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Excavation of a superlarge diameter tunnel by tunnel boring machine (TBM) is different from that of a shield tunnel with normal
dimension, in which the control system of the superlarge TBM is very complicated and difficult to operate. Hence, it is very
important to focus on the control and management of significant parameters to ensure excavation stability under uncertainty. In
this paper, we (i) utilize a BIM-based big data platform (BIM-BDP) to manage the essential construction data of tunnel project in
digital format; (ii) adopt the global sensitivity analysis (SA) to recognize significant parameters for shield excavation based on
polynomial chaos expansion (PCE)–extended Fourier amplitude sensitivity test (eFAST) model; and (iii) employ the uncertainty
analysis (UA) to discover the correlation between significant parameters from the data of the BIM-BDP.'is research contributes
to (i) the body of knowledge of proposing a more appropriate research methodology that can cope with aleatory and epistemic
uncertainty and support uncertainty and sensitivity analysis (UA/SA) processes based on data from BIM-BDP and (ii) the state of
practice by providing a data-driven surrogate model to simulate system behaviors of shield excavation with high reliability and to
reduce dependency on domain experts. Here, we pay close attention to the most influential parameters that require priority
parameter control, which can help administrators optimize the management of shield parameters during tunnel excavation.

1. Introduction

Tunnel boring machine (TBM) is the main tool for urban
tunnel excavation due to its high excavation efficiency, high
safety, environmental friendliness, and high cost-effectiveness
[1]. In order to guarantee the safety and efficiency of tunnel
excavation, the administrators need to (i) record and store
real-time monitoring data during TBM tunneling, including
hydrological, geological, and TBM parameters; (ii) identify
the influential and noninfluential parameters for excavation
stability based on the monitoring data; (iii) control and
manage influential parameters under system uncertainty. To
avoid excavation instability, it is very meaningful to manage
and analyze the construction parameters [2–8]. Building
Information Modeling (BIM) enables the design and analysis
of complex, multidisciplinary systems as often encountered in
infrastructure projects and, in particular, tunneling [9].

Reasonable control of TBM is considered as a compli-
cated process, in which it is very difficult to rigorously
analyze interactive relationship between construction pa-
rameters due to the uncertainty of heterogeneous soil and
complex surroundings. 'e uncertainty and sensitivity
analysis (UA/SA), which helps researchers better understand
the relative importance of each parameter [10, 11], of shield
machine construction parameters is an important research
direction for parameters control. Understanding the relative
“sensitivity” of parameters can aid in the development of
better monitoring strategies and experiment design, for
example, indicating the priority and amount of parameters
to be controlled. In the SA methods, the global sensitivity
analysis (GSA) can perceive and distinguish the influence
magnitude of parameters associated with the excavation
stability to help reduce the cognitive uncertainty caused by
the limitation of human cognition and uncertain factors, for
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example, incomplete information. Hence, GSA provides
guidance for identifying parameters whose information
should be collected to enhance the system reliability. 'e
extended Fourier amplitude sensitivity test (eFAST) method
is a global and quantitative GSA algorithm that can be
applied to complex nonlinear and nonmonotonic models
[12–14]. 'e key idea of eFAST is that from one simulation
run to another, all factors fluctuate around their nominal
values [15]. 'e importance of the factor is determined by
analyzing the Fourier decomposition of the model response.
'e eFAST method has been utilized in this paper to in-
vestigate the complicated and uncertain interaction between
the construction parameters as well as the excavation sta-
bility in the SRHT project.

'is research contributes to (i) developing a frame-
work of UA/SA for investigating the interactive rela-
tionship between construction parameters under system
uncertainty; (ii) proposing a noval polynomial chaos
expansion–extended Fourier amplitude sensitivity test
(PCE-eFAST) model for GSA with high accuracy and
reliability; (iii) exploring the reasonable sample size for
PCE model and investigating the limitation of eFAST
method to get a more convincing result.

'e remainder of this paper is organized as follows. First,
the literature review of parameters analysis for superlarge
diameter shield excavation is briefly presented. Second,
Section 3 shows the construction of the BIM-BDP, which
includes four modules (i.e., data sensing, data storage, data
analysis, and data presentation). 'ird, the global uncertainty
and sensitivity analysis process based on BIM-BDP data is
exhibited in Section 4, with three steps (i.e., generating data
according to the input-output index system, running the
surrogate model, and performing GUA and GSA by PCE-
eFAST method). Fourth, the UA/SA results are revealed in
Section 5. Fifth, we discuss the limitation of the eFAST
method and this study.'e final section summarizes the main
observations of the study and lists future research directions.

2. Literature Review

2.1. Parameters Analysis for Superlarge Diameter Shield
Excavation. TBM is extremely sensitive to geological
changes and excessively dependent on the operator’s own
experience [16]. BIM for decision making during the life
cycle of infrastructure projects is a vital tool for the analysis
of complex, integrated, multidisciplinary systems [9]. 'e
BIM mainly contains both geometric and nongeometric
data, and a strong link should be formed between the visual
model and database [17]. For underground projects, [12]
established a BIM cloud-based safety risk knowledge da-
tabase to sort out all kinds of safety risk knowledge. A
study integrated WNS and BIM to carry out long-term
underground environment detection and monitoring, and
the collected data can be preserved in a database for
analysis and management [18]. As for the integrated da-
tabase, data incompatibility is the most significant problem
[19]. One of the most valuable assets in any database is the
content itself [20]. However, as far as the literature is
concerned, there are relatively few studies that make full

use of and analyze the data, especially in the shield tunnel
project.

TBM is a kind of very complex and comprehensive
equipment and is composed of a variety of systems. Al-
though TBM can provide hundreds of shield machine op-
erating parameters, the TBM operator still has an inadequate
awareness of geological conditions and shield tunneling
machine status at present and of whether such shield ma-
chine operation status corresponds to such geological
conditions. 'erefore, there are still many problems in-
volved in the operation of the shield machine during the
TBM construction, such as how to evaluate rock parameters
in real-time based on equipment parameters and how to use
the evaluation results as the basis for decision making and
optimization to achieve scientific control and management
of shield parameters for excavation stability.

2.2. Polynomial Chaos Expansion (PCE). 'e random
spectrum method [21] is a new technique for establishing a
surrogate model. 'e method has a multidimensional
random response surface in the sample space and a large
number of response samples. 'e most famous random
spectrum method is polynomial chaos extension (PCE). 'e
authors in [22] proposed an initial Hermite polynomial
chaos method, which uses normal random variables. 'e
authors in [23] proposed a generalized PCE method and
extended the method to non-normal random variables (e.g.,
lognormal, Weibull, and beta). Besides, after further de-
velopment, generalized PCE can already use non-global
smoothing polynomial basis functions. 'e Hermite poly-
nomial chaos method for moving and windowing can es-
timate a small activation probability and improve the
accuracy of the response surface [24].

PCE has many advantages over other surrogate models
[25]. 'is method can produce highly accurate results, and it
has proven to have significant computational efficiency in
the expansion of large-scale systems [26]. 'e use of non-
intrusive PCE in the quantification of uncertainty has re-
ceived wide attention. 'e method has been applied as well
in solving fluid dynamics, circuit simulation, environment,
and sound field. 'e basic idea is to approximate the sto-
chastic process by the sum of orthogonal polynomial chaos
with independent random variables. 'e key step is to de-
termine the coefficients of each polynomial. 'e model
responses are characterized by a multivariate polynomial
whose distribution relative to the input variables is or-
thogonal. In this case, characterizing the probability density
function (PDF) is equivalent to evaluating the polynomial
chaos coefficients.

