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Deformation prediction is significant to the safety of foundation pits. Against with low accuracy and limited applicability of a
single model in forecasting, a PSO-GM-BP model was established, which used the PSO optimization algorithm to optimize and
improve the GM (1, 1) model and the BP network model, respectively. Combining a small amount of measured data during the
excavation of a bottomless foundation pit in a Changsha subway station, the calculations based on the PSO-GMmodel, the PSO-
BP network model, and the PSO-GM-BP model compared. (e results show that both the GM (1, 1) and BP neural network
models can predict accurate results. (e prediction optimized by the particle swarm algorithm is more accurate and has more
substantial applicability. Due to its reliable accuracy and wide application range, the PSO-GM-BP model can effectively guide the
construction of foundation pits, and it also has certain reference significance for other engineering applications.

1. Introduction

In-depth foundation pit engineering is a general term for a
series of work carried out to ensure deep foundation pit
construction safety and the surrounding environment not
harmed. Safety construction and monitoring and early
warning are also included [1]. Since the foundation pit’s
design cannot be entirely consistent with the actual situa-
tion, the construction conditions are complex and
changeable.(e environment of the foundation pit is also for
various reasons. During the standard construction of the
foundation pit, some uncontrollable conditions will also
occur. When the deformation is severe, significant accidents
such as the foundation pit’s overall instability and the
collapse of surrounding buildings may occur [2–4]. (e
purpose of foundation pit deformation monitoring is to
ensure the smooth construction of foundation pit engi-
neering so that the foundation pit deformation is within a
safe and controllable range. Existing deformation evaluation
indicators compare the amount of change and control value
instead of using a more reasonable model to predict the

foundation pit’s deformation status to grasp the foundation
pit’s further development trend. So far, we have many
mature deformation analysis methods. (e more common
ones are the regression method, time series analysis model,
gray system analysis model, Kalman filter model, artificial
neural network model, spectrum analysis method, etc.
[5–10]. (e application of machine learning methods in
different engineering fields is becoming more and more
extensive [11].

(e deformation process of the foundation pit is an
uncertain system with many factors and complicated con-
struction conditions. (erefore, it could be regarded as a
gray information system [12]. (e GM (1, 1) model can
extract the chaotic data series. Trends, generate new data
columns and use them for predictive analysis [13]. Foun-
dation pit deformation is a complex and nonlinear problem.
(e self-learning and self-adaptive ability of neural networks
could be brought into full play. It has its unique advantages
in the analysis of foundation pit deformation. BP network is
a multilayer feedforward network used in deep foundation
pit deformation prediction due to its error backpropagation
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characteristics [14, 15]. Because of the deformation’s com-
plexity and the limitations of various forecasting models, it is
a trend to forecast deformation accurately by using practical
information of multiple models [16]. Due to some con-
straints of the prediction model itself, optimization algo-
rithms or evolutionary algorithms are applied to engineering
constructions [17–19].

(e GM (1, 1) model and BP neural network were used
for in-depth foundation pit prediction research because of
their unique advantages. However, in actual application, it
can be found that each model also has its shortcomings. (is
article will introduce a PSO algorithm to improve the two
models and compare the prediction accuracy of the im-
proved model and the original model.

2. PSO-GM (1, 1) Model

(e establishment of the GM (1, 1) model firstly needs to
accumulate the actual sequence once and generate the
seriesx(1) � (x(1)(1), x(1)(2), . . . , x(1)(n)), and use the
generated string for analysis and prediction. (e newly
developed sequence of numbers increases regularly, and
then an equation is established for prediction based on the
increased regularity.

(e time response of the GM (1, 1) model is as follows:
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It could be seen that the error of the GM (1, 1) model is
firstly due to the selection of initial values, and the other is
the estimation of gray parameters a and b.
u � a b 

T
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(e estimated costs of a and b depend on the con-
struction method of the formula’s background valuez(1)(k).

(erefore, the GM (1, 1) model’s prediction error mainly
comes from the limited selection of the initial value and the
background value construction formula’s error. To reduce
the error and improve the model’s accuracy, the initial
conditions separately and construct the background value
was proposed to replace. Reselect the parameters used in the
formula to optimize the GM (1, 1) model.

x1(n) could x(1)(n)be selected as GM (1,
1)x(1)(n)x(0)(1)’s initial condition so that the established
model contains the best possible future predictions.

