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To reasonably predict the steel box girder reliability considering the dynamic dependence among the performance functions
corresponding to the failure modes of the multiple monitoring points, this paper firstly adopts the dynamic monitoring
extreme stresses of the multiple control points to build the Bayesian Dynamic Vine Copula Model (BDVCM) taking into
account the dynamic dependence of the multiple monitoring variables through combining the vine copula technique with
Bayesian Dynamic Linear Models (BDLM); secondly, with first-order second-moment method and the built BDVCM, the steel
box girder reliability, taking into account dynamic dependence among the performance functions corresponding to the failure
modes of the multiple monitoring points, is predicted; finally, the monitoring data from the five sections of an existing steel box
girder were provided to illustrate the proposed model and approach. -e analytical results illustrated that the predicted results,
without considering the dynamic nonlinear dependence among the failure modes of the multiple monitoring points,
are conservative.

1. Introduction

Structural Health Monitoring (SHM) systems have accu-
mulated a large amount of monitored data in the long-term
service periods. How to reasonably predict bridge system
reliability with these data has become one of the key sci-
entific problems in SHM field. Because of the same input
loads, the different monitoring data of the multiple moni-
toring points from bridge system show the dependence,
randomness, and so on. Further, dynamic dependence
among the performance functions corresponding to the
multiple failure modes of the monitoring points can be
shown. -erefore, based on the dependent monitoring data,
the dependence models of the multiple failure modes can be
presented; further, it is more reasonable to dynamically
predict the bridge girder reliability.

Until now, some studies about the dynamic reliability
prediction of bridge systems, taking into account the dynamic
dependence among the multiple failure modes, have been

done based on copula functions; for example, a copula-based
method is presented to investigate the impact of copulas
characterizing the dependence structures among the random
variables for modeling bivariate distributions, respectively, on
time-independent and time-dependent system reliability
under incomplete probability information [1, 2]; a newmodel
named BDGCM for characterizing the dynamic dependence
between only two monitoring points is firstly built [3], and,
based on it, the bridge system reliability is dynamically
predicted, where correlation coefficients are not accurately
computed and the built BDLM does not take the nonlinear
dependence between two variables into account; copula-
functions-based dynamic dependence model between only
two monitoring points of arch bridge girder is given [4],
where the correlation coefficients are approximately obtained
and the nonlinear correlation between two monitoring
variables is not taken into account in the built BDLM;
Gaussian copula-Bayesian Dynamic Linear Model-based
dynamic reliability prediction for Yitong River Bridge (a
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flying swallow profiled concrete-filled steel tube arch bridge)
taking into account the time-variant dependence between the
performance functions of only one pair of failure modes is
made [5, 6], where the correlation coefficients are not ac-
curately solved and the built BDLM also does not consider the
nonlinear dependence between a pair of variables. -e above
research studies show that the existing dynamic reliability
prediction methods of bridge structures considered time-
variant nonlinear dependence between one pair of perfor-
mance functions, and the correlation coefficients are not
accurately solved. Meanwhile, actual bridge systems com-
monly have multiple control monitoring points. -erefore,
building more accurate dynamic nonlinear dependence
models among the multiple failure modes corresponding to
the control monitoring points and further predicting the
dynamic reliability of bridge systems should be further
studied and become the aim of the present research.

In view of the above problems, this study adopts the
steel box girder as the research object, takes a newly built
Bayesian Dynamic Vine Copula Model (BDVCM) to
characterize the dynamic nonlinear correlations among the
performance functions of the failure modes at multiple
control monitoring points of the steel box girder based on
BHM data, and further dynamically predicts the steel box
girder reliability. In this paper, monitoring extreme data is
“the everyday extreme stress data.” For each section, the
control monitoring point is “the monitoring point where
the absolute value of the monitoring stress is maximal”;
each failure mode refers to the fact that “the monitoring
extreme stress is bigger than the allowable stress.” -e
detailed contents are as follows: firstly, based on moni-
toring extreme stress data, the BDVCM about the multiple
monitoring variables is built, which can characterize the
dynamic dependence among the monitoring variables;
secondly, with first-order second-moment (FOSM)method
and the built BDVCM, the dynamic reliability prediction
method of the steel box girder, considering dynamic
nonlinear correlations among the performance functions
for multiple failure modes corresponding to the multiple
control monitoring points, is given; thirdly, the monitoring
extreme stress data of a steel box girder are provided to
illustrate the feasibility and application of the proposed
model and method; finally, some valuable conclusions are
summarized.

