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Logistics location is an important component of logistics planning that affects traffic pressure and vehicle emissions. To date, there
has not been an adequate study of the integration of big data into the location for a complicated logistics system. )is study
developed a decision support system that can address location problems for complicated logistics systems, e.g., a multilevel urban
underground logistics system (ULS), using logistics big data. First, information needed in the logistics location, such as the traffic
performance index (TPI) and the origin/destination (OD) matrix, was collected and calculated using a big data platform, and this
information was digitized and represented based on a geographic information system (GIS) tool. Second, a two-stage location
model for a ULS was designed to balance the construction costs and traffic congestion.)e first stage is establishing a set-covering
model to identify optimum locations for secondary hubs based on the ant colony optimization algorithm, and the second stage is
clustering of the secondary hubs to determine locations for primary hubs using the iterative self-organizing data analysis
technique algorithm (ISODATA). Finally, the Xianlin district of Nanjing, China, was chosen as a case study to validate the
effectiveness of the proposed system. )e system can be used to facilitate logistics network planning and to promote the ap-
plication of big data in logistics.

1. Introduction

With the rise of e-commerce and the growth of urbanization
in various countries, urban logistics has become critical in
ensuring the quality of people’s lives and the sustainability of
city development [1]. On the one hand, the demand for
logistics services is growing rapidly, and the delivery effi-
ciency requirement has become higher [2]. For example, the
annual express delivery business growth rate in China
exceeded 50% in 2016 [3]. On the other hand, the increasing
freight volumes in limited urban areas exacerbate traffic
congestion, which has an inevitable impact on energy
consumption and environmental pollution. In the Guide-
lines for National Greenhouse Gas Inventory, it was indi-
cated that petrol consumption in traffic jams is almost twice
that during normal driving [4]. Moreover, as traffic con-
gestion increases, CO2 emissions [5] and PM2.5 [6] increase.

To address the above problems, new logistics techniques
have been proposed, such as the underground logistics
system (ULS) [7, 8]. Although these new techniques are
innovative and appealing, they present challenges in logistics
engineering, including logistics planning, construction, and
maintenance, because of the potentially high costs and the
technical complexities and difficulties.

A ULS is an infrastructure that utilizes underground
urban space to build a dedicated freight network [8]. A ULS
network mainly consists of logistics parks, logistics hub
nodes, underground transportation tunnels, and dedicated
vehicles. )e location-allocation of hubs is key to network
construction because it guides and controls the logistics
activities of the entire system. Moreover, the location of the
hubs affects the number of underground nodes and the total
length of the tunnels, and underground engineering is ex-
tremely expensive. Determining the logistics location for a
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ULS is a complicated and systematic task for which opti-
mization algorithms have been designed considering various
parameters, such as costs, distances, regional congestion,
and freight volumes [9–12]. However, the current location
approaches assume that important parameters, such as re-
gional congestion and freight volumes, are known param-
eters.)ese parameters, which are obtained using traditional
statistical methods, may not reflect the real circumstances.
As a result, the accuracy of the selected logistics location is
undermined by the errors in the parameter values. It is
challenging to accurately and promptly collect and process
massive amounts of data that are related to these parameters
and are produced in the process of daily transportation and
logistics.

Big data has been implemented in logistics, and various
applications have shown tremendous value [13]. It is
characterized by a high data volume, a rapid data flow
(velocity), and diverse data (variety) [14]. With the maturity
of information technologies, the collection, storage, com-
putation, and visualization of big data can basically meet the
requirements [13], while its core values include integrating
data, extracting the features of data, and recognizing pat-
terns from the features to support decision-making. In lo-
gistics systems, data from a variety of sources, such as the
Global Positioning System (GPS), the Internet of )ings
(IoT), or traffic conditions, are time-variant and large. In
logistics, big data has been utilized to optimize crew and
vehicle routing, predict consumer demands, and optimize
warehousing layout networks [13, 15]. However, studies
regarding the utilization of logistics big data for complicated
logistics locations are limited. Since logistics big data is
needed to make decisions about complicated logistics sys-
tems, integrating it into a decision support system is
challenging.

)e aim of this study is to fill the literature gap, i.e., the
fact that there is no integrated decision support system for
complicated logistics location problems in which big data
and geographic information system (GIS) data are efficiently
integrated. )e system is composed of logistics data col-
lection, data processing architectures, data storing services,
location optimization algorithms, and data visualization.
)e location optimization algorithms combine the set-
covering problem (SCP) and clustering to solve the multi-
stage hub location problem in a limited-capacity network
based on the operational mechanism design of a hierarchical
ULS network. )e main contributions of this study are the
following:

(i) A big data platform is designed that integrates data
from various sources, e.g., GPS, applications (APPs)
in smartphones, GIS, and third-party data providers,
to support decisions concerning ULS hub locations.

(ii) A two-stage location optimization model is devel-
oped for a complicated ULS network that produces a
more scientific layout. )e model takes traffic con-
gestion into consideration to estimate the actual
demand of the ULS network. Moreover, the model is

applied to a city in China in order to validate the
effectiveness of the model.

)is study integrates location selection into a big data
platform for large e-commerce or logistics companies for
actual logistics planning. It realizes the application of big
data to the optimization of complicated logistics systems.
Moreover, due to the ability of the ULS network to speed up
delivery time and alleviate traffic congestion, the study
provides a basis for the sustainable development of the urban
transportation system.