2.3.GlobalUncertainty andSensitivityAnalysis. 'e fact that
SA should be a fundamental part of any analysis that in-
volves the assessment and propagation of uncertainty is
underlined in [27]. SA of a model aims at quantifying the
relative importance of each input parameter [28]. In par-
ticular, techniques for GSA have become an accepted
standard for the evaluation of the impact and interactions of
uncertain inputs in complex environmental effects [29–31].
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Uncertainty is a physical quantity that characterizes how
reliable a random variable is and refers to situations in-
volving imperfect and unknown information. It appears in a
partially observable and/or random environment, which is
suitable for the prediction of future events [32]. 'e GSA
considers the output behavior of the model over the full
domain of uncertain inputs; specifically, this implies that the
full distribution of each input parameter should be evaluated
and that the importance of each input should be evaluated
across the domain of all other parameters [33, 34].

'e main methods for performing GSA include vari-
ance-based methods, regression methods, and Morris
screening methods. Among these GSA methods, the vari-
ance-based methods have restrictions on the output dis-
tribution. Regression methods require knowledge of the
input-output relationship form. Morris screening methods
cannot compare the magnitude of sensitivity. Only variance-
based methods can explore the whole space of the uncertain
inputs [35]. 'e inputs are usually carried out via Monte
Carlo (MC) sampling, and the basic idea of SA based on
variance is to analyze the effect of input on output variance.

A common type of GSA is the variance-based method,
which operates by apportioning the variance of the model’s
output into different sources of variation in the inputs
[15, 36]. More specifically, it quantifies the sensitivity of a
particular input (the percentage of the total variability in the
output attributed to the changes in that input) by averaging
over other inputs rather than fixing them at specific values.
'e Fourier amplitude sensitivity test (FAST) was one of the
variance-based methods [37]. 'e classical FAST method
uses spectral analysis to apportion the variance, after first
exploring the input space using sinusoidal functions of
different frequencies for each input factor or dimension [38].

'e FAST is a variance-based method that is used to
calculate the main sensitivity index (MSI) by scanning the
parameter space with periodic functions such that the entire
sample space can be analyzed [31]. A multidimensional in-
tegration is reduced to 1D integration along with a curve by
associating each variable with a sampling frequency of the
system in the Fourier transform space, which greatly im-
proves the sampling efficiency [39, 40].'en, Saltelli et al. [12]
extended the FAST method to perform the total sensitivity
index (TSI), which is called eFAST method. 'is eFAST
method, combining the benefits of the FAST and Sobol’s
method, is highly efficient and may be used to analyze the
interactive relationship between various parameters.

In the present work, the MC method is used to evaluate
the effect of each input error on the output [27]. Firstly, the
PCE-eFAST model is established. 'en, the statistical
characteristics of the parameters are calculated by per-
forming a large amount of random sampling on the pa-
rameters in the model. Finally, the approximate value of the
solution is obtained. It is concluded that the necessary
precautions should be taken to reduce the impact of changes
in these parameters on the parameters of the shield machine
equipment and to minimize errors or disturbances.

3. The Architecture of the BIM-BDP

TBM operations are greatly affected by geological conditions
and heavily rely on the operator’s own subjectivity. In the
case that external environment changes, it is difficult for
TBM to perceive the status of geotechnical and shield
machines in time to make scientific judgments to guide
construction, leading to frequent occurrence of engineering
accidents during TBM tunneling, such as ground settlement
and cutter head damage, and thus resulting in huge eco-
nomic losses. 'erefore, it is necessary to remotely monitor
and control different types and brands of shield machines to
collect construction information to guide construction. In
order to realize the scientific and efficient construction
management of the shield tunnel, a shield construction
information management system integrating project man-
agement, data analysis, and construction decision support is
particularly important.

In this study, a UA/SA method is proposed for data
analysis and decision making during tunnel excavating. To
improve its prediction accuracy, a variety of sensors are
employed, covering both shield machine and stratum.
Furthermore, in order to facilitate the data collection,
processing, analysis, and presentation, an BIM-BDP is de-
veloped. 'e entire system is structurally divided into a
sensing module, a storage module, an analysis module, and a
presentation module, as shown in Figure 1. 'e sensing
module and storage module are used to collect and store the
shield machine data of the tunnel project, and the analysis
module is used to analyze shield machine parameters. 'e
presentation module exhibits the BIM-BDP through the
browser client and realizes the functions of visualizing the
shield parameter data and applying the platform.

'e TBM construction data sensing layer needs to collect
real-time information related to TBM operation and main
control parameters. 'is real-time information should be
related to the whole process of shield tunnel construction,
types, and stages. 'is information is divided into three
categories according to engineering objects: shield machine
(construction equipment), geological space (Earth layer
information), and tunnel structure (engineering entity). 'e
shield machine information mainly includes its overall ge-
ometry, performance parameter description, and key con-
struction parameters of each subsystem of the shield; the
tunnel structure includes tunnel linear design, functional
design parameters, segment ring design parameters, and
tunnel forming quality parameters; geological space includes
geological information such as soil parameters, soil strati-
fication, and hydrological information (e.g., groundwater
level, head, and seepage). 'is information plays an im-
portant role in supporting the progress, quality, cost, and
safety management of the shield tunnel project. 'e in-
formation classification and storage methods are shown in
Figure 1.

'e data stored by the module includes real-time data of
the shield machine, manual data, and BIM 3D model data.
'e three types of data are stored in the database server and
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establish a request and response relationship with the web
server. 'e web server then establishes a request with the
browser. 'e browser sends a request to the web server in an
HTTP format to access the cloud database. After the web
server accepts the server request, the request is automatically
converted into a SQL query statement and passed to the
database server. After receiving the request, the database
server needs to verify its legitimacy, perform data processing,
and then return the processed structure to the web server.
'e web server then converts the obtained result into an
HTML document form and displays a friendly web page
through a browser.

'e analysis module is the core of the BIM-BDP, which
embeds the sensitivity and uncertainty analysis algorithm.
'e UA/SA makes use of the previously developed BIM-
BDP that collects the excavating information of SRHT.
Numerous methods, based on either deterministic or sta-
tistical concepts, have been proposed for performing UA/
SA.Most of the existingmethods require explicit expressions

(equations or functions) between the inputs and outputs.
'e common way of quantifying uncertainty is estimating
the PDF [41] and the cumulative distribution function
(CDF) [31, 42]. It is considered that the parameters or the
interaction between the input parameters causes the vari-
ance of the model output; thus, PDF and CDF can reflect the
sensitivity of the model output to the input parameters
[43, 44]. 'erefore, the coupling among the parameters and
the total variance parameter can be analyzed by GSA [45].
For the GSA study, the surrogate model (also known as
metamodel) is commonly employed to represent the un-
certainty in the output and calculate the mean and standard
deviation [46]. We adopt the generalized polynomial chaos
expansion (gPCE) method [47] to construct a computa-
tionally cheaper surrogate to approximate the mapping
between input parameters and output parameters. 'en, the
eFAST method is adopted to obtain the total-order sensi-
tivity index, which takes into account the main effect of a
single parameter on the output and the interaction between
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Figure 1: 'e architecture of the BIM-BDP.
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the parameters and describes the total influence of a pa-
rameter on the output.

