and the gener-
alization capability was found to be better than other
prediction models. +is study shows the use of an opti-
mization algorithm to improve the prediction perfor-
mance of the prediction model. Sheykhi et al. [23]
combined the fuzzy C-means clustering (FCM) and
support vector regression (SVR) to develop an accurate
prediction model based on a database from the Sarch-
eshmeh copper mine, and the model performance of this
new proposed hybrid model is introduced in this paper. In
addition to the abovementioned research studies, many
studies [24–30] were conducted by using artificial intel-
ligence (AI) technology to predict the PPV for vibration
control.

Although many studies were conducted previously,
there is not a model that is suitable for all areas because
every engineering site has its characteristics. Meanwhile,
artificial intelligence (AI) technology is an evolving
technology, and the predictive models in the artificial
intelligence (AI) area are gradually updated and devel-
oped. +e salp swarm algorithm (SSA) is a newly proposed
metaheuristic algorithm, and this algorithm was checked
using 7 unimodal test functions and 6 multimodal
benchmark functions. Comparing with particle swarm
optimization (PSO), gravitational search algorithm (GSA),
bat algorithm (BA), firefly algorithm (FA), and genetic
algorithm (GA), SSA shows superior and steady perfor-
mance on average. Meanwhile, the successful application
in solving the classical engineering design problem [31],
airfoil design for aero vehicles problem [31], the strength
of fiber-reinforced cemented paste backfill [32], and the
compressive strength of concretes [33] also proves the high
capacity of SSA. Besides, the Gaussian process was found
to be an effective prediction technique after be used in
landslide cases [34], broken rock zone prediction [35],
carbon dioxide emission prediction [36], etc. Meanwhile,
the conclusion that the GP performance can be improved
after using the metaheuristic algorithm has been proved
after many combinations such as PSO-GP [35] and GA-
PSO [34] were proposed and tested. However, as far as the
authors know, the combination of the SSA and Gaussian

process (GP) has not to be proposed and tried in predicting
PPV.

+is paper proposes a new machine learning model,
namely, SSA-GP, the Gaussian process (GP) model was
optimized by the salp swarm algorithm (SSA), and the
modeling process and the application of using the SSA-GP to
predict the blast-induced ground vibration were introduced.
+is is an innovative work as the SSA-GP has not been
analyzed and tried in predicting PPV before. +e model
development process and this application will promote the
application of the artificial technique in solving mining and
geotechnical problems and will be helpful for blast-induced
ground vibration controlling.

2. Materials and Methods

2.1. Collected Database. To develop a high-precision eval-
uation method, a database generated by Hudaverdi [37] was
used here for constructing the empirical, ANN, SVR, GP,
and SSA-GPmodel. A total of 88 sets of data were monitored
at the Akdaglar Quarry in northern Istanbul, Turkey, and
several parameters including burden (B), spacing (S), bench
height (H), stemming (T), subdrilling (U), hole diameter
(D), power factor (PF), the distance between the monitoring
station and blasting point (D), the weight of explosive charge
detonated per delay (W), and peak particle velocity (PPV)
were recorded. Among these parameters, burden is the
distance between each explosive charge or the distance
between the explosive charge to free face. Spacing is the
distance between the two blastholes in a row. Bench height is
the distance from the surface to hole bottom. Stemming is
the distance from the top of the charging section to the
surface. Subdrilling is the distance from the bottom of the
bench to the bottom of blasthole. Power factor means the
explosive charge per cubic meter. After reviewing the study
of Hudaverdi [37], the ratio of bench height to burden (H/
B), the ratio of spacing to burden (S/B), the ratio of burden to
hole diameter (B/D), the ratio of subdrilling to burden (U/
B), the ratio of stemming to burden (T/B), power factor (PF),
the distance between the monitoring station and blasting
point (D), and the weight of explosive charge detonated per
delay (W) were selected as the input variables, while PPV
was selected as the output variable. To describe the collected
database, a scatter plot which shows the data distribution
using diagonal, the bivariate scatter plots using the bottom of
diagonal, the correlation, and significance level using the top
of diagonal was plotted as shown in Figure 1. It should be
noted that the symbol of “∗∗∗,” “∗∗,” and “∗” are, re-
spectively, corresponding to the p values with the range of
[0, 0.001], [0.001, 0.01], and [0.01, 0.05]. Meanwhile, the
coefficient of relationship between the B/D and PF was
found to be −0.91, so PF was removed from the input
variable after reviewing the study of Rovini et al. [38].