(en the time response sequence of GM (1, 1) is as
follows:
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(e simulated value is as follows:
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(k) k � 1, 2, . . . , n. (3)

When using the GM model for modeling, the con-
struction formula of the background value is as follows:

z
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(k) + 0.5x
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(k − 1), (4)

If the cumulative sequence slope is slow and the growth
trend is not apparent, it is acceptable to use the trapezoidal
area to replace the curve’s shadow area on the interval. At
this time, there is little difference between the two. Still, if the
cumulative sequence slope is relatively high, if it is steep and
the growth rate is speedy, the trapezoidal area formed is
quite different from the interval curve’s shadow area.
(erefore, the background value construction formula is
unreasonable at this time and contains specific errors, as
shown in Figure 1.

(e background valuez(1)(k) is the critical area from the
curve in the interval [k− 1, k] to the geometric sense’s
abscissa axis. (e proper form of the background value that
can satisfy unbiasedness is as follows:

z
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According to the integral median theorem, this is also
equivalent to the linear combination of x(1)(k − 1), x(1)(k)

and the parameter λ; that is, there is λ∈[0,1] makes the
following:

z
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(e value of the parameter λ will have a direct impact on
the model prediction accuracy. At this time, we have a model
parameter optimization problem, combined with the
characteristics of the particle swarm algorithm that is good at
global optimization, so that complicated formula derivation
was avoided, and the thinking is clear and easy to
implement.

(e following is the process of the PSO algorithm to find
the optimal λ:

Step 1: Initialize the population. Randomly generate a
sequence on the interval [0, 1]:λ � (λ1, λ2, . . . , λn), each
of λ represents the possible weight of the randomly
generated background value.
Step 2: Calculate fitness. (e fitness function should
choose the mean square error function SSE, replace all
the generated λi to calculate the background value,
construct a new background value formula, and use it
in the GM (1, 1) model for prediction and the predicted
value. (e average value of the absolute value of the
relative error of the true value is used as the fitness value
of the corresponding individual.
Step 3: Compare the current fitness value of the particle
with the optimal historical value. If it is better than the
optimal historical value, replace its current position
with the best position of the particle; compare the
current fitness value of the particle with the optimal
group value, if it is excellent. If it is at the optimal value
of the group, its current position will replace the best
position of the group.
Step 4: Update the particles according to the following
formula:
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In the formula, c1 and c2 called learning factors or
acceleration factors; rand() is a random number be-
tween (0, 1); vk

id and xk
id are the velocity of the particle i

in the dth dimension in the kth iteration, respectively,
And position pk

id is the position of the extreme indi-
vidual value of the particle i in the dth dimension; pk

gd is
the position of the extreme global value of the group in
the dth dimension.
Step 5: If the fitness value is not sufficiently good or the
preset maximum number of iterations was not ob-
tained, return to step (2).

(rough the above steps, the optimal λi was found
through iteration, and then the optimal background value
construction formula is calculated, and then the next step is
predicted, as shown in Figure 2.

3. Determination of PSO-BP Network

(e combination of BP network and PSO algorithm uses the
global search and local search capabilities of both giving full
play to their respective advantages, preventing the network
from overfitting and falling into local extremums, and at the
same time obtaining a faster convergence speed. Randomly
initialize the position of the particles in the PSO algorithm.
(e position of each particle corresponds to a set of weights
and thresholds in the BP network. (e PSO algorithm was
used to iteratively train the network until the optimal
particle position is output, the optimal weight, and the
threshold. Finally, use this optimized network for prediction.
When simulating actual data, to minimize the neural net-
work’s average relative error, its fitness function is as follows:
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(e specific steps of the PSO-BP algorithm were de-
scribed as follows (see Figure 3):

(1) Initialization. Set the relevant parameters of the PSO-
BP network. Determine network structure, including
the number of layers of the system and the number of
neurons in each layer. Determine the particle group
related parameters, including the initial inertia
weight w, the learning factors c1 and c2, the maxi-
mum number of iterations T, and the number of
swarm N. When determining the number of pop-
ulations, the dimension D of the particles to be
optimized should be considered the total number of
weight thresholds. (e total number of weight
thresholds that the PSO algorithm needs to optimize
is the following:

D � (l + 1)
∗
n +(n + 1)

∗
m, (9)

l is the number of input neurons; n is the number of
hidden layer neurons;m is the number of neurons in
the output layer. Finally, the particle’s velocity and
position were randomly initialized.