2. Literature Review

2.1. Big Data in Logistics Systems. In recent years, there have
beenmany attemptsmade to improve logistics performances
using the advancements in information technologies. Lo-
gistics ontologies were designed to systematically formalize
domain knowledge of logistics [16], especially optimization-
related knowledge [17]. IoT technology has been proposed to
improve the productivity and efficiency of logistics man-
agement. For example, radio frequency identification
(RFID) sensors and barcode sensors were attached to cargo
to assist the operation flow of cargo inventory [18]. In
addition, RFID technology and wireless sensors were
combined to track and trace parts, semifinished goods, and
finished goods to provide highly flexible information
updating for order changes and picking problems [19].
Using the positioning capability of GPS and the tag iden-
tification capability of RFID, information about vehicle lines,
logistics distribution, and the origin/destination can be
directly managed to support space decisions in logistics [20].
Another useful tool in logistics is GIS, which captures,
manages, analyses, and displays all forms of geographically
referenced information. As spatial location information is
useful in logistics, GIS is applied to assist with the posi-
tioning of facilities and vehicle route planning [20]. )e
application of these information technologies produces
large-scale logistics data for various scenarios and opera-
tions. )e significance of big data technology lies in mining
the hidden values of the big data, rather than mastering huge
amounts of information [13, 21].

In transportation and logistics, big data has received
more attention in recent years, and research on its practical
implementation has been conducted. Cell phone location
data and license plate recognition data were collected and
fused to predict traffic flow using a zero-shot transfer
learning model [22]. A highly skewed speed-density dataset
was processed using reproducible sample generation and the
least squares method to obtain accurate traffic flow funda-
mental diagrams for various traffic flow conditions [23].
Inspection records for port state control have been used to
predict the number of deficiencies each inspector can
identify for each ship [24] and the ship detention probability
[25]. Zhong et al. [26] introduced RFID-Cuboids to rep-
resent the logistics information and mined the frequent
trajectory from the cuboids. )e frequent trajectory
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knowledge can then be used to determine the logistics plans
and the layout of distribution facilities. Hopkins and
Hawking [27] documented the integration of big data an-
alytics and the IoT to improve driver safety, lower operating
costs, and reduce the environmental impact of vehicles for a
large logistics firm. A combination of truck telematics and
geospatial information was used to monitor dangerous
roads, driving conditions, and driver behaviour and to send
alerts to drivers [27]. Furthermore, congestion maps de-
veloped from truck data records (GPS locations and dates)
and road data records (usage of roads and dates) were used
to optimize the schedules and routes of trucks in order to
reduce congestion. Zhao et al. [28] analysed the manage-
ment model, influencing factors, and development status of
the B2C e-commerce logistics distribution, using big data,
and optimized the resource allocation taking into consid-
eration production sales and logistics distribution based on a
big data platform. Shahparvari et al. [29] identified the
optimal location for a logistics hub at a larger geographical
scale using GIS. )irty-four criteria related to the spatial-
structural and functional attributes of the logistics hub lo-
cation were input into the GIS, and the values associated
with the performance of alternatives based on the criteria
were automatically output [29]. In summary, different types
of logistics big data models have been investigated for dif-
ferent scenarios and logistics processes. However, few
studies have developed an integrated platform that includes
logistics data collection, storage, optimization, and visuali-
zation. Similar to Shahparvari et al.’s study [29], this study
focuses on the location selection of logistics hubs using GIS;
nevertheless, ULS networks are more complicated than the
logistics centres in Shahparvari et al.’s study [29].

2.2. Logistics Location for ULS Networks. ULS is an effective
approach for alleviating the negative effects of urban freight
traffic, improving the efficiency and safety of urban logistics,
and saving the ground space [30]. In recent years, Swit-
zerland, Italy [8], and China [31] have actively prepared for
the construction of underground logistics networks. Given
the uniqueness of the transport mechanism and because the
service capacity of hubs and channels is restricted by the
underground space, the traditional location-allocation
method used for ground logistics networks is not suitable for
ULS networks. In the following, we briefly review the model
construction and method selection in order to define the
boundary of the urban underground logistics hub location
problem (ULHLP). As a multilayer network, the ULHLP has
been exploited via referable methods by various researchers.
)e optimal ULS nodes, tunnel layout, and transport route
network flows were formulated via a biobjective mixed-
integer linear programming model considering minimal
costs and maximal system utilization [9]. Liang et al. [10]
established a multiobject ULS network planning model,
including hub location and tunnel linking, and used ag-
glomerative hierarchical clustering to determine the location
of the first-level hubs and a greedy algorithm (GA) to de-
termine the locations of the second-level hubs covered by
each first-level hub. Ren et al. [11] constructed a set-covering

problem (SCP) model to determine the locations of the first-
level hubs, and their results were optimized according to
freight volume and the cargo handling capacity of the hubs.
Tunnel length, regional congestion, and weighted distance
were considered to determine whether to set second-level
hubs [11]. He et al. [12] used the SCP to determine the
number of underground logistics centres under a redefined
underground logistics structure; then, a 0-1 planning model
was used to connect the logistics centre with a distribution
service centre. An improved bat algorithm was used to solve
the layout model of the centres [12]. In previous studies,
most two-layer hub-locating studies have been conducted
from top to bottom, with calculations based on road freight
data or standardized data.)ismeans the calculated network
carrying capacity may be much larger than the actual de-
mand. )e solution to congestion has been to add hubs or
establish tunnel connections in the congestion area. While
this can effectively solve local congestion, it lacks overall
optimization for the entire area.