2. BDVCM of Multiple Monitoring Variables

-is section firstly adopts the dynamic monitoring extreme
stress data to establish the corresponding Bayesian Dynamic
Linear Models (BDLM) about the multiple monitoring
variables of the steel box girder sections, and the BDLM can
dynamically predict the extreme data of monitoring vari-
ables; then, the vine copula model, characterizing the
nonlinear correlation among multiple monitoring variable
about the steel box girder sections, is built; finally, the
Bayesian Dynamic Vine Copula Model (BDVCM) about
multiple monitoring variables is given through combining
the built BDLM with vine copula. -e detailed contents are
as follows.

2.1. BDLM of Monitoring Variables and the Corresponding
Recursive Processes. Bayesian Dynamic Linear Models
(BDLM) include Dynamic Linear Models (DLM) and the
corresponding recursive processes based on Bayes method.
-e detailed contents are as follows.

2.1.1. Construction of DLM. -e DLM includes the moni-
toring equation, state equation, and initial state information,
where the state equation shows changes of the system with
time and reflects inner dynamic changes of the system and
random disturbances; the monitoring equation expresses the
relationship between the monitoring data and the current
state parameters of the system; the initial state information is
the probability distribution information about the initial
state.

Suppose that all the dynamic state variables θt,i,

i ∈ 1, 2, . . . , n{ } follow normal distribution, are all Markov
chains, and are internally independent and mutually inde-
pendent between each other. -e state error ωi,t and the
monitoring error vi,t all follow normal distribution and are
internally independent and mutually independent between
each other. DLM is defined in the following form.

Monitoring equation:

yi,t � θi,t + vi,t, vi,t∼Ν 0, Vi,t . (1)

State equation:

θi,t � θi,t−1 + ωi,t, ωi,t∼Ν 0, Wi,t . (2)

Initial state information:

θi,t−1|Di,t−1 ∼Ν mi,t−1, Ci,t−1 , (3)

where yi,t, vi,t, and ωi,t are, respectively, the monitoring
extreme stress data, monitoring error, and state error about
the DLM of the ith monitoring variable at time t; Ν(·) is
normal distribution function; Vi,t is a variance; Wi,t is an
evolution variance indicating the model recurrence uncer-
tainty from time t-1 to time t; Di,t−1 is the information set of
the ith monitoring variable at and before time t-1, and Di,t �

yi,t,Di,t−1  is the information set of the DLM about the ith

monitoring variable at and before time t, which includes mi,t

(mean) andCi,t (variance). It is assumed that error sequences
vi,t and ωi,t are internally independent, mutually indepen-
dent, and independent of θi,t.

2.1.2. Bayesian Probability Recursive Processes of DLM.
In this section, the Bayesian probability recursive processes
of DLM are provided, which are as follows:

(1) -e a posteriori probability density function (PDF)
of the state at time t – 1:

θi,t−1|Di,t−1 ∼Ν mi,t−1, Ci,t−1 . (4)

(2) -e a priori distribution of the state at time t:

θi,t|Di,t−1 ∼Ν ai,t, Ri,t . (5)
where ai, t � mi, t−1 and Ri, t � Ci, t−1 + Wi, t.
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(3) One-step prediction distribution of monitoring
variable at time t:

yi,t|Di,t−1 ∼Ν μi,t, σ
2
i,t . (6)

where μi,t � Ε(yi,t|Di,t−1) � ai,t, Qi, t � σ2i,t �

var(yi,t|Di,t−1) � Ri,t + Vi,t, and (Qi, t)
−1 is the pre-

diction precision of BDLM.
According to the definition of Highest Posterior
Density (HPD) region [7], the one-step prediction
interval of the monitoring variable with a 95%
guarantee rate at time t is

μi,t − 1.645
���

σ2i,t


, μi,t + 1.645
���

σ2i,t


 , (7)

where μi,t − 1.645
���
σ2i,t


is the predicted lower limit

data and μi,t + 1.645
���
σ2i,t


is the predicted upper limit

data.
(4) -e a posteriori distribution of the state at time t:

θi,t|Di,t ∼Ν mi,t, Ci,t , (8)

where mi,t � Ε(θi,t|Di,t) � ai,t + Ai,tei,t; Ci,t � var(θi,t|Di,t) �

Ri,t − Ai,tA
T
i,tσ2i,t; Ai,t � Ri,t(σ2i,t)

− 1; ei,t � yi,t − fi,t; Ai, t is the
adaptive coefficient.