(2) Calculating the fitness value of each particle
according to the fitness function selected by the
problem. (e fitness function is as follows:
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2
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(3) Compare the current fitness value and the optimal
historical value of the particle. If it is better than the
optimal historical value, replace its current position
with the particle’s best position; compare its current
fitness value with the optimal amount of the group.
For the group’s optimal cost, replace its current
situation with the best part of the group.

(4) Iterative evolution of the velocity and position of the
particle according to the speed and position update
formula.
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(5) If the excellent fitness value or the preset maximum
iteration number was not reached, then return to
step (2). If the condition was met, the global optimal
particle position of the output is the optimal BP
network weight and threshold.

(6) After the weight threshold is output, the neural
network training continued until the result is output.

4. PSO-GM-BP Model Combination Forecast

(e foundation pit’s deformation process is usually a
nonstationary process, which usually presents trend and
randomness characteristics. (erefore, the deformation
monitoring data could be decomposed into trend items and
random items. It is an effective method to use a suitable
prediction model to predict each decomposition item ac-
curately (see Figure 4).

(e gray forecast model is good at extracting the trend
item information contained in the deformation information.
It has its unique advantages for forecasting trend items by
accumulating and generating new data columns to enhance
the trend characteristics. Foundation pit deformation is a
complex and nonlinear problem, and the self-learning and
self-adaptive capabilities of the BP neural network could be
used well. (e randomness of deformation could be
extracted with high precision. (e combined prediction of
GM (1, 1) and BP network had been widely used in foun-
dation pit monitoring, but the two models participating in
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combined forecasts were connected with their shortcomings.
(ey also bring about some errors that could have been
avoided. (is paper adopts the optimized PSO-BP network
and PSO-GM (1, 1) model combination prediction under the
premise of small samples, comprehensively considering the
advantages of high precision and less information and an-
alyzing the foundation’s deformation data pits. Make ac-
curate predictions to guide the safe construction of
foundation pits.

(e modeling steps of combined forecasting are as
follows (see Figure 5):

(1) Use the PSO-GM (1, 1) model to fit and predict the
original data, extract the trend items contained
therein, and obtain the predicted value and the
corresponding residual sequence:

x
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e(k) � x
(0)

(k) − x
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(k) � e(1), e(2), . . . , e(n){ }. (13)

(2) Use the residual sequence to train the PSO-BP
network and obtain the residual after the second
correction:

e(k) � e(1), e(2), . . . , e(n){ }. (14)

(3) Finally, add the predicted value of the PSO-GM (1, 1)
model and the corrected residual to get the final
predicted value:
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(k) + e(k). (15)
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Figure 1: Error generating mechanism of background value.
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Figure 2: Flow chart of particle swarm optimization GM (1, 1) model.
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5. Engineering Application Example

5.1. Project Overview. Yingwanzhen Station is the tenth
station of the first phase of Changsha Metro Line 4 (Purui
Avenue∼Guihua Avenue), and it also is the interchange
station of Line 2 and Line 4. (e mileage of the significant
platform center of Yingwanzhen Station is DK27 + 192.000,
and the platform width is about 14m. (e station is located
in the Greenland Group’s development zone on the north
side of Fenglin 1 road and Lushan Road and passes through
Yingwan Road, which was arranged in a north-south di-
rection. Yingwanzhen Station is an island platform station
with four underground floors (partial three feet). (e total
length of outsourced stations is 272.7m, and the standard
section width is 23.3m. (e main body of Yingwanzhen
Station was constructed by the open-cut method. (e
foundation pit’s depth is 28.14m during construction, and
the depth of the support structure is up to 36.58m. (e
station’s enclosure structure to the south of the 13th axis
adopts a 1000mm underground continuous wall with a
standard section width of 6m; the north area adopts the
grading excavation + drilling pile support method, with a
pile diameter of 1200mm and a pile spacing of 1350mm. A
row of 34 vertical columns was set along the foundation pit’s
centerline, which reduces the span and improves the sup-
port’s bending performance. Two rows of uplift piles were
set along the foundation pit’s two sides of the centerline. (e
mounds have a diameter of 1500m and a total of 66 stacks.
(e depth can reach 50m. (e shield shaft at the north end
of the station uses two concrete supports, and the beam at
the south end uses five substantial supports; the standard
section uses seven supports for the −25 axis and four
supports for the 26 axes to the 34 axes. (e first and third
supports of the station are concrete supports, and the sec-
ond, fourth, and fifth supports are steel supports. Both ends
of the station are shield starting wells, with four securities
starting one after another. (e project is large, and the
construction period is tight. It is a control site on the whole
line.