)e SCP and clustering approaches are often used to
determine the location of facilities to solve the problems of
facility locations and customer allocation [32]. )e SCP
model can effectively deal with the strategy of selecting the
minimum and optimal locations from candidate nodes and
can provide service for the maximum demand in the region
[33, 34].)e exact method of the SCP is inefficient due to the
significant time needed for large problems [35]. As a result,
heuristic algorithms, such as the GA [36, 37] and the ant
colony optimization (ACO) [38–40], were proposed to solve
the SCP. Compared to the GA, which is prone to being
trapped in local optimization in the SCP, the ACO can
obtain better results [41]. Clustering approaches have been
widely used in the division of spatial regions, and they are
useful for classifying demand points according to certain
characteristics. O’Kelly [42] used clustering to minimize the
sum of the squared deviation from the clusteringmean based
on a set of interacting spatial points. A probabilistic clus-
tering method was proposed to solve the multifacility lo-
cation problem, and the probability at each iteration
depends on the travel costs based on hub locations [43]. )e
iterative self-organizing data analysis technique algorithm
(ISODATA) can effectively eliminate transmission errors
through the dynamic correction of the cluster centre
[44, 45]. )is gives it an advantage over k-means clustering
without a given cluster quantity, which meets the require-
ment of basic ULS hub division.

3. Materials and Methods

)e transportation process of a ULS-embedded urban lo-
gistics system can be organized into a three-layer network
(Figure 1). In the first layer, goods are transported via
underground tunnels (pipeline) from logistics parks (LPs)
outside of the city to the hubs in the ULS network. Such hubs
are defined as primary hubs (PHs). In the second layer,
depending on the flow direction, the goods are transferred
from the PHs to hubs serving the logistics demand point
(DP). )ese hubs, which serve the DP, are defined as sec-
ondary hubs (SHs).)e SHs are not connected to the LPs. In
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the third layer, the goods are transported from the SHs to the
ground and finally to the customer via ground trans-
portation (e.g., by hand or minivan), in such a way that the
ground traffic load does not increase. )e reverse process is
also feasible, that is, goods flow from the SHs to the LPs.

3.1. Data Preparation. Since the ULS networks cooperate
with traditional freight transportation systems to deliver
goods from their origins to their destinations with the aim of
alleviating traffic congestion problems, the optimization of
the hub locations begins with determining two factors, i.e.,
the daily traffic congestion and the one-day freight volume
with the origin/destination (OD). )is step consists of data
collection and analysis, and the values of the two factors are
input into the ULS hub location model as influencing
constraint conditions.

Traffic congestion ismeasured using the traffic performance
index (TPI) inChina [46].)e required data to calculate the TPI
include the set of roads in a certain region A; the road grade j;
the length of a road l; the average speed on a road v; and the
traffic flow on a road x. )e details of the calculation method
can be found in the literature [47]. )e TPI is calculated every
15min during the morning peak (from 7:00 to 9:00) and the
evening peak (from 17:00 to 19:00) on workdays, and thus, the
values of v and x of each road in A must be updated every
15min. )e remaining variables, i.e., A, j, and l, can be
extracted from the Amap API (https://lbs.amap.com/) that is
used as GIS software. Amap also provides v in real time, while x

can be collected from DiDi (https://github.com/didi).
)e freight ODmatrix in which each element represents the

quantity of the goods delivered from an origin region (row) to a
destination region (column) is estimated using data collected by
a logistics tracking system. )e logistics tracking system is
developed to collect and manage the information of the present
location of each delivery item and is supported by a combi-
nation of technologies, including the quick response (QR) code,

GPS, scanning equipment, and GIS.)e QR code is attached to
every item and stores the information about the item, such as
the item id, origin address, destination address, and weight.
When goods are loaded for transportation, a scanner is used to
scan the QR code and to connect the good id to the vehicle id.
Given that each vehicle is equipped with a GPS receiver and the
vehicle id is connected to the good id, real-time location data for
goods can be recorded and stored. Moreover, GPS coordinates
are converted into Amap coordinates using the Amap API, and
then, regional information can be inferred from the Amap
coordinates. )e OD information stored in the QR codes and
inferred from the GPS is fused to ensure the accuracy. )e
freight OD matrix is obtained by grouping the delivered goods
according to their origin and destination regions and by
summing the weights of the goods in each group.

3.2. Big Data Platform Architecture. )is section proposes a
big data architecture and an analytic framework to support
ULS hub location selection. Because large e-commerce
enterprises (e.g., Amazon.com and JD.com) and logistics
companies (e.g., FedEx and SF Holding) are prone to plan,
construct, and maintain ULS networks due to the high cost
and the complexity of ULS networks, the support system for
ULS hub location selection based on big data and the
existing logistics information systems of large enterprises
can be integrated into a big data platform associated with big
data technologies in order to support flexible logistics
processes.