'e data presentation module is based on the browser
display and uses the Silverlight plug-in to develop an in-
teractive interface to increase system interactivity. 'e
module can realize the visualization of the BIM and its
associated files, full network visualization, and real-time key
parameters of the shield machine. In addition, the system
provides multiple data analysis tools to support construction
decision making. Besides, users can easily find the con-
struction time and material consumption of any component
by only selecting it on the BIM. For example, if any lining
ring is selected, the construction time and material con-
sumption of the ring can be counted. By querying the
historical data and exporting the data, the excavation surface
stability analysis and GSA can be further developed based on
the data.

In order to better collect, transmit, store, and use these
data, the platform supports multiuser access and remote
login monitoring via the Internet, while reducing the de-
pendence on front-end hardware and software, and its
maintenance and upgrade are easy. 'e system is built using
the browser/server (B/S) architecture and uses Java Devel-
opment Kit (JDK) as the development platform, MyEclipse
as the development tool, Java as the programming language,
and SQL Server 2008 as the database.

4. The UA/SA Framework

'e global scheme that describes the required different steps
for the computation of partial variances is presented in
Figure 2. 'e proposed framework (as given in Figure 2)
consists of three main steps. In Step 1: generating data based
on the input-output index system, we confirm the inputs and
outputs from the BIM-BDP and generate the input data by
the same “level of uncertainty” according to the same co-
efficient of variation (COV). In Step 2: running the surrogate
model, surrogate models are built for the response and
coupling variables, and then we can extract the output data
by rerunning of the surrogate model. In Step 3: performing
GUA and GSA by PCE-eFAST method, the uncertainty and
sensitivity measures of inputs are estimated, and the input
parameters include the MSIs and TSIs. In Sections 4.1–4.3,
we explain the three steps in detail. For illustration, we use
the BIM-BDP to verify the applicability of this method.

4.1. Step 1: Generating Data according to the Input-Output
Index System. 'e parameters of BIM-BDP data can be
sorted in to three categories: shield machine, tunnel
structure, and geological space, including more than 900
groups of shield construction parameters as well as more
than 30 construction monitoring parameters. However, due
to the limited attention of the shield machine operator, it is
impossible to monitor and control all these parameters si-
multaneously. Hence, some significant parameters, which
have a prominent effect on the safety of shield tunneling, are
considered as key control parameters for the shield machine
operator.

Previous studies [48, 49] have primarily focused on the
mechanical performance of the TBM in the construction
phase, such as the maximum thrust force, permeability, and
rotation speed of the cutter head. Berthoz et al. investigated
the identification of pertinent control parameters to
guarantee the safe advancement of the machine and the
ground-supporting function of the cutting wheel, such as
advancing speed, total volume loss, thrust effort, and torque
on the cutter head [3]. Zou [50] indicated that a synchro-
nous grouting technique can improve the stability of the
surrounding rock and control the ground surface defor-
mation in the shield tunnel construction process. Besides,
based on construction experiences and previous studies
[14, 51], the deviation angle and bubble chamber pressure
are the main monitoring parameters for a shield machine
operator to evaluate the stability of shield excavation.
According to statistical analysis [52], it is found the attitude
and position of the shield machine are mainly determined
by the thrust cylinder and cutting wheel systems. Hence,
some pertinent control parameters (as shown in Table 1) on
the BIM-BDP are regarded as significant parameters for
UA/SA study. Herein, the x1–x10 are the inputs and the s1-
s2 are the outputs. In this study, the distribution of input
parameters and output parameters is defined as follows: (i)
Beta (r, s, a, b): r> 0, s> 0. 'e support of the distribution is
given by the parameters [a, b]. 'e shape of the distribution
is related to parameters [r, s] and their ratio. (ii) Logistic (μ,
s): µ ∈R, s> 0. 'e logistic distribution is similar to the
normal distribution in shape but has heavier tails (higher
kurtosis). (iii) Laplace (μ, b): µ ∈R, b > 0. Laplace distri-
bution is also known as double exponential distribution,
because it can be thought of as two exponential distribu-
tions (with an additional location parameter) spliced to-
gether back-to-back.

Determining the range and distribution of each input
parameter is important in GSA study [53, 54], because it
may affect the parameter TSIs and rank [55]. In general,
two methods can be used to set the parameter ranges and
distributions: (1) for those parameters with clear physical
interpretations, their values should cover the entire
physical range as much as possible; (2) if a parameter has no
clear physical interpretation, one should refer to the lit-
erature or expert experience. In this study, all the pa-
rameters in the BIM-BDP have clear physical or geometric
significance. 'e beta, logistic, and Laplace distributions
have been adopted to fit the parameters. According to the
fitting accuracy, the best fitting distribution and the pa-
rameter of each input have been summarized in Table 1.
'en, the inputs sets for UA/SA can be generated based on
the best fitting distribution. Besides, scatter plots constitute
an important class of visualization method. Scatter matrix
plots are high-dimensional extensions of scatter plots,
which can effectively show the pairwise relationship of
multidimensional data. As shown in Figure 3, there is a
high correlation between x4 (advancing speed) and x9
(average soil excavation volume with cutter rotation 360°).
It is obvious that, with the increase in the advancing speed,
the average soil excavation volume with cutter rotation 360°
also increases significantly.
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4.2. Step 2: Running the Surrogate Model. 'e PCE model is
popular for uncertainty propagation and GSA to determine
the effect of input uncertainties on complex computational
models [56, 57]. Currently, we use random variables to
represent the uncertainty in the system. In this section, we
introduce the basics of the gPCE [47] for stochastic un-
certainty propagation.

We use a triplet (Ω, F, P) to represent a complete
probability space, where the sample space Ω is the set of all
possible outcomes, F⊂ 2Ω is the σ -algebra collection of all
measurable events belonging to Ω, and P: F⟶ [0, 1] is a
probability measure indicating the likelihood of occurrence
of each event. Let ζ � ζ1(υ), ζ2(υ), . . . , ζn(υ) :Ω⟶Ξ⊆Rn

be a set of uncorrelated random variables that represent the
uncertainty in the system. 'en, any second-order random
variables μ(υ) ∈ L(Ω, P)(i.e., (μ, μ) � ‖μ‖2Ω <∞) can be
represented as follows [28, 57]:

μ(ζ(υ)) � 
∞

i�0
μiΨi(ζ(υ)), (1)

where Ψi’s were originally proposed by Wiener as Wie-
ner–Hermite polynomial chaos (assuming that ζ has a
Gaussian distribution) and later extended to generalized
polynomial chaos (more classical orthogonal polynomials)
by the Askey scheme [58]. 'e choice of polynomial chaos
types depends on the distribution of random inputs. In the
current work, we use Hermite polynomials for Gaussian
random variables and Legendre polynomials for uniform
random variables; the parameters μi’s are called the gPCE
coefficients.