5.2. Data Selection. Priority should be given to the analysis
of the high-risk supporting force and inclinometer data. (e
subsequent deformation trend could be effectively used to
ensure the safety of the foundation pit. (e actual mea-
surement data at 15m (after this referred to as B16) of the

support force monitoring point ZL2-7 in the regular
monitoring period and the wall inclinometer monitoring
point B16 during the alarm period were selected for analysis
and verification. (e monitoring data of ZL2-7 and B16 are
as follows, as shown in Tables 1 and 2.

As shown in Table 2, the B16 data is more significant
than 30mm from the 11th-period information, which be-
longs to the data exceeding the alarm value in the defor-
mation monitoring work and belongs to the orange warning
category. How to carry out the next construction while
ensuring that the monitoring data does not continue to
increase is a big problem. It is a more significant challenge
for the safety of the entire foundation pit.(erefore, accurate
prediction of the data at this point becomes particularly
important.

5.3. Support Force Prediction and Analysis

5.3.1. PSO-GM (1, 1) Model Prediction. (eGM (1, 1) model
and the optimized PSO-GM (1, 1) model were used to model
and analyze the measured data. (e data used is the 15-
period data of ZL2-7 monitoring points. Two models are
used to fit and analyze the first 12-period data to predict the
13th to 15th periods’ deformation and finally evaluate the
two models’ accuracy.

(e calculation results based on GM (1, 1) model and the
PSO-GM (1, 1) model are shown in Table 3, and the accuracy
evaluation results are shown in Table 4. (e prediction
results are based on the original grey model and based on the
PSO-GM (1, 1) model shown in Table 5.

(e posterior difference ratios based on the original gray
model and based on the PSO-GM (1, 1) model are 0.1424 and
0.1269. (e small error probability of the two models is both
1. (e original gray model’s accuracy evaluation results and
the PSO-GM (1, 1) model meet the prediction model’s
excellent standards. Still, the variance based on the PSO-GM
(1, 1) model is smaller, indicating that its prediction accuracy
is better. It can be seen from Table 5 that for the prediction
results, the relative errors of the GM (1, 1) model are 2.67%,
8.31%, and 8.59%, respectively, while the relative errors of
the PSO-GM (1, 1) model are 1.69 %, 5.73%, 5.06%. (e
prediction accuracy based on the PSO-GM (1, 1) model is
higher, and the model and prediction results are more stable
(see Figure 6). (e relative errors and posterior difference
ratios were significantly reduced, indicating that the

Original
observation

sequence

Use PSO-GM (1, 1) to
predict and extract

trend items

Use PSO-BP network to correct
the residual sequence and

extract random items

Residual
sequence

Second residual
sequence

Predictive
value

Final results

Figure 5: PSO-GM (1, 1) and PSO-BP network combination forecasting.
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accuracy and stability of the model have been greatly im-
proved. (e results show that the PSO algorithm is effective
and stable for the optimization of the GM (1, 1) model.

5.3.2. PSO-BP Model Prediction. (e BP network and the
PSO-BP network were used to predict and analyze the
monitoring data. (e data used is the 15th phase of the ZL2-
7 monitoring point. (e monitoring data of degrees 1–12
were used as training samples, and the data of the latter three
stages are test samples.