Before the model development, both the input variables
and output variables should be scaled into the range of 0 to 1
for avoiding the effect of the variable with the large number
on the variable with the small number [12]. After scaling,
80% of the database which is normally called training
datasets will be utilized to train and validate the prediction
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model, the remained 20% of the database which is normally
called testing datasets will be used to check the model
performance [39, 40], and the consistency of data distri-
bution of these two datasets can reduce the impact of the
data partitioning process on model performance.

2.2. Empirical Techniques. +e empirical equation of the
United States Bureaus of Mines (USBM) [41, 42] is the most
common and widely used technique for PPV prediction, and
that equation can be described as

PPV � a
D
��
W

√ 

−b

, (1)

where a and b are the constants that are affected by the mine
geology; D is the distance between the monitoring station
and blasting point; and W is the weight of explosive charge
detonated per delay.

In addition to the abovementioned empirical formula,
two equations proposed by Davies et al. [43] and the Bureau
of Indian Standard [44] were also selected.

Davies et al.:

PPV � aD
−b

W
c
. (2)

Bureau of Indian Standard:

PPV � a
W

D2/3 
b

. (3)

2.3. Artificial Neural Network (ANN). +e ANN model is an
important branch of the machine learning (ML) technique
and is inspired by the human brain [45, 46]. With the help of
computer calculation, many problems including blast-in-
duced rock movement [47–49], blast-induced overpressure
[50], rockburst [51], flyrock [52], and rock fragmentation
[53, 54] can be solved by learning message from the input
variables and using these messages to predict the output
variables. After reviewing previous studies [55, 56], multi-
layer perception (MLP) which is composed of input layers,
hidden layers, and output layers is the best type of neural
network among many artificial neural networks. In the
multilayer perception model, the layer in the multilayer
perception consists of one or more nodes, and the line
between the nodes show the information exchange.

To train the neural network, an efficient learning algo-
rithm should be selected. According to the study of Jahed
Armaghani et al. [57], Dreyfus [58], and Pedrycz et al. [59],
the back-propagation (BP) algorithm is the most competent
learning algorithm for MLP neural networks. During the
process of the BP algorithm, the message learned from the
input variables is used to predict the output variables, then
the predicted values of the output variable will be compared
with the actual values, and the error will be calculated [60].
After that, the error will be sent back for updating the in-
dividual weights in the neural network, and that process will
be repeated until the error of the predict value and actual
value reach a defined level [61].
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Figure 1: Scatter plot of the established database.
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2.4. Support Vector Regression (SVR). SVR was successfully
applied in solving engineering problems including hydro-
carbon reservoir prediction [62], the thermal conductivity of
frozen soil prediction [63], and rock mass parameter [64]
prediction. +at algorithm is developed from the statistical
learning theory, and the input variables were reflected into a
high-dimensional space by using the kennel function [65, 66].

+e kennel function provided by support vector re-
gression (SVR) mainly includes three types such as the linear
kernel, polynomial kernel, and radial primary kernel
function [67]. Among these kernel functions, the radial
primary kernel function was found to be the most efficient
kernel function for higher predictive performance [68].