For the purpose of numerical calculation, the series is
usually truncated up to polynomial order p with N terms
(N � (n + p)!/n!p!) to approximate the exact output
μ(ζ(υ)):

μp(ζ(υ)) � 
N−1

i�0
μiΨi(ζ(υ)). (2)

Based on the orthogonality of the polynomial basis, the
gPCE coefficients can be calculated by projecting μ on each
basis using the inner product:

μi �
μ,Ψi( 

Ψi,Ψi( 
�

1
E Ψ2i 


Ξ
μ(ζ)Ψi(ζ)ρ(ζ)dζ, (3)

where ρ(ζ) is the probability distribution of the variable ζ,
and the integration can be estimated using a quadrature rule:

μi ≈ μi �
1

E Ψ2i 


G

k�1
μ ζk

 Ψi ζk
 εk

, i � 0, 1, . . . , N − 1,

(4)

where ζk
, εk 

G

k�1 is a set of quadrature points and the
corresponding weights. For low-dimensional problems, the
use of tensor product quadrature may have significant ef-
ficiency; however, since the number of quadrature points
increases exponentially as the dimension increases, it suffers
from the “curse of dimensionality” for high-dimensional
cases.

Once an accurate gPCE μp(ζ) is constructed to ap-
proximate the random function μ(ζ), one can obtain an
analytical representation of the function μ in terms of ζ.
'erefore, all the statistical information of μ can be retrieved
from the gPCE in a straightforward manner using their
definitions directly. 'e jth moment of μ for j ∈N is

E (μ − E[μ])
j

  ≈ E μp − E μp  
j

 

� 
∞

−∞
μp(ζ) − E μp  

j
ρ(ζ)dζ,

(5)

which can be calculated either analytically or with small
computational effort. In particular, the first and second
moments of μ can be obtained directly from the gPCE
coefficients as follows. 'e expectation of μ only depends on
the first coefficient:

Total effect of Xi

Main effect of Xi

k: number of parameters
M: number of harmonics
N: sampling size

ωk = ωi/2M

X1

sq = –π + (2q – 1)π
N

G1 ···

Xk

Xi
GSA

q = 1, 2, ··· , N

Step 1
Generating data according to input-output index system

Step 2
Running of surrogate model
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UA/SA by EFAST method 
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CDF
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Gi

Gk

ω1 = 1
Mi

Vi = 2∑Λii=1

Mωi M max(ω–i)
VTi = 2∑Λi – 2

i=1 i=1
∑ Λi

Figure 2: 'e UA/SA scheme that describes the required different steps for the computation of partial variances.
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E[μ] ≈ E μp  ≈ 
N−1

i�0
μi Ψ0,Ψi(  � μ0 Ψ0,Ψ0( . (6)

'e variance σ2μ is obtained as a weighted sum of its
squared gPCE coefficients:

σ2μ ≈ σ
2
μp

� E μp − E μp  
2

  ≈ 
N−1

i�1
μ2i Ψi,Ψi( . (7)

By gPCEmethod, we can quantify the uncertainty though
the quantity of interest g (propagated from the uncertainty in
the inputs) efficiently using its stochastic moments.

Table 1: 'e significant parameters on the BIM-BDP for UA/SA study.

Type Parameter Unit Distribution Parameter values Description

Inputs

Maximum thrust force per
ring (x1) kN Beta [2.64, 3.12, 4827.65,

12391.16]

'e maximum thrust force needs to be 1.5∼2 times
the total resistance. 'e total resistance mainly

includes the resistance of shield shell and
surrounding strata, the thrust resistance of knife disc
plate, the friction resistance between tube sheet and
shield tail, the penetration resistance of the stratum
through the notched ring, steering resistance, and
the drag resistance of the supporting trailer after

traction.

Average synchronous
grouting pressure per ring

(x2)
Bar Beta [5.84, 5.13, −13.86,

99.70]

Simultaneous grouting is a method of directly
injecting the slurry into the rear clearance of the
shield segment. 'e grouting pressure is required to
be greater than the sum of static water pressure and

soil pressure.

Average synchronous
grouting volume per ring

(x3)
L/min Logistic [17.37, 2.96]

'e synchronous grouting volume is the gap
between the cutting soil and the pipe wall in theory,
and, of course, factors such as rectifying deviation in

the advancing process of the shield, running
grouting (including diffusion to the stratum), and
grouting material shrinkage should be considered.

Advancing speed (x4) mm/
min Laplace [7.27, 3.41] 'e distance a shield machine can advance per unit

of time.

Average grease weight of
shield tail per ring (x5) L/min Beta [2.54, 2370650.02,

13.18, 99990365.76]

A paste made by adding additives such as fiber,
modifier, and filler, mainly acting as a sealing,

waterproof, lubricating, and preservative.
Average cutter rotation
speed per ring (x6) r/min Beta [1.56, 1.13, −0.01,

1.47]
'e linear velocity of the cutter rotating per unit
time divided by the value of its circumference.

'e ratio of intake/discharge
mud per ring (x7) — Logistic [0.01, 0.01]

'e ratio of the volume of mud intake per unit of
time divided by the volume of mud discharged per

unit of time.

Average cutter torque per
ring (x8) MNm Beta [0.99, 1.51, 0.03,

25.83]

'e cutter torque mainly includes cutting torque of
cutter disc, bearing torque formed by self-weight of
cutter disc, bearing torque formed by axial load of
cutter disc, friction torque of sealing device, friction
torque of blade front surface, friction counter-
torque of blade circumference surface, friction

torque of blade back, shear torque of opening groove
of cutter disc.

Average soil excavation
volume with cutter rotation

360° (x9)
m3 Laplace [6.24, 2.91] 'e depth of the cutter wheel rotates into the soil.

Actual excavation volume
per ring (x10) L Laplace [343.97, 103.75] 'e product of advance distance of shield machine

and the cross section area of shield cutter.

Outputs

Average bubble chamber
pressure per ring (s1) MPa Beta [3.56, 2.64, 2.67,

3.20]

'e bubble chamber is located behind the mud
chamber, containing the mud, water, and air, and
the pressure is the air pressure inside the bubble

chamber.

Deviation angle per ring (s2) o Laplace [−72.83, 21.56]
'e angle between the actual heading direction of
the shield machine and the direction of the design

axis.
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4.3. Step 3: Performing GUAandGSA by PCE-eFASTMethod.
'e eFAST is a variance decomposition method, which uses
a periodic sampling method and a Fourier transformation to
partition the whole variance of the model output and
quantify the degree to which variation in each input factor
accounts for the output variance [59]. A periodic sampling
approach is used to generate a search curve in the parameter
space, and partitioning is implemented by assigning the
periodic sample of each parameter with a distinct frequency
[15, 46]. 'en, a Fourier transformation is applied to the
model output to measure how strongly a factor’s frequency
propagates from the input to the output, i.e., the variance
contribution of the factor to the whole variance of the output
[12].

First, in order to use the model evaluations more ef-
fectively, a conversion function in (8) is selected for the input
parameters xi (i� 1, 2, . . ., Nt).

xi(t) �
1
2

+
1
π
arcsin sin λit(  + ]i , (8)

where ]i is a random phase in [0, 2π]. Here, ]i � π/3, λi

represents the characteristic frequency of the input pa-
rameters, and t is an independent variable for all input
parameters. In (−π, π), Nt � 2ωλmax + 1 is taken as a uni-
form interval. ω is usually set to 4 or 6, and λmax is the
maximum value of the sequence λ i  that should satisfy the
following nonlinear correlation: 

n
i�1 si·λ i ≠ 0. In the above

formula, si is an integer. 'erefore, y � f(x1, x2, . . . , x10)

can be transformed intoy � f(t); that is,

f(t) � f X1 sin λ1( , X2 sin λ2( , . . . ,

X10 sin λ10( t ∈ (−π, π).
(9)

'e Fourier series expansion of f(t) is

y � f(t) ≈ 

Nt−1( )/2

− Nt−1( )/2

Uj · cos(j · t) + Vj · sin(j · t) .