To avoid numerical problems and improve network
convergence, normalize the sample data before training. (e
input neuron was set to 5, and the output neuron was 1. (e
period 1–5 was used as the input, and the data of period six
was used as the output. After normalization, the result is
output. (e number of hidden layer neurons tested to find
that the prediction effect is the best when the number of
nodes is 6.

(e following are the training effect diagrams of the BP
network and the PSO-BP system (see Figures 7 and 8):

(e target error is achieved in the BP network training
diagram when the network training reaches 142 times. In the

PSO-BP network training diagram, the network converges
quickly because of the particle swarm algorithm’s optimal
initial weights and thresholds. (e training goal was reached
at the 68th training. It shows that the convergence of the BP
network optimized by PSO was strengthened.

When using the two systems for prediction, the training
effect is very close (see Figures 9 and 10). Still, in terms of
generalization ability, as shown in Figures 11 and 12, the
PSO-BP system has significantly improved compared to the
BP network. (e comparison of the overall data is as follows
(see Tables 6 and 7, and Figure 13). As shown in Tables 6 and
7, the relative errors of the BP network are 5.21%, 3.07%, and
4.47%, respectively, while the relative errors of the PSO- BP
network are 1.95 %, 2.00%, and 2.01%. (e relative errors
were significantly reduced, indicating that the accuracy and
stability of the model have been greatly improved. (e re-
sults show that the PSO algorithm is effective and stable for
the optimization of the BP network.

5.3.3. PSO-GM-BP Model Combination Forecast. It could be
seen from Table 6 that the monitoring value of ZL2-7 has an
apparent increasing trend, and there is also large volatility.
(erefore, the ZL2-7 monitoring value can be decomposed
into trend items and random items to establish a combined
forecasting model in the integrated forecasting. (e data
used is the 15-period data of the ZL2-7 monitoring point.
(e PSO-GM (1, 1) model is used to fit and analyze the first
12 periods’ data, and the trend item was predicted for the
13–15 periods. (e PSO-BP network is used for residual
error correction random item prediction (see Figures 14 and
15).

As shown in Tables 8 and 9, the relative errors of the
PSO-GM (1, 1) model were 1.69%, 5.73%, and 5.06%, and the
relative errors of the PSO-BP network were 1.95%, 2.00%,
and 2.01%, respectively, while the relative errors of the PSO-
BP network were 1.45%,0.60%, and 1.94%. (e average
relative errors of the three models were 4.16%,1.98%, and
1.33%. (e accuracy of the three models is sorted from high
to low as follows: PSO-GM-BPmodel, PSO-BP network, and
PSO-GM (1, 1) model. With the optimization of the PSO
algorithm, the accuracy, efficiency, and stability of the GM
(1, 1) model and BP network have been improved. (e PSO-
GM-BP model has the best prediction effect and can provide
effective and efficient data support for foundation pit
construction.

5.4. Inclination Data Prediction and Analysis

5.4.1. PSO-GM (1, 1) Model Prediction. (e original GM (1,
1) model and the optimized PSO-GM (1, 1) model were used
to model and analyze the measured data.(e data used is the
15-period data of the B16 monitoring point. (e calculation
results were shown in Table 10, and the accuracy evaluation
results shown in Table 11.

(rough the calculation results in Table 11, it could be
found that the posterior difference ratios based on the
original gray model and the PSO-GM (1, 1) model are 0.1508
and 0.1072, respectively, and the small error probability of

Table 1: ZL2-7 monitoring value.

Period Monitoring value (kN)
1 1091.74
2 1227.01
3 1343.88
4 1578.08
5 1757.89
6 1822.97
7 1828.44
8 1908.81
9 2061.54
10 2025.6
11 2151.51
12 2221.34
13 2350.88
14 2342.03
15 2455.03

Table 2: Cumulative value of B16 monitoring points.