2.1.3. Determination of the Main Parameters about BDLM.
In this paper, the updating time interval of BDLM is one day.
-e main probability distribution parameters about BDLM
include Vi,t, Wi,t,mi,t−1, and Ci,t−1.

-e monitoring extreme data at and before time t are
smoothly processed with cubical smoothing algorithm with
five-point approximation [3, 5–7], and the processed data
can be approximately taken as the initial state data [3, 7].
-rough carrying out parameter estimation for the initial
state data, mi,t−1 and Ci,t−1 can be obtained. -e variance Vi,t

of the monitoring errors can be approximately solved with
the difference between monitoring extreme data and the
initial state data; the discount factor δi is considered as an aid
to choosing Wi,t. In the proposed BDLM, the predicting
behavior is usually rapidly achieved. It is convenient and
natural to adopt a constant rate of increase of uncertainty or
decay of information. -us, for a given discount factor,
equation (9) is chosen to solve the variance Wi,t of the state
error.

Wi,t+1 � −Ci,t +
Ci,t

δ
, (9)

where δi is the discount factor and δi � 0.98 according to the
research experience of the authors [3, 7].

2.2. Vine Copula Model of Five-Dimensional Monitoring
Variables. In this study, the bridge girder has multiple
monitoring points which are corresponding to multiple
output variables. Because of the same input vehicle loads,
environmental loads, and so on, there exists nonlinear
correlation between these output variables. In this section,
the vine copula model considering nonlinear correlation of
the five output variables is built with pair-copula theory and
bivariate Gaussian copula theory.

2.2.1. Pair-Copula"eory. Pair-copula construction module
based joint probability distribution function of multivariate
random variables is proposed by Bedford [8, 9]. -e pair-
copula construction module only considers the nonlinear
correlation of two random variables.

Assume that there is a five-dimensional random variable
X � (x1, x2, . . . , x5), and, according to the conditional
probability density function theory [10], copula model based
joint probability density function f(x1, x2, . . . , x5) can be
written as

f x1, x2, . . . , x5(  � c F1 x1( , F2 x2( , . . . , F5 x5( (  

5

i�1
fi xi( ,

(10)

where c is copula density function and Fi(xi) and fi(xi) are,
respectively, cumulative distribution function (CDF) and
probability density function (PDF) of xi.

With equation (10), the bivariate joint PDF can be ob-
tained with

f xi, xj  � cij Fi xi( , Fj xj  fi xi( fj xj , (11)

and, further, conditional PDF can be obtained; namely,

f xi|xj  �
f xi, xj 

f2 xj 
� cij Fi xi( , Fj xj  fi xi( , (12)

and, with equation (12), conditional PDF about each variable
x of five-dimensional random variables can be reached;
namely,

f(x|u) � cxui|u−i
F x|u−i( , F ui|u−i( ( f x|u−i( , (13)

where ui represents the ith variable of five-dimensional
random variables and u−i represents the four-dimensional
random variables obtained through removing the ith variable
from five-dimensional random variables.

2.2.2. Bivariate Gaussian Copula Model. -is section adopts
the bivariate Gaussian copula model [6, 11] to build the
nonlinear correlation model between two random variables.
-e CDF and PDF about the bivariate Gaussian copula
model are, respectively,
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C u1, u2; ρ(  � ΦG Φ
−1

u1( ,Φ−1
u2( ; ρ  � 

Φ−1 u1( )

−∞

Φ−1 u2( )

−∞

1

2π 1 − ρ2 
(1/2)

exp
− r

2
− 2ρrs + s

2
 

2 1 − ρ2 
⎛⎝ ⎞⎠drds,

c u1, u2; ρ(  �
1

�����

1 − ρ2
 exp

Φ−1
u1( 

2
+Φ−1

u2( 
2

− 2ρΦ−1
u1( Φ−1

u2( 

2 1 − ρ2 
⎛⎝ ⎞⎠exp −

Φ−1
u1( 

2Φ−1
u2( 

2

2
 .