2.5. SSA-GP

2.5.1. Salps Swarm Algorithm (SSA). Normally, the hyper-
parameter of the prediction model such as ANN, RF, SVR,
and GP is obtained from the trial-and-error method, but this
method is time consuming and it is hard to find the optimal
hyperparameter combination when there are several in the
prediction model. +e emergence of a metaheuristic algo-
rithm provides a good way to solve this problem, and by
using these algorithms, the optimal hyperparameter com-
bination can be found after hundreds of iterations. In this
area, many metaheuristic algorithms were inspired by the
natural phenomenon such as animal behavior (Harris
Hawks Optimization Algorithm (HHO) [69], Grey Wolf
Optimizer Algorithm (GWO) [70, 71], etc.) and evolu-
tionary behavior (Differential Evolution Algorithm (DE)
[72], Genetic Algorithm (GA) [73, 74], etc.). +e salp swarm
algorithm is a metaheuristic algorithm inspired by the be-
havior of the salp swarm in the ocean [31]. Like the behavior
of jellyfish, the salp moves forward by pumping water from
the salp body. Meanwhile, the salp always forms a swarm in
the deep ocean, and some research studies [31, 75] show that
the swarm behavior (shown in Figure 2) of the salp can help
the salp determine the location of food resource fastly and
accurately. According to the research of Mirjalili et al. [31],
Faris et al. [76], and Sayed et al. [77], the salp chains consist
of a leader salp (the first salp in the salp chain) and follower
salps (rest of the salps in the salp chain). +e lead salp
controls the moving direction, and the follower salps will
follow the leader salp during the movement of the salp chain.

+e updating rule of the position of the leader and
follower salp is given by [31]

x
1
j �

Fj + c1 ubj − lbj c2 + lbj , c3 ≥ 0,

Fj − c1 ubj − lbj c2 + lbj , c3 < 0,

⎧⎪⎨

⎪⎩
(4)

with

c1 � 2 exp −
4l

L
 

2
⎛⎝ ⎞⎠, (5)

where x1
j and Fj are, respectively, the position of the leader

salp in the salp chain and the position of food resource; ubj
and lbj are, respectively, the upper bound and lower bound

of jth dimensional; c1, c2, and c3 are random numbers; and l
and L are, respectively, the current andmaximum number of
iteration.

After obtaining the position of the leader salp in the salp
chain, the position of the following salps can be expressed as
follows:

x
i
j �

1
2

x
i
j + x

i−1
j , (6)

where xi
j represents the position of ith salp in the j dimension

and i is the number greater than or equal to 2.

2.5.2. Gaussian Process (GP). +e Gaussian process (GP)
can find a relationship between the input variable value and
the output variable value of the training datasets, and the
predicted output variable value of the testing datasets can be
calculated using the created relationship. According to the
study of Yu et al. [35], Arthur et al. [79], and Fang et al. [36],
a GP model can be determined by the mean function m(x)
and covariance function k(x, x′), and that model f(x) is
defined as follows:

f(x) ∼ GP m(x), k x, x′( ( , (7)

subjected to

m(x) � E[f(x)],

k x, x′(  � E [f(x) − m(x)] f x′(  − m x′(   .
 (8)

AssumeD� (xi, yi) is the training dataset of the Gaussian
model, where xi and yi are, respectively, the input and output
vector.

+en, the standard linear regressionmodel is determined
using the following formula:

y � f(X) + ε, (9)

where ε is an independent random variable, ε ∼ N(0, σ2n),
where σn is the variance.

Given the new testing input x∗ and the training setD, the
goal of the GPmodel is to calculate the y∗ using the posterior
probability formula.

+e parameters in the mean function m(x) and co-
variance function k(x, x′) constitute the hyperparameters of
the Gaussian process model, which are the only parameters
to be determined in the Gaussian process.

2.5.3. Hybrid of the SSA and GP. During the development of
the GP model, the combination of hyperparameters is a very
important issue for achieving higher predictive perfor-
mance. Normally, the optimal combination of hyper-
parameters in the Gaussian process was found by using the
conjugate gradient algorithm, but it is easy to fall into local
optimum and that algorithm is strongly dependent on the
initial value.

After scaling the collected datasets into the range of 0 to
1, the collected database will be randomly split into the
training (80%) and testing datasets (20%). +e SSA algo-
rithm was used to find the optimal combination of
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hyperparameters by learning knowledge from training
datasets, and the obtained hyperparameter combination will
be used to establish the optimal GP model (see Figure 3). In
this process, the 10-fold cross-validation method was ap-
plied to calculate the fitness value for hyperparameter
searching and optimal GP model development. During the
10-fold cross-validation method, the training datasets were
split into 10 folds; 9 of them will be utilized to develop the
prediction model, and the remained one will be used to test
the performance of that model. After 10 runs, each dataset
will have the opportunity to be learned and tested, and the
overfitting and underfitting phenomenon can be avoided.
Finally, the testing datasets will be used to evaluate the
established optimal GP model by using performance eval-
uation metrics.