Figure 2 presents the architecture framework. )e overall
architecture is organized into six parts: the data source, data
pipeline, data processing, data storage, data application, and
data service layers. )e data source acknowledges the data
produced using different techniques, such as the QR code, GPS,
text input to APPs in smartphones, sensors, and data from third
parties, during logistics processes. Kafka is a distributed event-
streaming platform for high-performance data pipelines, and it
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has been adopted in logistics big data platforms [48, 49]. Kafka
distinguishes between producers and consumers to improve
scalability. )e data sources in the data generation layer are
producers that publish events that are organized and stored by
topics on Kafka. )ese topics include average speed, location,
and traffic flow. Spark and Hadoop receive the records on the
topics in Kafka separately for front-end applications, e.g., ULS
hub location selection, logistics tracking and tracing, and lo-
gistics route optimization. Optimization algorithms (OAs) and
artificial intelligence (AI) technologies for these applications are
implemented in Spark or Hadoop depending on the real-time
requirement. Hadoop processes large amounts of static data
collected over time [48]. )e two core components of Hadoop
are the HDFS (Hadoop distributed file system), which is re-
sponsible for storing data, and theMapReduce paradigm, which
distributes the data across many servers. In contrast, Spark
gathers and processes the data dynamically as they appear [48].
In the case of ULS hub location selection, Hadoop was selected
based on historical data, and the algorithms implemented in
Hadoop for the ULS hub location model are presented in
Section 3.3. However, regarding route optimization for driving
vehicles, Spark ismore appropriate since themost optimal route
should be calculated as quickly as possible. Finally, the results of
the calculations in Spark or Hadoop are stored and sent to

corresponding applications. Moreover, a GIS provides geo-
graphic information, such as road length, roads in a region, and
the GPS in a region, to the ULS hub location model and vi-
sualizes the results of the hub locations.

3.3. Two-Stage ULS Hub Location Model. To simplify the
model, the following assumptions were made:

(1) Since the freight demand per region is too small in
some regions, it is deemed to cover the entire de-
mand region if the service range (SR) of the hub
covers the DP coordinate.

(2) )e flow of goods within each demand region is not
calculated.

(3) )e length of the underground channel between
hubs is assumed to be a straight line.

(4) A DP is served by only one SH, and one SH is served
by only one PH.

(5) )e maximum SR and cargo handling capacity
(CHC) of the SH are capped.)e SR is the maximum
area covered by the service provided by the hub, and
the CHC refers to the maximum daily capacity of a
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Figure 2: Architecture of the proposed big data platform.
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hub in regard to the delivery or transport of goods,
including sorting, handling, and other operations.

(6) )e PH has an unlimited CHC.

A two-stage hybrid set-covering and clustering model
was proposed for ULS hub cluster classification and location.
First, based on the regional ground freight OD data and the
TPI discussed in Section 3.1, the possible underground
freight OD data undertaken by the ULS network were
calculated and generated. Second, a set-covering model was
established to obtain the minimum SH number that can
cover all of the areas under a given SR. )ird, the number
and location of PHs were determined by clustering the
freight volume of the SHs and the distance from the PH to
the SHs it covers.

3.3.1. OD Matrix for ULS. Based on the readily available
freight OD matrix, this study proposes a calculation method
using the regional TPI to generate an OD matrix for under-
ground freight, which is the basis for the ULS network cal-
culation. By weighting the TPI and the underground
construction cost, the TPI values of all the demand regions can

be reduced to η0 � 4, which indicates that the traffic congestion
state is clear. In addition, it is approximately considered that the
TPI has a linear relationship with the regional freight volume
[30]. In this way, according to the reduction rate of the TPI, a
regional freight volume of the same proportion can be trans-
ferred underground. )us, the freight volume to be transferred
underground in region i is

di �
ηi − η0
ηi

Qi �
ηi − η0
ηi


k≠i

OD(i, k) + 
k≠ i

OD(k, i)⎛⎝ ⎞⎠,

i � 1, 2, . . . , n,

(1)

where Qi is the freight volume of region i; OD(i, k) is the
element in the ith row and the kth column of the ODmatrix;
and ηi is the TPI of region i. Considering the adverse effect of
the large number of decision variables [50] and the influence
of OD(i, k) on the TPI of origin region i and the TPI of
destination region k, the OD matrix of the underground
freight can be simplified to

ODu(i, k) �

max
ηi − η0
ηi

OD(i, k),
ηk − η0
ηk

OD(i, k) , if ηi > η0 or ηk > η0,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where ODu(i, k) is the freight volume transported from
region i to region k that needs to be transferred through the
ULS. When the TPI of origin region i or destination region k

is larger than η0, the larger TPI of i and k is used to calculate
the value of ODu(i, k); otherwise, ODu(i, k) � 0 is used.

3.3.2. SH Location Based on the ACO Algorithm.
According to the assumptions, all of the SHs have a max-
imum service radius, which is the maximum coverage of one
hub as a subset. Since the distance from the DP to the SH
does not exceed the service radius of the SH and hub
construction costs far exceed the transportation costs, the
SH construction cost is taken as the total cost. Since the total
construction cost of hubs is proportional to the quantity, the
objective function can be established to minimize the total
cost. )e SCP model is as follows:

minZ � 
j∈M

cjxj, (3)

subject to


j∈M
aijxj ≥ 1, ∀i ∈ N, (4)


j∈B(i)

yij � 1, ∀i ∈ N,
(5)


j∈A(j)

diyij ≤Djxj, ∀j ∈M,
(6)


j∈A(j)

diyij � 

i′∈A(j)


i∈N

Vii′ + 
i∈A(j)



i′∈N

Vii′ − 

i,i′∈A(j)

Vii′ ,

∀i, i′ ∈ N, j ∈M,

(7)

xj ∈ 0, 1{ }, ∀j ∈M, (8)

yij ∈ 0, 1{ }, ∀i ∈ N, j ∈M. (9)