(10)
'e Fourier coefficients Uj and Vj are defined as
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Figure 3: 'e scatter matrix for each input parameter.
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Uj �
1

Nt



Nt

k�1
f tk(  · cos j · tk( ,

Vj �
1

Nt



Nt

k�1
f tk(  · sin j · tk( ,

(11)

j ∈ Z � −
Nt − 1

2
, . . . , −2, −1, 0, 1, 2, . . . , +

Nt − 1
2

 ,

tk �
π

Nt

2k − Nt − 1( , k � 1, 2, . . . , Nt,

z
0

� Z − 0{ } � −
Nt − 1

2
, . . . , −2, −1, 1, 2, . . . , +

Nt − 1
2

 .

(12)

'e Fourier frequency spectrum curve is defined as Λp �

U2
j + V2

j with j ∈Z, Uj, Vj,Λp having the following properties:
U−j � Uj,

V−j � Vj,

Λ−j � Λj.

(13)

'e variance of the model caused by the parameters’
input changes can be expressed as the sum of the parameters
1, 2, 3, . . ., ω frequency doubling the spectral curves.

Wi � 
p∈Z0

Λpλi � 2 · 
M

p�1
U

2
p−λ i

+ V
2
p−λ i

 , (14)

where z0 � Z − 0{ }, λ i is the integer frequency defined by the
parameter xi, and P is the integer. 'en, the total variance of
the model is

W � 
p∈Z0

Λp � 2 · 

Nt−1

j�1
Λj. (15)

'e total variance of the model output W and the
variance of the modelWi can be obtained by Up, Vp, and λ i.
Since the total variance of the model output is obtained by
parameters or coupling the parameters, the decomposition
can be expressed as

W � 
i

Wi + 
i≠j

Wij + 
i≠j≠m

Wijm + · · · + W12,...,k, (16)

whereWij is the variance (coupling variance) contributed by
the input item xi through the input item xj, and Wijm is the
variance contributed by the input item xi through the error
items xj and xm. W12, . . ., k is the variance contributed by the
input item xi through the input items x1, x2, . . ., xk.
'erefore, the first-order sensitivity index Ri of the input
item xi can be defined as (17) by the normalized processing:

Ri �
Wi

W
. (17)

'e global sensitivity index reflects the sum of the input
item, direct contribution rate, and interaction with input
parameters indirectly to the variance of themodel output. By
decomposing the output variance of the model, the eFAST

method can quantitatively obtain every order and global
sensitivity of each error item. 'erefore, the eFASTmethod
can not only test the effect of the change in multiple error
items on the input model results but also analyze the direct
and indirect effects of the change of each input item on the
simulation results.

'e specific methods for calculating the total sensitivity
are as follows. 'e input item xi was assigned to a larger
frequency λi, and then, a set of smaller different integer
frequencies was assigned to other input items. 'e selected
integer frequency should meet the following relationship:
λi ≥ 2ω · max λi

′ , so the frequency domain was divided into
two parts: [1,ω · max λi

′ ] and [ω · max λi
′  + 1, Nt − 1/2].

Finally, the total sensitivity of the input item was calculated
by

STi �


Nt−1/2
j�ω·max λi

′{ }
U

2
j + V

2
j 


Nt−1/2
j�1 U

2
j + V

2
j 

. (18)

'e aforementioned steps are summarized in
Algorithm 1.

5. The UA/SA for Superlarge Diameter
Shield Excavation

'e data of this study comes from the Sanyang Road
Highway-railway Tunnel (SRHT). 'e SRHT project of rail
transit line 7 is located in Wuhan, China, with a total length
of about 31.3 km. 'is tunnel is designed for both road and
subway use and constructed using two superlarge (diameters
are 15.76meters) mud-water balance shield machines. In the
project of SRHT, especially in the compound stratum
around the under-river section, the control of excavation
stability is a vital problem. In the SRHT project, the BIM-
based big data platform (BIM-BDP) has been established for
the monitoring of construction parameters.

Global UA/SA aims to depict the entire set of possible
model outcomes, together with their associated frequencies
of occurrence [59]. We conducted SA for investigating the
differences of outcome uncertainty derived from the vari-
ation in input parameters with eFAST. Besides, we identified
influential input parameters by calculating both the MSI and
the TSI. In line with [59, 60], for each output variable, a
threshold of MSI> 0.01 and TSI> 0.1 was imposed to
identify influential parameters.

5.1. Surrogate Model Validation. 'e surrogate modeling
methods by gPCE described in Section 4.2 are used to
construct the relationship between input and output pa-
rameters. Because the parameters in the BIM-BDP are
nonlinear and constitute strongly coupled system, it is ex-
tremely difficult to use a finite number of sampling points to
construct a very high accuracy surrogate model that can
completely replace the dynamic model. 'erefore, the ad-
justed error-squared [61], R2

adjusted, is calculated to validate
the accuracy of the surrogate models. 'ey can be calculated
by
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R
2
adjusted � 1 −

n − 1
n − p − 1

  1 − R
2

 ,

R
2

� 1 −


n
i�n yi − y

∗
i( 

2


n
i�1 yi − y( 

2 ,

(19)

where p is the total number of explanatory variables in the
model (excluding the constant term), n is the number of
validation sample size, yi is the observed value, y∗i is the
value predicted by the surrogate model, and ȳ is the average
value of the observed value. Larger values of the R2

adjusted
reveal that the surrogate model is a better approximation of
the original dynamic model.

Figure 4 shows the scatters of the observation data in
BIM-BDP and the prediction data by the surrogate model.
Herein, the R2

adjusted values of s1 and s2 are 0.850 and 0.896,
respectively, using (18). 'ose values are all close to 1, in-
dicating that the surrogate model can predict the average
magnitudes of s1 and s2 with high reliability. 'e black dash
line in Figure 4 means that the observation data is equal to
prediction data, and the red line is the fit line of the ob-
servation data versus prediction data. 'e small deviation of
the above two lines also indicates the good fitting accuracy of
the surrogate model.

5.2. GSA Results

5.2.1. Ge Impacts of Sample Size on the Sensitivity Measures.
'e goal of parameter GSA is to explore the entire input
space with a reasonable sample size and to identify the
sensitive parameters [62]. A key element of GSA is the
sampling of input parameters for the simulation, and the
sample size determines the computational cost of the
analysis [46]. Different metrics of the train sample have
been adopted to evaluate the accuracy of the surrogate
model. 'e metamodel is built using a training set (X; Y)
of size Ntrain that is much smaller than that of the total
sample Ntotal, which is got from the BIM-BDP database. It
is noteworthy that the values in the training set are
continuously selected along the segment ring. 'en, the
prediction data by different metamodels can be validated
with respect to the original observation data. In this
research, 7 groups of training samples (sample sizes are
704, 1408, 2816, 5632, 11264, 22528, and 45056, re-
spectively) are collected with the mean and standard
deviation of the 10 input parameters by the Latin hy-
percube sampling (LHS) method. 'en, the s1 and s2 can
be obtained by running the surrogate model. 'e evo-
lution of the MSI and TSI with increasing sample size is
shown in Figure 5.