In this study, the blast-induced ground vibration models
were developed in the MATLAB environment, and the
computation code was programmed using MATLAB lan-
guage and implemented on the computer with Intel (R) Core
(TM) i7-7500U CPU running at 2.70GHz and 2.90GHz.

3. Results and Discussion

3.1. Results of Empirical Models. For the empirical model,
two constants are determined by using the MATLAB code
based on 70 training datasets which are the same as those
used in the proposed ANN, SVR, GP, and SSA-GP model.
After regressing, these fitted equations were obtained and
are as follows:

PPV � 167.8 ×
D
��
W

√ 

−0.9846

, (10)

PPV � 370.6 × D
−1.21

× W
0.5221

, (11)

PPV � 1.901 ×
W

D2/3 
1.215

. (12)

After formula regression, the testing datasets (18 blasting
datasets) were predicted using the abovementioned evolu-
tion formula, the model performance of equation (10) was
found to be an R2 of 0.64 and 0.67, RMSE of 4.92 and 3.94,
and VAF of 70.45 and 75.36, the model performance of
equation (11) was found to be an R2 of 0.70 and 0.75, RMSE
of 4.44 and 3.43, and VAF of 70.44 and 74.74, and the model
performance of equation (12) was found to be an R2 of 0.46
and 0.47, RMSE of 6.00 and 4.97, and VAF of 45.92 and
47.67.

3.2. Results of the ANNModel. To check the performance of
using the ANN model to forecast the peak particle velocity,
various ANN models should be built for optimal ANN
model development. In the ANN model, the number of
hidden layers and hidden nodes significantly affect the
model performance due to the different weights and biases.
An ANN model with too many hidden layers and hidden
nodes may lead to the excessive learning of the training
datasets, while too few of them will lead the ANN model to
not be able to effectively learn the knowledge from the
training datasets. Here, we constructed 17 ANNmodels with
1 hidden layer and a different number of hidden nodes
ranging from 1 to 17 after following the suggestion of
Mohamad et al. [80] and Hecht-Nielsen [81]. With the help
of the 10-fold cross-validation method, an ANN model with
1 hidden layer and 3 hidden neurons in this hidden layer
shows the best results (R2 of 0.85 and 0.83, RMSE of 3.14 and
2.78, and VAF of 85.29 and 83.86 for training and testing
datasets) and determined as the prediction model to evaluate
peak particle velocity in this research.

3.3. Results of the SVRModel. Similar to the development of
the ANNmodel, the blast datasets were converted, and then, a
grid search method (GSM) was used to search the optimal
hyperparameter combination for PPV prediction. In the SVR

Follower

Resource

Leader

Salp chain

Salp

Figure 2: Swarm behavior of the slaps in the deep ocean (picture of the salp modified from [78]).
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model, two hyperparameters including penalty factor (C) and
gamma (g) in the RBF kernel should be determined. Here,
the search scope of log 2(C) and log 2 (g) are−10.0 to 10.0, the
cross-validationmethod was applied to guide hyperparameter
selection, and the hyperparameter is optimal when the fitness
value is the smallest. As a result, the optimal combination ofC
and g was found with C� 10.556 and g � 0.435. It is found
that the R2 values are 0.87 and 0.84, the RMSE values are 2.91
and 2.71, and the VAF values are 87.32 and 84.34 for training
and testing datasets, respectively.

3.4. Results of the GP Model. Using the conjugate gradient
algorithm, the hyperparameter combination of an original
Gaussian process model was searched after learning
knowledge from the training datasets. After training, the
Gaussian process model yielded a prediction performance of
R2 � 0.86, RMSE� 3.00, and VAF� 86.46 for training data-
sets and R2 � 0.87, RMSE� 2.43, and VAF� 87.40 for testing
datasets.

3.5. Results of the SSA-GP Model. For developing the SSA-
GP model, the number of salps in the salp chain and the
maximum iteration should be determined first. +en, 9 SSA-
GP models with the number of salps ranging from 20 to 300
and maximum iteration of 500 were established, the fitness
curve calculated from the 10-fold cross-validation method of
each SSA-GP model was recorded, and the hyperparameter
combination is the best when the fitness value is smallest.
After setting parameters for the SSA algorithm, the salps find
the optimal location for the GP models with the corre-
sponding parameters. Model results show that the number

of salps does not have a significant effect on the fitness curve,
and then, 20 and 500 were selected to be the optimal number
of slaps and a maximum number of iterations.