In the model, cj is the construction cost of SH j, which
can be set to 1 since the construction of the SH costs the
same. If DP i is covered by SH j, then aij � 1; otherwise,
aij � 0. N is the set of DPs in the district, N � 1, 2, . . . , n{ }.
M is the set of candidate nodes for the SH,
M � 1, 2, . . . , m{ }. di is the freight demand volume of DP i,
and Dj is the CHC of SH j. Vii′ is the freight volume
transported from DP i to DP i′. A(j) is the set of DP i

covered by SH j. B(i) is the set of SH j that can cover DP i.
)e objective function (equation (3)) describes the SCP

model with the goal of achieving the lowest total cost for the
hubs. )e constraint described by equation (4) ensures that
each secondary hub covers at least one DP. Equation (5)
means that each DP can only be serviced by one SH. )e
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constraint described by equation (6) indicates that the total
freight volume of the DPs covered by the SH cannot exceed
its capacity. )e model is an SCP with nonlinear constraints
rather than a simple SCP. It is used to cover all of the de-
mand regions with the least number of SHs, which reduces
the large construction investment and the difficulties in the
early stage of ULS construction.

)e principle of the ACO is to mimic the foraging be-
haviour of ant colonies based on information exchange.

)e principle of the ACO is to mimic each candidate
node regarded as a node on the path. )e ACO in this study
is described as follows:

(i) Initialization: m ants are randomly placed on n

candidate nodes, that is, each ant randomly selects a
candidate node as the starting node of the path. )e
initial pheromone of each candidate node is set to be
the same.

(ii) Probabilistic choice: using a random probability
selection mechanism, ant k selects a subset Si in S

with probability P. P is calculated using equation
(10), where ηi(t) � |Ci|. |Ci| is the number of nodes
in subset Si.

P(t) �

τi(t)
αηi(t)

β

s∈Allowk
τs(t)

αηs(t)
β, i ∈ Allowk,

0, else.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

(iii) Update the pheromone: after each iteration, the
pheromone of the path through which the ant
passed is increased. At t + 1, the pheromone ad-
justment rule for each subset is

τj(t + 1) � ρ · τj(t) + Δτj(t, t + 1), (11)

where Δτj(t, t + 1) is the number of pheromones
left in solution set i by ant k at t + 1, which is
calculated using the following equation:

Δτj(t, t + 1) � 0,

Q

Cj




, if ant k chooses setCj,

else.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(12)

(iv) Termination condition for the ACO: the SCP has
difficulty obtaining the optimal solution in practical
applications, and the given iteration number is
usually taken as the termination condition for the
algorithm. For example, the algorithm terminates
when the quality of the solution is no longer im-
proved after N consecutive iterations.

3.3.3. PH Location Based on ISODATA Clustering. SHs can
be grouped based on certain rules to locate the PH. A
combination of the clustering method and the improved
ISODATA was used to solve the PH localization problem.

)e regional centre formed by the clustering and grouping of
the SHs is the PH’s position.

)e positioning of the PH should minimize the overall
transportation costs of the ULS network, which is related to
the freight volume and the transportation distance. )e PH
should be set in an SH area with a large and concentrated
freight volume. )erefore, the clustering model considers
the freight demand of the SH and the distance between the
SH and the PH. )e distance between hubs is the Euclidean
distance [39]. )e objective function of the clustering model
is

minF � 
j∈I


k∈J

wjsjk, (13)

where wj is the freight demand of SH j and sjk represents the
distance between SH j and PH k. I is the set of SHs in the
region, and J is the set of PHs.

)e ISODATA has advantages in terms of automatic
calculation and the acquisition of a reasonable number of
clusters [40]. )e distance in the ISODATA is calculated by
weighting hjk � wjdjk, where hij is the clustering distance
from SH j to the cluster centre k; wi is the freight volume of
SH j; and djk is the Euclidean distance between j and k.

Step 1. Identify and determine some of the initial values that
can be artificially modified during the iteration. N samples
xc, c � 1, 2, . . . , N  are allocated to the clusters according
to the initial values.

(1) Preselect Nc initial cluster centres
zc, c � 1, 2, . . . , Nc , which can be selected from all
of the samples.

Nc: the number of cluster centres
K: the expectant number of cluster centres
θN: the minimum number of samples in the per
cluster domain
θS: the standard deviation of the sample distance
distribution in a cluster domain
θc: the minimum distance between two cluster
centres
L: the maximum pairs of cluster centres that can be
merged in an iterative operation
I: the number of iterations, I≤ I0

(2) Distribute N samples to the nearest cluster Sλ. If
‖x − zλ‖ � min ‖x − zc‖, c � 1, 2, . . . , Nc , then
x ∈ Sλ.

If the number of samples in Sλ is less than θN, Sλ should
be deleted, and Nc � Nc − 1.

Step 2. Calculate the distance index function of all of the
samples.

(1) Modify the cluster centre:

zλ �
1

Nλ


x∈Sλ

x, λ � 1, 2, . . . , Nc. (14)
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(2) Calculate the average distance between each sample
and the cluster centre in each cluster domain Sλ:

Dλ �
1

Nλ


x∈Sλ

x − zλ
����

����, λ � 1, 2, . . . , N. (15)

Step 3. Perform the split operation.