Input: λi, t, ]i, ω, ζ, ε, Array, n (Array size)
Output: μi, σ2μ, Fy(y), Fy|Xi(y), dFXi, Wj, W, Rj, STj
(1) Initialization Nt � 2ωλmax+ 1
(2) function Compute gPCE coefficients (μi)
(3) Compute the gPCE coefficients μi with equation (3) and the variance σ2μ with equation (7)
(4) return μi, σ2μ
(5) end function
(6) function Uncertainty analysis (UA)
(7) Compute unconditional cumulative distribution function Fy(y)
(8) for i� 1 to 10 do
(9) set Xi as a fixed value (mean value)
(10) Compute the cumulative distribution function Fy|Xi(y)
(11) Compute 'e distance dFXi between Fy(y) and Fy|Xi(y) with equation (11)
(12) end for
(13) return Fy(y), Fy|Xi(y), dFXi
(14) end function
(15) function GSA
(16) for all ]i ∈ [0, 2π], λi, t do
(17) Convert parameters xi(t) with equation (9), transform y� f(xi) into y� f(t) with equation (10), perform Fourier series

expansion with equation (11)
(18) end for
(19) for each j ∈Z, z0 �Z− [2], tk � π/Nt(2k − Nt − 1) k� 1, 2, . . ., Nt do
(20) Compute the variance of the model caused by the parameters’ input changes Wi with equation (15)
(21) Compute the total variance of the model W with equation (17) and the first-order sensitivity index Ri with equation (18)
(22) end for
(23) for λi ≥ 2ω·max{λi

′} do
(24) Compute the total sensitivity of the input item STi with equation (18)
(25) end for
(26) return Wj, W, Rj, STi
(27) end function

ALGORITHM 1: 'e eFAST-PCE algorithm for GUSA.
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Figure 4: Scatter plot of observations and surrogate model enabled predictions for different outputs of output parameters: (a) bubble
chamber pressure (s1); (b) deviation angle (s2).
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Figure 5: Parameter sensitivity rankings of the eFAST method for (a) MSI of s1, (b) TSI of s1, (c) MSI of s2, and (d) TSI of s2.
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With regard to bubble chamber pressure (s1), theMSIs and
TSIs of input parameters vary greatly when the sample size is
less than 22528. 'e most important parameter, advancing
speed (x4), is chosen as an example to exhibit the results of SA.
'e MSIs of advancing speed are 0.356, 0.263, 0.347, 0.301,
0.303, 0.287, and 0.291, respectively, with the sample size
increasing from 704 to 45056; meanwhile, the TSIs are 0.401,
0.303, 0.411, 0.347, 0.338, 0.324, and 0.331, respectively.
Compared with the MSI and TSI, the input parameter
rankings are almost the same, only if the sample value is 1408.

With regard to deviation angle (s2), the MSIs and TSIs of
input parameters vary greatly when the sample size is less
than 11264. 'e most important parameter is actual volume
excavation (x10), which is chosen as an example, and the
MSIs of actual volume excavation are 0.377, 0.599, 0.671,
0.470, 0.350, 0.354, and 0.353, respectively, with the sample
size increasing from 704 to 45056; meanwhile, the TSIs are
0.449, 0.672, 0.718, 0.501, 0.389, 0.391, and 0.388, respec-
tively. Compared with the MSI and TSI, the input parameter
rankings are the same. 'erefore, if the objective of the
parameter GSA is solely to calculate an input parameter
ranking, then the eFAST analysis can be applied with a
sample size of 22528 to yield a reliable ranking result.

From Figure 5, the sample size is the main determining
factor for the convergence of the MSI and TSI with the
surrogate model. 'e sample size over 22528 yields the most
stable sensitivity indices. When the sample size is small, i.e.,
only 1408, the MSI of advancing speed (x4) shows strong
variations and cannot reach a stable convergence result. For
most of parameters, fewer than 11264 samples are not suf-
ficient to reach a stable value. In general, it appears from the
plots that a sample size of greater than 22528 is required to
reach the final converged value for the most of parameters.

For the input parameter with the highest SIs, such as
advancing speed (x4) to s1 or actual volume excavation (x10)
to s2, the final stable sensitivity index value is attained rather
slowly, and greater fluctuations are observed. Convergence
can be obtained for this type of parameter under the con-
dition of a large sample size. However, those insensitive
parameters are more prone to minor fluctuations that can
appear with increasing sample size. For those insensitive
parameters, the SA can quickly obtain convergence. 'ese
results are consistent with the research of [53], which verifies
the robustness and universality of this study.

5.2.2. Ge MSIs and TSIs of the Entire Section. Figure 6
reports the full results about MSIs and TSIs for all 10 input
parameters on the two output parameters, under the sample
size of 22528 (according to the conclusion in Section 5.2.1).
'e influential parameters (corresponding to MSI> 0.01 and
TSI> 0.1) are found for two outputs.

For the output bubble chamber pressure (s1), the syn-
chronous grouting pressure (x2), advancing speed (x4), cutter
rotation speed (x6), ratio of intake/discharge mud (x7), cutter
torque (x8), and soil excavation volume (x9) are influential
parameters according to the MSIs, whereas synchronous

grouting pressure (x2), advancing speed (x4), and soil exca-
vation volume (x9) are influential parameters according to the
TSIs. 'e most important parameter is advancing speed (x4)
reaching an MSI of up to 0.292 and a TSI of up to 0.331. 'e
next important parameter, soil excavation volume (x9), rea-
ches an MSI value of up to 0.258 and a TSI value of up to
0.313. 'e third important parameter, synchronous grouting
pressure (x2), reaches an MSI value of up to 0.195 and a TSI
value of up to 0.235. Besides, theMSIs and TSIs of other input
parameters are much lower than the above-mentioned three
parameters.

For the output deviation angle (s2), the maximum thrust
force (x1), synchronous grouting pressure (x2), advancing
speed (x4), cutter rotation speed (x6), cutter torque (x8), soil
excavation volume (x9), and actual volume excavation (x10)
are influential parameters according to the MSIs, while
cutter rotation speed (x6), cutter torque (x8), soil excavation
volume (x9), and actual volume excavation (x10) are in-
fluential parameters according to the TSIs. 'e most im-
portant parameter is actual volume excavation (x10)
reaching an MSI of up to 0.353 and a TSI of up to 0.388. 'e
next important parameter, soil excavation volume (x9),
reaches an MSI value of up to 0.299 and a TSI value of up to
0.380. 'e MSIs and TSIs of other input parameters are
much lower than the above two parameters.

Comparing theMSIs and TSIs in Figure 6, we find that the
impact of an input parameter’s interaction with other pa-
rameters on the outputs (TSI-MSI) can be much greater than
that of the parameter’s own contribution (MSI); for example,
the MSI and TSI of actual volume excavation (x10) to bubble
chamber pressure (s1) are 0.002 and 0.024, where the TSI is ten
times the MSI. In this study, the TSI, which includes the
effects of parameter interactions, yields basically the same
ranking of the parameters as the MSI (as in Figure 6). Pa-
rameter importance may be better determined by the TSI,
which is likely to give a better quantitative view of the overall
parameter importance over the whole simulation parameter
than indices computed for the individual parameter by MSI.