After determining the hyperparameters of the SSA-GP
model, the optimal SSA-GP model was established and
evaluated by using R2, RMSE, and VAF. After predictive
performance evaluation, the results show that the measured
PPV values agree well with the predicted PPV values with
R2 � 0.88, RMSE� 2.78, and VAF� 88.38 for the training
datasets and R2 � 0.89, RMSE� 2.25, and VAF� 89.37 for
testing datasets.

3.6. Performance of Various Models. For the comparison of
the model performance, three performance metrics in-
cluding R2, RMSE, and VAF were applied, and a prediction
model can be considered as the best model when R2 �1,
RMSE� 0, and VAF� 100. Meanwhile, the value of these
performance metrics can be calculated using the following
formula [32, 82–87]:

R
2

� 1 −


N
i�1 y − ypre 

2


N
i�1 (y − y)

2 , (13)

RMSE �

������������



N

i�1

y − ypre 
2

N




, (14)

VAF � 100 × 1 −
var y − ypre 

var ypre 
⎛⎝ ⎞⎠, (15)
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Figure 3: Flowchart of the SSA-GP model.
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where N, y, y, and ypre are the number of datasets, the
average PPV values, the actual PPV values, and the predicted
PPV values, respectively.

Besides the statistical criteria shown above, the Akaike
Information Criterion (AIC) and Schwarz Bayesian Crite-
rion (SBC) were also utilized after reviewing the study of
Agoubi and Kharroubi [88] and Phiri et al. [89].

AIC � ln 
N

i�1

ε2i
N

⎡⎣ ⎤⎦ +
2k

N
,

SBC � ln 
N

i�1

ε2i
N

⎡⎣ ⎤⎦ + k ln
(N)

N
,

(16)

where ε is the residual value and k is the number of estimated
coefficients.

For comparing the prediction performance of the em-
pirical model 1, empirical model 2, empirical model 3, ANN
model, SVR model, GP model, and SSA-GP model, the
datasets (88 measured PPV datasets) were compared with
the 88 predicted PPV datasets, as shown in Figure 4. It shows
that the predicted blast-induced ground vibration value
obtained from the empirical model 1, empirical model 2,
empirical 3, ANN model, SVR model, GP model, and SSA-
GP model and the measured blast-induced ground vibration
shows the same data distribution trend. Meanwhile, the
errors between these measured 88 datasets and the predicted
88 PPV datasets obtained from the empirical model 1,
empirical model 2, empirical 3, ANNmodel, SVRmodel, GP
model, and SSA-GPmodel were plotted in Figure 5. It can be
seen that error of the SSA-GP in each sample is smaller. +e
performance shows that the predicted PPV values provided
by SSA-GP are closer to the measured PPV values than the
PPV values provided by the other 6 prediction models, while
the difference between the measured PPV value and the
value predicted by the empirical model 3 is the biggest.

By comparing the results shown in Table 1, the proposed
SSA-GP model yield better prediction performance in PPV
prediction due to the higher R2 and VAF value, lower RMSE
value, and higher summing ranking value obtained from the
ranking method proposed by Zorlu et al. [90]. Meanwhile, the
prediction performance of empirical model 3 is the worst
among these 7 predictionmodels. Notably, theVAF value of the
empirical model 3 in PPV prediction was only 45.92 and 47.67
for training datasets and testing datasets, whereas these values of
the proposed SSA-GP model were 88.38 and 89.37. +e values
of those performance metrics prove that the proposed SSA-GP
model is the most dominant model for PPV prediction.

Also, the PPV value compassion shown in Figure 6
expresses that the errors between the actual PPV value
and the value predicted by the SSA-GP model are smaller,
which also means that the difference between actual PPV
values and the predicted values obtained from the ANN
model, SVR model, GP model, empirical model 1, empirical
model 2, and empirical model 3 is greater. Besides the
prediction model provided in this study, the same database
was studied by Hudaverdi [37] using multivariate analysis,
and the prediction performance of SSA-GP was found to be
superior.