Period Cumulative value (mm)
1 21.66
2 23.30
3 23.90
4 23.25
5 24.50
6 25.31
7 27.95
8 29.04
9 28.23
10 29.44
11 30.38
12 30.81
13 31.23
14 31.92
15 32.44
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the two models is both 1. (e original gray model’s accuracy
evaluation results and the PSO-GM (1, 1) model meet the
prediction model’s excellent standards. Still, the variance
based on the PSO-GM (1, 1) model is smaller, indicating that
its prediction accuracy is better. It can be seen from Table 5
that for the prediction results, the relative errors of the GM
(1, 1) model were 3.55%, 3.37%, and 3.62%, respectively,
while the relative errors of the PSO-GM (1, 1) model were
2.18 %, 1.98%, and 2.30%. (e prediction accuracy based on
the PSO-GM (1, 1) model is higher, and the model and
prediction results are more stable (see Figure 16). (e rel-
ative errors and posterior difference ratios were significantly
reduced, indicating that the accuracy and stability of the
model have been greatly improved.(e results show that the
PSO algorithm is effective and stable for the optimization of
the GM (1, 1) model.

5.4.2. PSO-BP Model Prediction. (e BP network and the
PSO-BP network were used to predict and analyze the
monitoring data. (e data used is the 15th phase of the B16
monitoring point.(emonitoring data of degrees 1–12 were
used as training samples, and the data of the latter three
stages are test samples.

To avoid numerical problems and improve network
convergence, normalize the sample data before training.
After normalization, the result is output. (e number of

hidden layer neurons was tested repeatedly to find that when
the number of nodes is 7, the prediction effect is the best.

(e following are the training effect diagrams of the BP
network and the PSO-BP system:

In the BP network training diagram, the target error was
achieved when the network training reaches 200 times; in the
PSO-BP network training diagram, the network perfor-
mance was degraded because of the particle swarm algo-
rithm’s optimal initial weight and threshold. (e training
goal was reached on the 128th training session. It shows that
the convergence of the BP network optimized by PSO was
strengthened (see Figures 17 and 18).

When using two networks for prediction, the training
data is not much different (see Figures 19 and 20). Still, in
terms of generalization ability, as shown in Figures 21 and
22, the PSO-BP system significantly improves the BP net-
work. (e comparison of the overall data is as follows (see
Tables 12 and 13 and Figure 23). As shown in Tables 12 and
13, the relative errors of the BP network were 9.54%, 6.21%,
and 3.93%, respectively, while the relative errors of the PSO-
BP network were 0.11%, 0.96%, and 0.82%. (e relative
errors were significantly reduced, indicating that the accu-
racy and stability of the model have been greatly improved.
(e results show that the PSO algorithm is effective and
stable for the optimization of the BP network.

5.4.3. PSO-GM-BP Model Combination Forecast. It could be
seen that the B16 monitoring value also has an obvious
increasing trend and considerable volatility. (erefore, in
combined forecasting, the B16 monitoring value can be
decomposed into trend items and random items to establish
a combined forecasting model. (e data used is the 15-
period data of the B16 monitoring point. (e PSO-GM (1, 1)
model is used to fit and analyze the first 12-period data, the
trend item was predicted for the 13–15 period, and the PSO-
BP network is used for residual. Correct the random thing
forecast (see Figures 24 and 25).

As shown in Tables 14 and 15, the relative errors of the
PSO-GM (1, 1) model were 2.18%, 1.98%, and 2.30%, and the
relative errors of the PSO-BP network were 0.11%, 0.96%,
and 0.82%, respectively, while the relative errors of the PSO-
BP network were 0.20%, 0.10%, and 0.20%. (e average

Table 4: Accuracy assessment table.

Model C P
GM (1, 1) 0.1424 1
PSO-GM (1, 1) 0.1269 1

Table 3: Actual value and model fitting value of ZL2-7.

Period Actual value
GM (1, 1) PSO-GM (1, 1)

Fitting value Relative error (%) Fitting value Relative error (%)
1 1091.74 1091.74 0 1022.855 −6.30
2 1227.01 1396.89 −13.85 1397.199 −13.82
3 1343.88 1468.10 −9.24 1469.021 −9.31
4 1578.08 1542.94 −2.23 1544.535 −2.12
5 1757.89 1621.59 −7.75 1623.931 −7.62
6 1822.97 1704.25 −6.51 1707.408 −6.33
7 1828.44 1791.12 −2.04 1795.176 −1.81
8 1908.81 1882.42 −1.38 1887.456 −1.11
9 2061.54 1978.38 −4.03 1984.479 −3.73
10 2025.6 2079.23 −2.65 2086.49 −3.00
11 2151.51 2185.22 −1.57 2193.745 −1.96
12 2221.34 2296.61 −3.39 2306.513 −3.83

Table 5: Comparison of actual and predicted values of ZL2-7.