(14)

where ui � Fi(xi), i � 1, 2, . . . , 5, Fi(xi) is the marginal CDF
of xi; Φ is standard normal distribution function; and ρ
restricted to the interval [−1, 1] is the relevant parameter of
Gaussian copula function.

In this paper, the relevant parameter ρ of bivariate
Gaussian copula function is determined by the Pearson
linear correlation coefficient [4–6].

Suppose that Pearson linear correlation coefficient of
random variables xi and xj is ρ(i, j). -e relevant parameter
ρ of bivariate Gaussian copula function can be obtained with
the following equation:

ρ � ρ Φ−1
ui( ,Φ−1

uj   � ρ Φ−1
Fi xi( ( ,Φ−1

Fj xj   

� ρ xi, xj  � ρ (i, j).

(15)

2.2.3. Vine Copula Model of Five-Dimensional Random
Variables. -is section adopts multiple pair-copula models
to construct the multivariate joint PDF. From the definition
of vine structures [8, 9], as can be known that each vine
consists of multiple trees, each tree contains multiple nodes,
the line connecting two nodes is termed as edge, and dif-
ferent edges are independent of each other. Different vine
structures have different properties, and the widely used
ones are regular vine structures [8, 9], which include many
types. -e widely applied regular vine structure types are
C-vine and D-vine. -is section takes five-dimensional
random variables as the example to build C-vine structure
and D-vine structure, respectively, as shown in Figures 1 and
2. Figure 1 shows that C-vine structure of five-dimensional
random variables contains four trees, and every tree has one
main node that is connected to the other nodes. Each line
(edge) connecting main node to the other node is corre-
sponding to one pair-copula model, and different lines
(edges) are independent of each other. Figure 2 shows that
D-vine structure of five-dimensional random variables also
has four trees and ten edges (lines), and each edge is cor-
responding to one pair-copula model. -rough Figure 1,
C-vine is composed of ten pair-copula models, and any two
pair-copula models are independent. Meanwhile, in Fig-
ure 2, D-vine is also composed of ten pair-copula models,
and any two pair-copula models are also independent.

2.3. BDVCM of Five-Dimensional Monitoring Variables.
In this section, the Bayesian Dynamic Vine Copula Model
(BDVCM) is a fusion of BDLM and vine copula models. -e
multivariate joint distribution function is decomposed into a
series of BDVCM about any two monitoring variables;

further, the BDVCMofmultiple monitoring variables can be
obtained through connecting the BDVCM of any two
monitoring variables with vine structure.

With equation (6) and [4–6], the dynamic Pearson linear
correlation coefficient between any twomonitoring variables
(xi, xj) can be expressed with

ρt(i, j) ≈
cov Di,t−1, Dj,t−1 

σi,tσj,t

, (16)

and, with equations (15) and (16), the dynamic relevant
parameter ρt of bivariate Gaussian copula function can be
obtained with

ρt � ρt(1, 2). (17)

-e BDVCM of bivariate monitoring variables can be
obtained through combining the built BDLM about two
monitoring variables and Gaussian copula function of bi-
variate monitoring variables. Further, the BDVCM of
multiple monitoring variables can be obtained through
connecting the BDVCM of any two monitoring variables
with the vine structure. -e detailed modeling processes are
as follows.

With equation (6), it is known that two one-step pre-
diction variables (y1, y2) both follow normal distribution;
namely,

y1,t+1∼N μ1,t+1, σ
2
1,t+1 , y2,t+1∼N μ2,t+1, σ

2
2,t+1 ,

F1 y1,t+1  � Φ
y1,t+1 − μ1,t+1

σ1,t+1
 ,

F2 y2,t+1  � Φ
y2,t+1 − μ2,t+1

σ2,t+1
 .

(18)

Let

u1 � F1 y1,t+1 ,

u2 � F2 y2,t+1 .
(19)

Further, BDVCM about bivariate monitoring variables
can be obtained with

y1,t+1,

y2,t+1
 ∼C

F1 y1,t+1 ,

F2 y2,t+1 

⎛⎝ ⎞⎠ � C
u1,

u2; ρt+1
 

� ΦG

F1 y1,t+1 ,

F2 y2,t+1 ; ρt+1

⎛⎝ ⎞⎠,

(20)
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where ρt is the dynamic relevant parameter of bivariate
Gaussian copula function, which can be computed with
equation (17). ΦG(·) is Gaussian copula function.