Besides R2, RMSE, and VAF, the AIC and SBC values
were also calculated using equations (12) and (13), the AIC
value of the empirical model 1, empirical model 2, empirical
model 3, ANN, SVR, GP, and SSA-GP is 6.13, 1.04, −1.09,
2.45, 1.15, −2.80, and -3.46, and the BIC value of the em-
pirical model 1, empirical model 2, empirical model 3, ANN,
SVR, GP, and SSA-GP is 6.33, 1.23, −0.89, 2.65, 1.35, −2.60,
and −3.26, respectively. Normally, the smaller the AIC and
SBC value, the better the suitability of the prediction model.
+erefore, SSA-GP was found to be the best prediction
model among these 7 models.

+e run time of developing a prediction model was
recorded to check the time complexity of the prediction
model. In this investigation, the run time from data pre-
processing to dataset prediction was recorded, and the run
time of the ANNmodel, SVRmodel, GPmodel, and SSA-GP
model was 0.20, 31.57, 0.46, and 405.24 seconds, respectively.
It is found that the SVR model and SSA-GP model take a
longer time than ANNmodel and GP model, and the reason
for this is that the hyperparameter optimization process of
the SVR model and SSA-GP model was contained in the
model development process. Although more time needs to
be used in SSA-GP development, it can be accepted when
comparing with the model performance improvement.

3.7. Performance of Dependency Analysis. After model de-
velopment and performance comparison, a performance
dependency analysis was carried out to analyze the effect of
the number of training datasets (NTD) on the model per-
formance. In this analysis, 7 ANN models, 7 SVR models, 7
GPmodels, and 7 SSA-GPmodels with the NTD equal to 10,
20, 30, 40, 50, 60, and 70 were developed, and 10 unused
datasets in the collected database were used to check the
model performance. It can be seen from Figure 7 that the
prediction accuracy evaluated by the R2 value of these
models gradually increases and finally tend to be stable when
NTD is large than 40. +is phenomenon shows that the
developed prediction model can provide stable results when
used in the engineering site.

3.8. Sensitivity Analysis. To identify the most sensitive pa-
rameter, a sensitivity analysis was carried out and a cosine
amplitude method [91] was utilized. In this method, the
sensitive value is 0 when that variable is least important and
is 1 when that variable is most important. After calculating,
the sensitive value of the ratio of bench height to burden (H/
B), the ratio of spacing to burden (S/B), the ratio of burden to
hole diameter (B/D), the ratio of subdrilling to burden (U/
B), the ratio of stemming to burden (T/B), the distance
between the monitoring station and blasting point (D), and
the weight of explosive charge detonated per delay (W) is
0.8519, 0.8503, 0.8459, 0.8379, 0.8514, 0.8249, and 0.6712,
respectively. +e results show that the ratio of bench height
to burden (H/B) is the most sensitive parameter among these
variables. Meanwhile, there is little difference between the
ratio of bench height to burden (H/B), the ratio of spacing to
burden (S/B), the ratio of burden to hole diameter (B/D), the
ratio of subdrilling to burden (U/B), the ratio of stemming to
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burden (T/B), and the distance between the monitoring
station and blasting point (D). Normally, the distance be-
tween the monitoring station and blasting point (D) and the
weight of explosive charge detonated per delay (W) were
considered in the empirical prediction model, but the
sensitivity analysis shows that more variables should be
considered in future investigation.

3.9. Superiority and Limitations. After studying, a novel
SSA-GP model was proposed and utilized to predict the
blast-induced ground vibration caused by blast operation in
Akdaglar Quarry. +is method is inexpensive and has high
precision, and the related modeling process of SSA-GP can
guide the development of other hybrid models. Compared
with three empirical prediction models, ANN model, and
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Table 1: Model performance of various models.