Period 13 14 15
Actual value 2350.88 2342.03 2455.03

GM (1, 1) Predicted value 2413.68 2536.72 2666.03
Relative error (%) −2.67 −8.31 −8.59

PSO-GM (1, 1) Predicted value 2390.73 2476.32 2579.31
Relative error (%) −1.69 −5.73 −5.06
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relative errors of the three models were 2.15%, 0.63%, and
0.17%.(e accuracy of the three models are sorted from high
to low as follows: PSO-GM-BP model, PSO-BP network,
PSO-GM (1, 1) model. With the optimization of the PSO
algorithm, the accuracy, efficiency, and stability of the GM
(1, 1) model and BP network have been improved. (e PSO-
GM-BP model has the best prediction effect and can provide
effective and efficient data support for foundation pit
construction.

6. Results and Discussion

(1) (e average relative errors of the three models for
support force prediction were 4.16%, 1.98%, and
1.33%, and the average relative errors of the three
models for support force prediction were 2.15%,
0.63%, and 0.17%.
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Figure 6: Comparison of actual and predicted values.
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Figure 7: BP network training diagram.
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(2) Analyze the error source of the GM (1, 1) model,
apply the global optimization feature of the PSO
algorithm to optimize the parameters of the

background value construction formula of the GM
(1, 1) model, and propose an optimized PSO-GM (1,
1) Model. Combining axial force and inclinometer
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Figure 11: BP network test sample.
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Figure 12: PSO-BP network test sample.
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Figure 10: PSO-BP network training sample.
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Table 6: ZL2-7 actual value and model fitting value.

Period Actual value
BP network PSO-BP network

Fitting value Relative error (%) Fitting value Relative error (%)
1 1091.74 1094.02 −0.21 1096.139 −0.40
2 1227.01 1221.387 0.46 1226.61 0.03
3 1343.88 1351.156 −0.54 1345.639 −0.13
4 1578.08 1567.732 0.65 1576.096 0.12
5 1757.89 1770.027 −0.69 1760.421 −0.14
6 1822.97 1810.918 0.66 1821.395 0.08
7 1828.44 1833.811 −0.29 1828.591 −0.01
8 1908.81 1926.841 −0.94 1908.798 0
9 2061.54 2014.674 2.27 2061.533 0
10 2025.6 2070.983 −2.24 2025.602 0
11 2151.51 2130.434 0.98 2151.51 0
12 2221.34 2225.197 −0.17 2221.34 0

Table 7: ZL2-7 actual value and predicted value comparison results table.

Period 13 14 15
Actual value 2350.88 2342.03 2455.03

BP network Predicted value 2228.461 2270.236 2564.764
Relative error (%) 5.21 3.07 −4.47

PSO-BP network Predicted value 2305.01 2388.83 2405.64
Relative error (%) 1.95 −2.00 2.01
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Figure 13: Comparison of actual and predicted values.
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Table 8: Comparison of three models.

Period Actual value
Predicted value

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 2350.88 2390.73 2305.01 2316.65
14 2342.03 2476.32 2388.83 2356.05
15 2455.03 2579.31 2405.64 2407.19

Table 9: Comparison of relative error of three models.

Period
Relative error (%)

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 −1.69 1.95 1.45
14 −5.73 −2 −0.60
15 −5.06 2.01 1.94
Average relative error 4.16 1.98 1.33

Table 10: Actual and simulated results of B16.