With equation (20) and vine structures shown in Fig-
ures 1 and 2, the BDVCM of five-dimensional monitoring
variables can be reached.

3. Dynamic Reliability Prediction of the Steel
Box Girder considering Nonlinear
Correlation among Performance
Functions about FailureModes for Five Cross
Sections Based on SHM Data

With equations (16)-(20) and Section 2.3, the BDVCM,
considering nonlinear dependence among the five moni-
toring points of five cross sections, is provided. Further,
bridge girder system reliability can be dynamically predicted.
Reliability indices and failure probability about multiple
monitoring points can be solved with the FOSMmethod (see
Section 3.1). Failure probability of bridge girder system can
be computed through Section 3.2.

3.1. Reliability Prediction Formula Based on the FOSM
Method. In this study, the adopted bridge girder has five
monitoring cross sections, and each cross section has a control

monitoring point [12].-e five predicted performance functions
about the five control monitoring points are

hi yi,t  � [σ] − cPyi,t, i � 1, 2, . . . , 5, (21)

where hi is the i
th performance function, [σ] is the strength

(allowable stress), yi,t is the monitoring or predicted ev-
eryday extreme stress of the ith control monitoring point at
time t, and cP � 1.15 is the correction factor of the sensors
[7].

Based on the FOSM method [13], the predicted reli-
ability index βi,t and the corresponding failure probability
pfi,t

of the ith control monitoring point can be solved with

βi,t �
μ[σ] − cPμyi,t�������������

σ2[σ] + cPσyi,t
 

2
 , (22)

pfi,t
� Φ −βi,t . (23)

3.2. "e Steel Box Girder Reliability Prediction Based on
BDVCM. -is section supposes that any system composed
of two control monitoring points is parallel. With equation
(21), the failure probability of parallel system composed of
two control monitoring points can be computed with the
following equation:

1

2

3

4

5

12
13

14

15

Tree 1

Tree 3 Tree 4

12

13

14

15

25|1

24|1

23|1

Tree 2

34|12 24|1
34|12 35|12

45|123
23|1

25|135|12

Figure 1: Five-dimensional C-vine structure.

1
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Tree 2

Tree 3

Tree 4

13|2 24|3

14|23 25|34

14|23 25|34
15|234

35|4

13|2 24|3 35|4

Figure 2: Five-dimensional D-vine structure.
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gi,t+1 � [σ] − cPyi,t+1, i � 1, 2,

P g1,t+1 ≤ 0, g2,t+1 ≤ 0;  � P G1 g1,t+1 ≤G1(0), G2 g2,t+1 ≤G2(0) 

� P F1,t+1 ≤G1(0), F2,t+1 ≤G2(0) 

� C G1(0), G2(0); ρ12,t+1  � C pf1,t+1
, pf2,t+1

; ρt+1 

� ΦG pf1,t+1
, pf2,t+1

; ρt+1 .

(24)

where Fi,t+1 �Φ([σ] − cPyi,t+1 − cPμi,t+1/cPσi,t+1),Gi(0) �Φ
(−μi,t+1/σi,t+1), i � 1,2, pf1,t+1

and pf2,t+1
can be computed with

equation (23). C is copula function, and ρt+1 is the time-variant
relevant parameter obtained with equation (17). ΦG(·) is
Gaussian copula function.

Because the multiple parallel systems composed of any
two control monitoring points are serial, with equations
(21)-(24), the predicted failure probability of the steel box
girder considering the nonlinear correlation among per-
formance functions of failure modes about multiple control
monitoring points can be solved with the following equation:

Pfsystem,t+1
� max

C pf1,t+1
, pf2,t+1

; ρ12,t+1 , C pf1,t+1
, pf3,t+1

; ρ13,t+1 , C pf1,t+1
, pf4,t+1

; ρ14,t+1 , C pf1,t+1
, pf5,t+1

; ρ15,t+1 ,

C pf2,t+1
, pf3,t+1

; ρ23,t+1 , C pf2,t+1
, pf4,t+1

; ρ24,t+1 , C pf2,t+1
, pf5,t+1

; ρ25,t+1 ,

C pf3,t+1
, pf4,t+1

; ρ34,t+1 , C pf3,t+1
, pf5,t+1

; ρ35,t+1 ,

C pf4,t+1
, pf5,t+1

; ρ45,t+1 

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

.