(1) Calculate the standard deviation vector of the sample
distance of each cluster:

δλ � δ1λ, δ2λ, . . . , δnλ( 
t
,

δcλ �

����������������

1
Nλ



Nλ

μ�1
xcμ − zcλ 

2




, c � 1, 2, . . . , n;

λ � 1, 2, . . . , Nc,

(16)

where xcλ is the c component of Sλ and zcλ is the c

component of zλ. δcλ is the standard deviation of the
c component of x, and x is an n-dimensional vector.

(2) Calculate the maximum component of each standard
deviation component. )e maximum component of
δλ is δλmax.

(3) In the maximum component set
δλmax, λ � 1, 2, . . . , Nc , if δλmax > θS and one of the
following conditions is met, then split zλ into two
centres, z+

λ and z−
λ , and use Nc plus one. Conditions:

(i) Dλ >D and Nλ > 2(θN + 1); (ii) Nc ≤ (K/2).

Step 4. Perform the merge operation.

(1) Calculate the distance between each cluster centre:

Dcλ � zc − zλ

�����

�����, c � 1, 2, . . . , Nc − 1;

λ � c + 1, 2, . . . , Nc.
(17)

(2) Compare Dcλ with θc, and sort the values of Dcλ
(Dcλ < θc) from small to large; that is,
Dc1λ1, Dc2λ2, . . . , DcLλL

 , where Dc1λ1 <Dc2λ2 < · · ·

<DcLλL
.

(3) Merge zik and zjk. )e distance between them is
Dikjk. )e new centre is calculated as follows:

z
∗
μ �

1
Ncμ + Nλμ

Ncμzcμ + Nλμzλμ , μ � 1, 2, . . . , L.

(18)

Step 5. Iterate again and judge whether the clustering results
meet the requirements. After several iterations, if the result
converges, the operation exits, and the result is preserved.

4. Results and Discussion

)e proposed methodology was validated through a case
study of the selection of ULS hub locations in the Xianlin
district of Nanjing, China. Figure 3 shows the freight
transportation map of the Xianlin district in Amap, which
can be used as a GIS tool. )e black squares in the figure not
only represent the geographical centre of the 110 regions
officially included in the urban planning but also correspond
to freight DPs in these regions. )e number represents the
code of the region and its DP. Four LPs are located in
different directions outside of the district. )e TPI of each
region is displayed in Figure 4. Using different colours
corresponding to different TPI levels, Figure 4 shows that a
majority of the regions are congested. A 114×114 OD
matrix represents the volumes of the goods transported
between the 114 regions, including 110 DPs and 4 LPs. )e
sum over each column corresponds to the goods leaving in
the region and is illustrated in Figure 5(a), and the sum over
each row corresponds to the goods entering the region and is
illustrated in Figure 5(b).

Based on equation (2), when η0 � 4, the total under-
ground freight volume is 67,112 tons, accounting for 41% of
the original freight volume. )e CHC and SR of the un-
derground logistics hub were temporarily set as 3000 tons
and 3 km, respectively, to calculate the location-allocation.
In Section 4.3, the calculation results for different combi-
nations of these two parameters are further compared and
discussed.

4.1. Optimization Results for SH Locations. When SR � 3 km
and CHC � 3000 t, 40 SHs were screened out by the ACO
(Figure 6, in which red circles represent SHs selected from
DPs). Figure 6 provides an example of 791 DPs that were
selected as the SHs, in which the circle indicates the service
coverage cantered on the SH and the covered regions are
represented by the blue squares inside the circle. )e actual
freight volume (AFV) of an SH is defined as the sum of the
freight turnover volume of the DPs covered by the SH.
Moreover, another important index, i.e., the average satu-
ration of the cargo handling capacity (ASCHC), was used to
measure the actual freight handling performance of the SH,
which can be calculated using the following equation:

ASCHC �
n(actual freight turnover/cargo handling capacity)

n

× 100%, ASCHC ∈ (0, 1),

(19)

where n is the number of SHs. )e larger the ASCHC, the
higher the hub utilization and the better the ULS network
performance. In contrast, a low ASCHC indicates that the
designed capacity of the hub is far larger than the actual
demand, which will cause huge waste. Table 1 shows the SH
sets and their coverage regions calculated by the ACO; the
summary is shown in Table 2.)e average single runtime for
the ACO was 414.5400 s.
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)ere are three reasons for the quantitative difference in
the hubs serving only one DP in the results. First, the
distance from the other nearest DPs to the hub is more than
its service range. )ere is only one such hub in this case
(number 896). Second, the capacity of a hub can only meet
the demand of the region where it is located. For instance,
DP 886 has a freight volume of 3088.07 t (over 3000 t) in the
ACO result, and thus, it requires the help of the SHs nearby
to meet this volume, including SHs 885, 890, and 891, which
are dedicated to it. )ird, following the logic and search
order of the chosen algorithm, some of the hubs were
generated through local optimization. )ree SHs (nos. 808,
825, and 892) in the ACO result remained after the points
nearby were searched and covered. )e superiority of the
ACO’s pheromones enables individuals to communicate
indirectly through the environment and use the probabilistic
search method to effectively avoid local optimal solutions.

)is study aimed to propose a two-stage method suitable for
the selection of hub locations in a ULS. )us, the next stage
was calculated based on the set of results obtained using the
ACO.