Train Test
Sum

R2 RMSE VAF R2 RMSE VAF
Empirical 1 0.64 4.92 70.45 0.67 3.94 75.36 —
Empirical 2 0.70 4.44 70.44 0.75 3.43 74.74 —
Empirical 3 0.46 6.00 45.92 0.47 4.97 47.67 —
ANN 0.85 3.14 85.29 0.83 2.78 83.86 —
SVR 0.87 2.91 87.32 0.84 2.71 84.34 —
GP 0.86 3.00 86.46 0.87 2.43 87.40 —
SSA-GP 0.88 2.78 88.38 0.89 2.25 89.37 —
Empirical 1 2 2 3 2 2 3 14
Empirical 2 3 3 2 3 3 2 16
Empirical 3 1 1 1 1 1 1 6
ANN 4 4 4 4 4 4 28
SVR 6 6 6 5 5 5 33
GP 5 5 5 6 6 6 33
SSA-GP 7 7 7 7 7 7 42
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SVM model, the proposed SSA-GP model can accurately
predict the blast-induced ground vibration, and the accuracy
of that model can be easily improved by enlarging the
collected database or collecting more variables.

Although some achievements have been obtained, some
limitations were also found and should be considered in
future investigations. First, the developed SSA-GP model in
this study is a black box method and may be difficult for
mining engineers when comparing with an explicit equation.
+en, only a small database with 88 datasets and 9 variables
was collected from the previous study, which may affect the
precision of the developed model and the sensitivity analysis
results. Meanwhile, the use of the ratio of two parameters
and the lack of consideration of geology and explosive
parameters may make the prediction a bias, so these

problems should be considered in future investigations. So,
the collection of a bigger database with more datasets and
more variables such as rock type and detonation delay time
can be considered in future investigation. Also, developing
an SSA-GP model needs more time when comparing with
the ANN, SVR, and GP model, but it is meaningful. Last,
only the GP model was optimized by the SSA in this paper.
Although the SSA is a newly proposed metaheuristic al-
gorithm and the optimization performance was proved
when comparing with PSO, GSA, BA, FA, and GA, in the
previous study, a more detailed comparison of using the SSA
to optimize the hyperparameters of the prediction model
such as the ANN, SVR, or RF or the comparison of using the
different metaheuristic algorithm to optimize the GP model
is meaningful.
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Figure 6: Measured versus predicted PPV value: (a) empirical model 1; (b) empirical model 2; (c) empirical model 3; (d) ANN model; (e)
SVR model; (f ) GP model; and (g) SSA-GP model.
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As a machine learning model, the development of the
prediction model is based on the collected database, so the
developed SSA-GP model is only suitable for Akdaglar
Quarry. But, the mining engineers in other mines can use the
modeling process provided in this paper for developing their
prediction model. Nevertheless, this study is a powerful
supplement to the blast-induced ground vibration predic-
tion and can be utilized to control the blast-induced hazard.

4. Conclusions

For an open-pit mine, blasting is a very important part of the
mining process, and the quality of blasting has a significant
impact on the mining economy. However, some unwanted
effects, especially blast-induced vibration, can usually be
found due to the wasting of explosive energy and lead to
safety risks to the surrounding resident’s lives and buildings.
It is, therefore, stated that the high-precision prediction of
peak particle velocity (PPV) is meaningful and can provide
help for both mining engineers and the government.

For the easy-operated, inexpensive, and accurate blast-
induced ground vibration determination, a hybrid SSA-opti-
mized GP-based model, namely, SSA-GP, was proposed based
on an 88-dataset database. During the model development
process, the training datasets (70 datasets) were learned with
the help of the 10-fold cross-validation method and SSA
optimization method, then the testing datasets (18 datasets)
were predicted, and the performance was checked using some
performance metrics. +en, its performance was analyzed and
compared with the empirical, ANN, SVR, and GPmodels.+e
comparison results show that the proposed SSA-GP yields the
promising reliability with an R2 of 0.88 and 0.89, RMSE of 2.78
and 2.25, and VAF of 88.38 and 89.37 for training and testing
datasets and the smallest AIC and SBC value. Performance
dependency analysis results show that the developed prediction
model can provide a stable prediction performance when
forecasting the unused datasets. Sensitivity analysis shows that
more parameters should be considered in the future empirical
prediction model development rather than the explosive
charge of each delay and the distance from the blast block to the
monitoring station. +rough the acquired results, the superior
optimization ability of the SSA was verified, and that algorithm
has the potential to be applied in other prediction issues.
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