5.3. UA Results. We use global UA to study the propagation
of uncertainty from basic input parameters to output pa-
rameters, and to quantify the confidence of the model output
from existing data and parameter estimates. In this study, we
characterize the well-trained metamodel by varying all of the
input factors of the metamodel within a certain range. 'is
process can be divided into four steps: Step 1, defining the type
of random distribution, including Beta, Logistic, and Laplace
in the current study; Step 2, creating a random sample of the
input based on the selected distribution and introducing a
random error into the model input; Step 3, running the model
using random samples as input; Step 4, obtaining the error of
each parameter to obtain a 95% confidence interval.

As mentioned above, the input parameters have their
initial conditions and a specific area. Next, the LHS method
is used to generate inputs based on the distribution, and then
the output is generated using the PCE-eFAST model. After
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several iterations, the uncertainty of the PCE-eFASTmodel
will be represented by CDF of the model outputs.

Figure 7 shows the results of the UA of the inherent
parameters of the shield machine in different model outputs.
Due to the uncertainty of the input parameters and their
interaction, the model output s1 (average bubble chamber
pressure per ring) ranges from 4.4 to 5.4 MPa; s2 (deviation
angle per ring) ranges from −80° to −50°.

'is study takes s1 (average bubble chamber pressure per
ring) as an example. Figure 8 shows the comparison between
the univariate uncertainty CDF curve and the baseline.
Taking Figure 8(a) as an example, set x1 as the average of its
distribution, the blue thick solid line is the baseline CDF of
the model output s1 (the same as that shown in Figure 7(a)),
and the red dotted line is the univariate of the model output

s1 uncertainty CDF. If the two curves are highly similar, this
indicates that the change in value x1 has no significant effect
on the model result s1. Obviously, the factors x2
(Figure 8(b)), x4 (Figure 8(d)), and x9 (Figure 8(i)) have the
greatest impact on model output because their univariate
uncertainty CDF curves are very different from baseline
CDF. At the same time, the factors x1 (Figure 8(a)), x2
(Figure 8(c)), x3 (Figure 8(e)), and x4 (Figure 8(j)) have little
effect on the model output because their univariate uncer-
tainty CDF curves almost coincide with the baseline. 'e
results of the UA are identical with those obtained in Fig-
ure 6, which indicates that the method can identify inputs
that have a significant impact on the output. In this way, the
UA result of the proxymodel method can be verified in some
aspects.
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Figure 6:'e full results ofMSIs and TSIs for all 10 input parameters on the two output parameters, under the sample size of 22528: (a) MSI;
(b) TSI.
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Figure 7: Results of global UA of shield machine intrinsic parameters within different model outputs in the baseline scenario: (a) average
bubble chamber pressure per ring (s1); (b) deviation angle per ring (s2).
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Figure 8: Comparison of single-deterministic-parameter CDF curves and baseline CDF curves for the model output s1 (average bubble
chamber pressure per ring).
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6. Discussion

'e BIM-BDP is used for monitoring shield construction
parameters and status during tunnel construction. 'e
database of BIM-BDP, including BIM database, real-time
collection database, and manual filling database, supports
shield tunneling management and further analysis. 'en, we
performed GSA of the control parameters of the shield
machine from BIM-BDP data on SRHT, under high un-
certainty. We use the eFAST which has proven to be among
the most reliable and efficient GSA methods [13, 59]. 'e
finding that significant differences exist in parameters
identified as influential and noninfluential, in parameter
importance rankings, and in the magnitude of MSI and TSI
under high uncertainty has not been reported previously.
'roughout our research, it is found that the set of signif-
icant first-order MSI and total-order TSI sensitivity indices
returned by eFAST exhibit the same ranking.

According to the previous research [63, 64], LHS de-
velops a procedure to establish correlations between sam-
pled values; hence, the LHS has been adopted as a sampling
method in contrast to the samples by the eFAST method.
Furthermore, the Pearson correlation coefficient (PCC) (see
[65]) has been used to investigate the correlation between
samples. 'e PCCs of samples from BIM-BDP data, LHS,
and eFAST are used to obtain 1000 random parameter
combinations, and the LHS and eFAST method are illu-
minated in Figure 9. From Figure 9, the sample PCC from
BIM-BDP data is similar to that from LHS. However, the
sample PCC from the eFASTmethod is almost close to zero,
which means the eFAST method cannot fit correlation co-
efficients of the input samples effectively. To be specific, the
maximum correlation coefficient from BIM-BDP data is
between x4 and x9, which is 0.938 and indicates a strong
relevance between x4 and x9. In contrast, the maximum
correlation coefficient of x4 and x9 from LHS is 0.947, which
is very similar to BIM-BDP data. However, this coefficient of
x4 and x9 from the eFASTmethod is 0.001, which is almost
close to zero and quite different from the coefficient from
BIM-BDP data and LHS.

In order to elucidate the sample technology by the
eFAST method, the parallel coordinates plot of selected
samples is shown in Figure 10, which reveals the distribution
of samples within their variability ranges. In Figure 10, the
parameter ranges are standardized to percentiles and
allowed for comparison across parameters. Figures 10(a) and
10(b) are the samples from the BIM-BDP system,
Figures 10(c) and 10(d) are the samples from LHS, and

Figures 10(e) and 10(f) are the samples from the eFAST
method. Figures 10(a), 10(c), and 10(e) show that the
samples vary from the entire range, while Figures 10(b),
10(d), and 10(f) indicate all the samples with the x4 varying
from 0.2 to 0.3 (set as an example to illustrate the correlation
coefficient of x4 to other parameters). Comparing
Figures 10(a), 10(c), and 10(e), we find that the samples do
not fill the entire ranges of the parameters from BIM-BDP
system in Figure 10(a), while from LHS and eFASTmethod,
the samples are set as the desired distribution (e.g., uniform
and normal) over the entire range in Figures 10(b) and 10(c).

'e samples with the x4 varying from 0.2 to 0.3 are
extracted from the entire range. Figure 9 shows that rele-
vance between x4 and x9 is very intense, which can be also
demonstrated by Figure 10. From the BIM-DMSCC system,
the sample range of x4 is very similar to x9; to be specific,
with the x4 varying from 0.2 to 0.3, the x9 almost varied from
0.18 to 0.41 in Figure 10(b). For LHS, the sample range of x4
is also very similar to x9, and with the x4 varying from 0.2 to
0.3, the x9 almost varies from 0.16 to 0.41 in Figure 10(d).
However, as to the eFASTmethod, with the x4 varying from
0.2 to 0.3, the x9 almost varies from 0.01 to 0.81 in
Figure 10(f ). 'is is because the sampling procedure
implemented in eFAST defines a sinusoidal function of a
particular frequency for each input parameter [65], i.e., the
search curve in equation (8), that assigns a value to x based
on the sample number 1 through the total number of
samples per search curve, Nt. 'e choice of the sinusoidal
function depends on the distribution of parameter values
desired (e.g., uniform, normal). Hence, the correlation co-
efficients of the input samples by the eFASTmethod are quite
different from the correlation coefficients of the inputs from
BIM-BDP data.