4.2. Optimization Results for PH Location. )e PH locations
were obtained by reclustering the optimized SH group and
by considering the freight volume and distance. )e goal of
clustering is to minimize the total distance between the PHs
obtained and the subordinate SHs and to maximize the
freight volume. Given that the PH needs to be linked with
the LPs outside of the district, in order to reduce the dif-
ficulty of cargo scheduling and improve the clustering effect,
the expectant number of clustering centres K was set to 4. In
this way, the PH can be regarded as a controlling inter-
mediate node connecting the logistics park and the SHs.

10

8

6

4

2

Figure 4: TPIs of the regions in the Xianlin district.

Figure 3: Distribution map of the logistics DPs in the Xianlin district.
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From the perspective of management convenience, a one-to-
one correspondence between parks and PHs is reasonable.

Table 3 lists the four PHs and their subordinate SHs,
which were calculated using the ISODATA. )eir distri-
butions are marked separately using different colours in
Figure 7. )e locations of the four generated PHs do not
coincide with the existing DPs. However, it turns out that the
positions of some of the SHs are very close to the PHs. In
actual planning or further calculations, these SHs could be
replaced by PHs. For example, the distance between SH 800
and PH A is only 0.087 km, so it is economical to let PH A
assume the function of SH 800. When the PH location
obtained through the clustering is not suitable under actual
conditions, it is acceptable to adjust its position within the
clustering area.

4.3. Parameter Effects. CHC and SR are worth discussing in
terms of the modelling and computational analysis. )e
hub is usually equipped with an automated sorting and
transmission system, and some of the goods that are
transported from the SH to the customers still need to be
delivered on the ground. )erefore, in addition to the
constraint imposed by the underground space, these two
parameters are largely subject to the automated logistics
technology and the carrier distribution capacity. Given its
similarity to the current express delivery process, the
common data for general express delivery (Table 4) are
used for the discussion.

Table 5 summarizes the calculation results for the pa-
rameter combinations. Several valuable observations are as
follows:

2500

2000

1500

1000

500

(a)

3000

2500

2000

1500

1000

500

(b)

Figure 5: OD matrix of the regions in the Xianlin district. Heat maps of the volumes of goods (a) leaving and (b) entering the region.
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Maximum SR (km): 2.97
AFV (t): 2812.59
ASCHC: 93.75%

Figure 6: Distribution of SHs obtained using the ACO.

Table 1: Solutions to the SCP obtained using the ACO.

SH Covered region AFV (t) ASCHC
791 804, 805, 795, 794, 799, 792 2812.59 93.75
796 803, 809, 811, 816, 797 2736.97 91.23
798 813, 814 2961.4 98.71
800 820, 821 2937.7 97.92
801 823, 827 2991.21 99.71
802 807, 793 2198.47 73.28
806 815, 819 2934.17 97.81
808 — 1069.46 35.65
810 817 1374.02 45.80
818 833, 834, 824 2894.47 96.48
825 — 1440.68 48.02
826 812, 832 2895.84 96.53
831 822, 828, 829 2996.37 99.88
836 835, 837 2907.65 96.92
838 840 1618.46 53.95
841 848, 849, 845 2833.22 94.44
846 852, 858, 844 2951.12 98.37
851 830, 850 2602.31 86.74
853 847, 842, 843 2738.23 91.27
855 854, 856, 860, 861, 864, 870 2794.79 93.16
863 875, 878, 881, 865 2847.29 94.91
867 859, 866 2759.53 91.98
868 862, 869, 857 2559.67 85.32
871 839, 873 2911.62 97.05
883 880 2921.35 97.38
884 872, 874, 876, 877, 879, 882 2799.14 93.30
885 888, 889 1527.48 50.92
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Table 2: Summary of SH results.

Algorithm Number of SHs Number of single-service SHs ASCHC Runtime (s)
ACO 34 5 85.52 414.5400

Table 3: PHs and their covered SHs calculated using the ISODATA.

PH Covered SHs AFV (t)
A 791, 796, 798, 800, 801, 802, 806, 810, 818 23,841
B 808, 825, 826, 831, 836, 838, 871, 883, 884, 890 23,763
C 885, 886, 891, 892, 894, 896, 899 14,420
D 841, 846, 851, 853, 855, 863, 867, 868 22,086

Table 1: Continued.

SH Covered region AFV (t) ASCHC
886 — 3088.07 102.94
890 887 2202.37 73.41
891 893, 895 2269.43 75.65
892 — 2165.61 72.19
894 898 2723.1 90.77
896 — 80.04 2.67
899 897, 900 2626.28 87.54

Figure 7: Distribution of the four PHs obtained using the ISODATA.

Table 4: Parameter settings for CHC and SR.

CHC (t) 3000 4000 5000
SR (km) 3 4 5
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(1) An obvious conclusion is that the amount of SH
decreases significantly with increasing CHC, and the
relationship is almost linear. However, the amount of
SH is not inversely proportional to the SR of the hub.
CHC is more sensitive to the number of SHs than SR.
)erefore, effort should be made to improve the
freight capacity of the hubs to reduce the number of
SHs and thus to reduce construction costs.

(2) )e number of hubs serving only one DP varies
considerably under the same CHC but a different
SR, especially when the SH has sufficient capacity to
handle the AFVs of all of the DPs. For instance,
when CHC � 4000 t and SR � 3 km, there are six
such hubs, which is three more than when
SR � 4 km. Similarly, when CHC � 5000 t and
SR � 3 km, there are five such hubs, which is three
to four more than under other SR conditions. )e
lower the number of these hubs, the more efficient
the SH group. )erefore, the CHC and SR of a hub
should be matched; otherwise, they will seriously affect
the network construction costs and the operational
efficiency.