Period Actual value
GM (1, 1) PSO-GM (1, 1)

Fitting value Relative error (%) Fitting value Relative error (%)
1 21.66 21.6600 0.00 21.1069 2.55
2 23.30 22.8930 1.75 22.6821 2.65
3 23.90 23.6234 1.16 23.4549 1.86
4 23.25 24.3771 4.85 24.2521 4.32
5 24.50 25.1548 2.67 25.0804 2.37
6 25.31 25.9574 2.56 25.9350 2.47
7 27.95 26.7856 4.17 26.8186 4.05
8 29.04 27.6402 4.82 27.7323 4.50
9 28.23 28.5220 1.03 28.6772 1.58
10 29.44 29.4320 0.03 29.6543 0.73
11 30.38 30.3711 0.03 30.6646 0.94
12 30.81 31.3400 1.72 31.7094 2.92
13 31.23 32.3399 3.55 31.9099 2.18
14 31.92 32.9946 3.37 32.5515 1.98
15 32.44 33.6142 3.62 33.1876 2.3

Table 11: Accuracy assessment table.

Model C P
GM (1, 1) 0.1508 1
PSO-GM (1, 1) 0.1072 1
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Figure 19: BP network training sample.
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Figure 22: PSO-BP network test sample.

Table 12: B16 actual value and model fitting value results.

Period Actual value
BP network PSO-BP network

Fitting value Relative error (%) Fitting value Relative error (%)
1 21.66 21.6528 −0.03 21.6594 0.00
2 23.30 23.2941 −0.02 23.2997 0.00
3 23.90 23.8606 −0.16 23.8993 0.00
4 23.25 23.2772 0.12 23.2501 0.00
5 24.50 24.4945 −0.02 24.4982 −0.01
6 25.31 25.3054 −0.02 25.3095 0.00
7 27.95 27.9457 −0.01 27.9483 −0.01
8 29.04 29.0528 0.04 29.0400 0.00
9 28.23 28.2108 −0.07 28.2220 −0.03
10 29.44 29.4375 −0.01 29.4683 0.10
11 30.38 30.3777 −0.01 30.3346 −0.15
12 30.81 30.8088 −0.00 30.8323 0.07

Table 13: B16 actual value and predicted value comparison results.

Period 13 14 15
Actual value 31.23 31.92 32.44

BP network Predicted value 34.2091 33.9029 33.7154
Relative error (%) 9.54 6.21 3.93

PSO-BP network Predicted value 31.1965 31.6132 32.1754
Relative error (%) −0.11 −0.96 −0.82
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Figure 23: Comparison of the actual and predicted value.
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data, using GM (1, 1) model and PSO-GM (1, 1)
model, respectively, for prediction, PSO-GM (1, 1)
model has improved the prediction accuracy of the
two kinds of data, and Model stability is also better.

(3) (e PSO optimization algorithm is selected to op-
timize the weight and threshold, and the PSO-BP
network model was proposed. Combining the axial
support force and inclinometer data obtained on site,
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Figure 24: Residual training samples.
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Figure 25: Residual test sample.

Table 14: Comparison of three models.

Period Actual value
Predicted value

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 31.23 31.9099 31.1965 31.2924
14 31.92 32.5515 31.6132 31.8863
15 32.44 33.1876 32.1754 32.5039

Table 15: Comparison of relative error of three models.

Period
Relative error (%)

PSO-GM (1, 1) PSO-BP PSO-GM-BP
13 −2.18 0.11 −0.20
14 −1.98 0.96 0.10
15 −2.30 0.82 −0.20
Average relative error 2.15 0.63 0.17
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respectively, use the BP network and PSO-BP net-
work to predict. PSO-BP network has significantly
improved the prediction accuracy of the two kinds of
data, and the convergence speed is faster.

7. Conclusion

(1) Combine the advantages and disadvantages of the
PSO-GM (1, 1) model and the PSO-BP network to
construct a PSO-GM-BP model. (rough the
comparative analysis of the prediction results of
several models in this article, it could be concluded
that the GM (1, 1) model and the BP neural network
model can both predict more accurate results. With
higher accuracy and more substantial applicability,
the PSO-GM-BP model has the best predictive effect
and can effectively guide the construction of foun-
dation pit projects.

(2) (e PSO algorithm is used to optimize the GM (1, 1)
model and the BP network, which strengthens the
accuracy and applicability of the model, but at the
same time, there are some shortcomings and areas
for improvement. While continuing to study, we will
also consider amore in-depth comparison with other
methods to find a more reasonable solution suitable
for engineering intelligent applications.
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