In general, the computational execution time of the
model is the major concern when performing the eFAST
method [65]. However, the sampling procedure of the
eFASTmethod can be further investigated for the influence
on SA results. Hence, more SA methods need to be adopted
for comparisons, such as Morris elementary effects [66, 67]
and Sobol’s indices [68, 69]. In addition, only 10 input
parameters and two output parameters have been regarded
as significant parameters and investigated in this study;
however, the control system of the superlarge diameter
shield machine is very complicated and has more than 900
groups of control parameters. 'is is because it is difficult to
use the metamodel to fit the relevance of so many param-
eters. More effort to expand the input-output index system
would further improve the application scope of GSA results.
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Figure 9:'e PCCs of samples from BIM-BDP data, LHS, and eFASTmethod. Colors of the grid cells in the lower-left corner represent the
PCCs, and numbers in the upper right represent their specific values: (a) PCCs of samples from BIM-DMSCC system; (b) PCCs of samples
from LHS; (c) PCCs of samples from eFAST method.
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Figure 10: Parallel coordinates plot of samples from BIM-BDP data, LHS, and eFASTmethod: (a) samples from BIM-BDP; (b) samples
from BIM-BDP with x4 varying from 0.2 to 0.3; (c) samples from LHS; (d) samples from LHS with x4 varying from 0.2 to 0.3; (e) samples
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instance, x9 in (b) and (d), the correlation coefficient is high.
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7. Conclusion

It is important to control and adjust the shield parameters for
excavation stability, especially in the SRHT project, which
needs to cross 1365meters of soft-hard composite strata in the
under-river section. In this paper, BIM technology has been
utilized to manage the essential project data of SRHTproject
in digital format throughout shield excavation, and then the
GSA framework has been adopted to investigate the corre-
lation between parameters from the BIM-BDP, which can
help the administrators optimize their management scheme
of shield parameters during the tunnel excavation.

SA can help the administrator identify the importance of the
parameters, which can reduce the epistemic uncertainty of
project safety during tunnel excavating. In addition, SA helps
the administrator determine what type of additional informa-
tion of parameters should be gathered to enhance project safety
and reliability. For the output s1, the x2, x4, x6, x7, x8, x9 are
influential parameters according to the MSIs, while x2, x4, and
x9 are influential parameters according to the TSIs. 'e most
important parameter is x4 reaching anMSI of up to 0.292 and a
TSI of up to 0.331.'e next important parameter, x9, reaches an
MSI value of up to 0.258 and a TSI value of up to 0.313. 'e
third important parameter, x2, reaches an MSI value of up to
0.195 and a TSI value of up to 0.235. Besides, the MSIs and TSIs
of other input parameters are much lower than the above three
parameters. For the output s2, the x1, x2, x4, x6, x8, x9, x10 are
influential parameters according to theMSIs, whereas x6, x8, x9,
x10 are influential parameters according to the TSIs. 'e most
important parameter is x10 reaching anMSI of up to 0.353 and
a TSI of up to 0.388. 'e next important parameter, x9, reaches
an MSI value of up to 0.299 and a TSI value of up to 0.380.
Besides, the MSIs and TSIs of other input parameters are much
lower than those of the above two parameters.

'e GSA from the BIM-BDP can determine the quanti-
tative correlation between shield parameters. 'e decision
maker can then evaluate the parameter adjustment strategy
during shield advancing.'ese findings are of general value and
can be extrapolated to other similar projects under high un-
certainty. Some subsequent research can be investigated in the
future. Only ten input parameters were considered in this study.
However, it is necessary to study more shield machine control
parameters to promote the establishment of more effective
models and achieve specific goals more effectively. More
complex and effective hybrid models can be studied to more
accurately predict the stability of the excavation and optimize
the construction plan. In addition, with the accumulation of
more data, the modeling accuracy will be greatly improved.
Future work can focus on how to reduce system uncertainty by
the GSA technology and how to enlarge the application scope.
'is is expected to reduce system uncertainty and expand its
application range through GSA technology.

Nomenclature

Ω: 'e sample space
F: 'e σ-algebra collection of all measurable events

belonging to Ω

P: A probability measure indicating the likelihood of
occurrence of each event

Ζ: A set of uncorrelated random variables that
represent the uncertainty in the system

μi: 'e gPCE coefficient
E: Expectation
Ψi: Wiener–Hermite polynomial chaos
N: Positive integer
Ρ: 'e probability distribution density
Ε: Weights
P: Polynomial order
‖·‖: Euclidean distance
σ2μ: Variance
xi: 'e input parameters
λi: 'e characteristic frequency of the input

parameters
T: Independent variable for all input parameters
υi: A random phase between [0, 2π]
Q: 4 or 6
Λmax: 'e maximum value of the sequence λi 

si: Integer
Uj, Vj: Fourier coefficients
Λp: Fourier frequency spectrum curve
Wi: 'e variance of the model caused by the

parameters’ input changes
W: 'e total variance of the model
Ri: 'e first-order sensitivity index
STi: 'e total sensitivity of the input item
R2: Coefficient of determination
P: 'e total number of explanatory variables in the

model
N: 'e number of validation sample size
yi: 'e observed value
y∗i: 'e value predicted by the surrogate model
ȳ: 'e average value of the observed value
R: 'e set of real numbers
UA/
SA:

Uncertainty and sensitivity analysis

TBM: Tunnel boring machine
BIM: Building Information Modeling
SRHT: Sanyang Road Highway-Railway Tunnel
GSA: Global sensitivity analysis
MSI: Main sensitivity index
TSI: Total sensitivity index
gPCE: Generalized polynomial chaos expansion
eFAST: Extended Fourier amplitude sensitivity test
PDF: Probability distribution functions
CDF: Cumulative distribution functions
PCC: Pearson correlation coefficient
LHS: Latin hypercube sampling.

Data Availability

'e data generated by the superlarge tunnel boring machine
used to support the findings of this study have not been made
available because of the nondisclosure agreement the research
team signed with the property owner and the contractor.

18 Advances in Civil Engineering



Conflicts of Interest

'e authors declare that they have no conflicts of interest.

Acknowledgments

'e study was supported by the National Natural Science
Foundation of China (no. 71732001) and the Fundamental
Research Funds for the Central Universities of China (Grant
no. 2018KFYYXJJ005). Moreover, financial sponsorship and
also the on-site coordination work in this landmark project
from Wuhan Metro Group Co., Ltd. and Shanghai Tunnel
Engineering Co., Ltd. are sincerely acknowledged.

References

[1] B. Liu, R. Wang, G. Zhao et al., “Prediction of rock mass
parameters in the TBM tunnel based on BP neural network
integrated simulated annealing algorithm,” Tunnelling and
Underground Space Technology, vol. 95, 2020.

[2] Q. Pan and D. Dias, “Probabilistic evaluation of tunnel face
stability in spatially random soils using sparse polynomial
chaos expansion with global sensitivity analysis,” Acta Geo-
technica, vol. 12, no. 6, pp. 1415–1429, 2017.

[3] N. Berthoz, D. Branque, H. Wong, and D. Subrin, “TBM soft
ground interaction: experimental study on a 1 g reduced-scale
EPBS model,” Tunnelling and Underground Space Technology,
vol. 72, pp. 189–209, 2018.

[4] Y. Liu, E. J. Chen, S.-T. Quek et al., “Effect of spatial variation
of strength and modulus on the lateral compression response
of cement-admixed clay slab,” Géotechnique, vol. 65, no. 10,
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