(25)

4. Application to an Existing Bridge

-is paper takes Tianjin Fumin Bridge from China as the
analytical example [7, 14, 15]. -e adopted girder has five
monitoring cross sections which are sections A, B, C, D, and
E shown in Figure 3. Each cross section has installed three
stress sensors at three different monitoring points which are
all Fiber Bragg Grating sensors [12]. -e longitudinal
stresses about these five sections are monitored through an
array of stress sensors [12]. -ese stress sensors about the
five monitoring cross sections are shown in Table 1 and
Figure 4, and these cross sections are serial. -e steel type of
the steel box girder is Q345qD, and the mean value and
coefficient of variance are, respectively, 411MPa and 0.098
[12].

4.1. Monitoring Everyday Extreme Stress Data of the Five
Monitoring Cross Sections. Sampling rate about the stress
data is 2.5Hz sampling frequency. -e everyday extreme
stresses of the five cross sections are, respectively, monitored
for two hundred days. -e monitoring data are shown in
Figure 5, which show that each section is monitored by three
sensors at three different locations and the monitoring data
are dynamic and random [12]. According to measurement
program [7, 15], these data can reflect the safety-based
dynamic reliability of girder system. -e maximum absolute
value of everyday extreme stresses at the three points of each
section is defined as the everyday extreme stress of each
section [12].

4.2. BDLM of Monitoring Everyday Extreme Stress Data of
Each Monitoring Section. Figure 5 shows that the sensors
FBG01074, FBG01947, FBG01071, FBG01015, and FBG01028,
respectively, monitored the everyday extreme stress about the
control locations of sections A, B, C, D, and E. So, the
monitoring data of the five sensors are applied to build the
BDLM for predicting the corresponding everyday extreme
stresses. -e detailed contents are as follows.

Firstly, the monitoring extreme data of the five sensors
are, respectively, smoothly processed with cubical smoothing
algorithm with five-point approximation [7], and the pro-
cessed data can be approximately considered as the initial
state information [12]. -rough Kolmogorov-Smirnov (K-S)
test, these initial state data about the five sensors are all
approximately simulated with normal distribution. Secondly,
based on equations (1)-(9) of Section 2.1 including Sections
2.1.1-2.1.3, the BDLM can be easily built. Finally, with the
built BDLM, the everyday extreme data can be dynamically
predicted.-e predicted results are shown in Figure 6. As can
be seen, the predicted extreme stress data and the predicted
extreme stress ranges all fit the changing rules of monitoring
extreme stress data.

4.3.DynamicReliabilityPrediction of theBridgeGirder System

4.3.1. Bridge Girder System Reliability Prediction without
considering the Dependence among the Multiple Failure
Modes. In this section, dynamic reliability index data at the
control points in Tianjin Fumin Bridge girder system are
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predicted with equation (22) and the built BDLM. -e al-
lowable stress of bridge steel follows normal distribution
with 411MPa (mean value) and 0.098 (coefficient of
variance).

With equation (22), the computation formula of reli-
ability indices can be obtained with

βi,P,t �
411 − 1.15μi,t����������������������

(411 × 0.098)
2

+ 1.15σi,t 
2

 , i � 1, 2, . . . , 5, (26)

pfi,P,t
� Φ −βi,P,t , i � 1, 2, . . . , 5, (27)

where βi,P,t is the predicted reliability index at the ith
monitoring point at time t; (μi,t, σi,t) can be obtained with
equation (6).

With equation (26), the reliability indices of the five
control monitored points can be dynamically predicted, and
the predicted results are shown in Figure 7, fromwhich, as can
be seen, the predicted reliability indices and the predicted
ranges all fit the changing rules ofmonitored reliability indices.

-e comparative analysis is made, and the minimum
value is selected as bridge girder reliability index. -e results
are shown in Figure 8, from which, as can be noticed, the
reliability indices of the control monitored point at section B
are the bridge girder reliability indices.

Based on these solved reliability indices and equation (27),
failure probability of the bridge girder system can be calcu-
lated.-e comparative analysis about the failure probability of
the five control points is made, and the maximum value
shown in Figure 9 is selected as the time-variant failure
probability of the steel box girder. From Figure 9, as can be
seen, the failure probability of the control monitoring point at
section B is the bridge girder failure probability.