(3) It is necessary to reserve some of the spare capacity of
the node. Global search results always make full use

of the CHC under computational logic, aiming at the
minimum number of nodes. In this case, the AFVs of
all of the hubs account for over 80% of the designed
capacity on average, and the utilization rate of a few
hubs even exceeds 90%. Although increasing facility
utilization is a common goal, future risks of rapid
growth in urban freight demand cannot be ignored
when operating at near-full capacity. A surge in
freight volume that exceeds the capacity limits can
lead to the collapse of the hub operations, as can
equipment failures. Only a small number of non-
adjacent hubs collapse. )e other hubs can still
maintain the network operation when the capacity is
exceeded, but the collapse of multiple or adjacent
hubs will lead to the inefficient operation of the
entire ULS network, or even paralysis of the network.

(4) In addition, the standard deviations (SDs) of the PH
AFVs presented in Table 5 reflect the balance degree
of the freight volume of each PH. As can be seen, the
SD of the AFV varies irregularly. When
CHC � 4000 t and SR � 3 km, the SD reaches the
maximum value, which is 15,726 t. An imbalance of
the AFV would limit the overall operating efficiency
of the network. )e operating efficiency of the PH

Table 5: Summary of the SH results under different parameters.

CHC (t) SR (km) Number of SHs ASCHC (%) Number of isolated
hubs PH label Number of covered

SHs AFV (t) SD of PH AFV

3000

3 34 82.52 5

A 9 23,841

3853B 10 23,763
C 7 14,480
D 8 22,086

4 35 80.59 5

A 9 23,537

5552B 10 22,329
C 6 11,966
D 10 26,793

5 33 85.46 5

A 9 23,693

3702B 9 24,267
C 7 15,062
D 8 19,530

4000

3 29 72.89 6
A 6 19,248

15,726B 15 50,288
C 8 15,012

4 24 88.08 3
A 10 38,646

9808B 8 30,845
C 6 15,066

5 25 84.65 3
A 9 31,313

9683B 5 15,115
C 11 38,219

5000

3 24 70.24 5

A 7 26,093

5796B 5 20,246
C 6 11,915
D 6 26,036

4 21 80.48 1

A 7 31,228

7683B 6 25,660
C 4 12,025
D 4 15,589

5 20 84.50 2
A 10 38,503

8822B 6 29,044
C 4 16,948
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with the largest AFV would become the limiting
component, which could negatively affect the op-
eration of the entire network. )us, it is necessary to
choose a hub group set with a balanced AFV dis-
tribution. Furthermore, the PH capacity is not set as
a fixed value in this study. Rather, each PH should be
independently designed according to the practical
engineering requirements, and the balance of the
AFV distribution of the PH should be maintained as
much as possible.

5. Conclusions

In this paper, an integrated support system for compli-
cated logistics location is proposed, i.e., ULS hub location
determination, based on big data technologies. First, to
calculate the TPI and OD matrix, the types of data
generated across a typical data-driven logistics system
and methods of collecting these data were investigated.
Second, a platform for big data analytics in logistics
systems, including hub location selection, was developed.
)e data for the TPI and OD matrix were produced,
collected, stored, and analysed using different modules in
the platform. )ird, a bottom-up two-stage hub location
method and a visualization tool based on the GIS were
incorporated into the platform. In this method, the
underground cargo flow data used for the calculation
were obtained by proportionally processing the OD
matrix according to the TPIs of different demand regions.
An SCP model under nonlinear constraints was used for
the SH selection, which was solved using the ACO al-
gorithm. Compared with the genetic algorithm (GA), the
ACO algorithm gives better results, but it takes more
time. )e PH locations were determined using the
ISODATA to cluster the SHs, and the ISODATA allows
for different numbers of clusters.

In addition, this study highlighted the significance of
developing a big data analysis platform for large e-commerce
enterprises and logistics companies to improve the efficiency
of logistics management. Complicated logistics location is
one of the important applications supported by the platform.
Traditional logistics planning focuses on designing opti-
mization algorithms to obtain improved solutions or
choosing evaluation criteria for decision-making, but it
neglects some basic variables, such as the TSCPPI and OD
matrix, the values of which are assumed to be known. )e
complete decision-supporting process for ULS hub loca-
tions, including data producing, collecting, storing, pro-
cessing, and visualization, was integrated into the platform,
which enables the smooth flow of information between
different stages of the process. Moreover, considering the
growing number of applications in logistics management,
the platform was built using the Kafka system, which has the
ability to plug in different data sources and applications. In
this way, the platform can address the interoperability across
the logistics data, the logistics process, and the logistics
services. Different users of the platform, such as delivery
vehicles, managers, and planners, can cooperate with each
other.

)is study provides an initial step in the investigation of
the use of a big data platform for complicated logistics
location determination. In future studies, the performance
analysis of the big data platform for logistics management
will be considered since determining the main factors that
affect the quality of the platform is important for opti-
mizing the design of the platform. More efforts are also
needed to optimize the matching of the CHC and SR in the
two-stage ULS hub location method before the hub group
calculation. Other factors influencing location selection
should also be investigated, such as the distance from a PH
to its corresponding LP, the actual cost, and urban land use
planning.
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