4.3.2. Bridge Girder Reliability Prediction considering the
Dependence among the Multiple Failure Modes. In this
section, dynamic reliability of steel box girder considering
correlation is predicted. Based on C-vine structure shown in
Figure 1, with equation (16), the time-variant correlation co-
efficients (e.g., ρ(AB), ρ(AC), ρ(A D), ρ(AE), ρ(BC|A),

ρ(B D|A), ρ(BE|A), ρ(C D|AB), ρ(CE|AB), ρ(DE|ABC))
between the performance functions of any two points can be
obtained, where the time-variant correlation coefficients are
equal to the relevant parameters of the corresponding copula
functions. ρ(AB), ρ(AC), ρ(A D), ρ(AE), and ρ(BC|A) are
shown in Figure 10(a), and ρ(B D|A), ρ(BE|A), ρ(C D|AB),

ρ(CE|AB), and ρ(DE|ABC) are displayed in Figure 10(b).

(a)

Fiber terminus

A B G C D E

(b)

Figure 3: (a) Fumin Bridge. (b) Five monitoring sections of Fumin Bridge girder system.

Table 1: Stress sensors of the five monitoring cross sections [12].

Sections Different stress sensors at different monitoring points
A FBG01074, FBG01081, FBG01078
B FBG01947, FBG01949, FBG01046
C FBG01059, FBG01071, FBG01073
D FBG01012, FBG01015, FBG01005
E FBG01029, FBG01021, FBG01028
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Based on Figure 10, bivariant Gaussian-copula PDF
functions and contour maps considering nonlinear depen-
dence between any pair of failure modes about any pair of
control monitoring points are analyzed. Conditional on
sections A and B, the time-variant correlation between
sections C and D was analyzed, and the analytical results of
the 100th day are selected and shown in Figure 11, from
which, as can be known, the dependence between any pair of
failure modes is nonlinear.

With equation (24), pf(AB), pf(AC), pf(A D),

pf(AE), and pf(BC|A) can be computed and shown in
Figure 12(a), and pf(B D|A), pf(BE|A), pf(C D|AB),

pf(CE|AB), and pf(DE|ABC) can be solved and shown in
Figure 12(b). Further, with equation (24), girder system failure
probability considering nonlinear dependence among the failure
modes can be obtained and shown in Figure 13, from which, as
can be known, the bridge girder system failure probability taking
into account the nonlinear dependence among the performance
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Measure point
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Downstream
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Crossbeam
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Measure pointCrossbeam
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(e)

Figure 4: Stress sensors of the five monitoring cross sections. (a) Section A. (b) Section B. (c) Section C. (d) Section D. (e) Section E.
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Figure 5: Monitoring extreme stresses of the five sections. (a) Section A. (b) Section B. (c) Section C. (d) Section D. (e) Section E.
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Figure 6: Predicted extreme stresses of the five sections. (a) Section A. (b) Section B. (c) Section C. (d) Section D. (e) Section E.
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Figure 7: Predicted reliability indices of the five sections. (a) Section A. (b) Section B. (c) Section C. (d) Section D. (e) Section E.
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functions of failure modes is smaller than the one obtained
without taking into account the nonlinear dependence, which
proves that it is more reasonable and necessary to take into

account the nonlinear dependence among the performance
functions of failure modes for dynamic reliability prediction of
structural system.
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Figure 8: Comparative analysis of predicted reliability indices.
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Figure 9: Comparative analysis of predicted failure probability.
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Figure 10: Time-dependent nonlinear correlation coefficients.
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5. Conclusions

-is paper presented a new dynamic reliability prediction
method for the steel box girder. By combining Bayesian
Dynamic Linear Model (BDLM) with vine copula functions,
the Bayesian Dynamic Vine Copula Model (BDVCM) is
provided. -e predicted results illustrate that the dynamic
failure probability taking into account the nonlinear de-
pendence is lower than the one without taking into account
the nonlinear dependence. It is indicated that the computed

results without taking into account the dynamic nonlinear
dependence are conservative, and the predicted results
taking into account the dynamic nonlinear dependence are
more reasonable and necessary.

Data Availability

Some or all data, models, or codes generated or used during
the study are available from the corresponding author upon
request (list items).
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Figure 12: Failure probability of bivariate vine structure.
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Figure 13: Predicted bridge girder failure probability.
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