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With the increasing exploitation and utilization of underground spaces, the excavation of deep foundation pits adjacent to existing
metro tunnels is becoming increasingly common. *ese excavations have the potential to cause safety problems for the operation
of the nearby metro. *erefore, to prevent metro tunnel accidents from occurring during the construction process and to ensure
the safety of lives and property, it is necessary to establish a risk-based early warning system. During the excavation process, the
main methods for preventing accidents in excavations adjacent to existing metro tunnels are manual analyses based on on-site
monitoring data. However, these methods make it difficult to enact effective control measures in a timely manner owing to the lag
of information processing. However, the trial application of artificial neural networks (ANNs) and building information
modelling (BIM) for engineering projects provides a new method for solving such problems. *is study uses a backpropagation
neural network to predict the real-time deformation of the tunnel based onmonitoring data from the adjacent construction site. A
safety risk assessment model is then established based on the relevant specifications. *rough the establishment of an intelligent
warning system, the safety risk to the metro tunnel during the construction process can be displayed in a three-dimensional (3D)
form using the BIM. *e operation results of the ANN–BIM system show that it can effectively present the safety risk to existing
metro tunnels in a 3D manner, which can provide managers with rapid and convenient visual information to inform
their decision-making.

1. Introduction

With the building of numerous metro tunnels in cities and
continuous urban construction and development, available
land is becoming increasingly scarce, resulting in more
frequent excavation of deep foundation pits adjacent to
existing metro tunnels [1, 2]. During excavation, the
retaining wall will be displaced into the pit, while the soil
outside the wall will be deformed, and the surrounding
surface will settle accordingly. As the excavation depth in-
creases, the settlement and deformation will increase with
the deformation of the retaining structure and will gradually
be transferred outward. When these effects encounter a
nearby existing metro tunnel, the balanced stress state
around the tunnel will be changed, causing deformation and
displacement of the metro tunnel. However, the safety

requirements governing the displacement and deformation
of tunnels for metro operation are very strict, which com-
plicates the construction process. During the construction
process, not only the safety of the construction itself but also
the safe operation of the adjacent metro should be carefully
considered. *erefore, during the construction process,
effective safety risk warnings are particularly important to
ensure the safety of the construction project and the adjacent
metro. However, it is difficult to visualize safety risk
warnings for the whole construction period using conven-
tional methods. Moreover, it is difficult to determine the
source of the risk in a timely manner before an accident
occurs. Artificial neural networks (ANNs), with their strong
nonlinear prediction and reasoning abilities, are highly
suitable for complex prediction, assessment, and identifi-
cation tasks. ANNs have been widely used to perform
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deformation predictions, risk assessments [3, 4], and cost
estimations [5] during construction. In addition, Lai et al. [6]
noted that ANNs have been applied as a new tool for an-
alyzing difficult geotechnical problems and have successfully
solved a series of engineering problems, including the de-
formation caused by tunnel excavation in various types of
rock masses. Unlike the classical regression method, ANNs
do not require complex constitutive models to solve these
geotechnical problems, thus improving the convenience of
obtaining their solutions. Zheng et al. [7] used a back-
propagation (BP) neural network to integrate complex
environmental factors and proposed a visualisation method
to evaluate the deformation risk level of underground
spaces. *e deformation risk level was combined with the
red, green, blue color space model to achieve real-time
visualisation displays. Cao et al. [8] used an ANN to identify
the most important parameters in the horizontal defor-
mation of a deep foundation pit, thus providing a general
paradigm for analyzing the sensitivity of influencing pa-
rameters. Wang and Huang [9] established a monitoring
model for deep foundation pit deformation using an ANN,
and the proposed model could realize nonlinear prediction
of the deformation caused by excavation. Xu et al. [10]
proposed an intelligent self-feedback and safety early
warning system for underground caverns based on a BP
neural network and the finite element method; the inversion
of the mechanical parameters and the subsequent prediction
were achieved using the BP neural network.

To date, building information modeling (BIM) technology
has been applied for planning, architectural design, structural
design, construction, operation management, etc. Moreover,
BIM has gradually been applied in construction safety man-
agement. Sacks [11] demonstrated the feasibility and impor-
tance of the three-dimensional (3D) visualization and analysis
of BIM in realizing construction safety management. Ruppel
and Schatz [12] used BIM to transform a 3D model into a
virtual reality model and employed various hardware to
simulate the main senses of the human body in the event of a
fire; finally, a “game” simulating a fire evacuation was designed.
Cheng et al. [13] built a BIM-based intelligent fire protection
and disaster reduction system and created an intelligent, two-
way fire prevention system framework that could display real-
time dynamic fire information in 3D. Zou et al. [14] showed
that BIM can not only be used as a systematic riskmanagement
tool to support project development but also be used as a core
data generator and platform for further risk analysis by other
BIM-based tools. Li et al. [15] proposed a Chinese metro
construction safety risk identification system and early warning
system based on the BIM platform.

*is study adopts the BIM platform for visualization,
employs an intelligent monitoring system and manual
monitoring as data sources, and utilizes the strong predic-
tion capability of a BP neural network to predict safety risks.
In addition, Navisworks software provided by Autodesk is
used as the development platform to integrate these aspects
into the BIM. By connecting to a mobile phone terminal
through the network, the proposed system can notify
managers in a timely manner when safety risks occur, to
achieve the goal of providing real-time visualized warnings.

2. Research Approach

*is study aims to establish an intelligent early warning
system for construction projects involving excavation ad-
jacent to existing metro tunnels. *e early warning system is
composed of four subsystems: data monitoring, deformation
prediction, safety risk assessment, and safety risk early
warning. Here, the data monitoring subsystem (DMS) is
composed of wireless sensors and manual monitoring. *e
deformation prediction subsystem (DPS) realizes defor-
mation prediction through a BP neural network. *e safety
risk assessment subsystem (SRAS) refers to the provisions of
national or local codes related to the existing tunnels to
assess safety risks. *e safety risk early warning subsystem
(SREWS) uses the BIM information model as a platform and
integrates the other three systems on this platform through
application programming interface (API) development to
realize visual early warnings. *e implementation process is
shown in Figure 1.

3. Methodologies

3.1. Analysis of Factors Influencing the Safety Risk. To de-
termine the main factors that cause the deformation of
metro tunnels, it is necessary to first determine the factors
causing changes in the stress field of the soil. Evidently, the
size, depth, shape, and methods of support of the foundation
pits should be considered [6].*e change in the stress field of
the soil is also related to properties of the soil and
groundwater [8]. In addition, when an existing tunnel is
deformed under external forces, the deformation is related
to the stiffness, strength, and embedded depth of the tunnel
[16], and thus the characteristics of the tunnels themselves
are also important factors. *rough analysis of these three
aspects, the factors influencing the safety risk of an exca-
vation adjacent to an existing metro tunnel can be obtained,
as summarized in Table 1. Of these factors, some change
gradually during the construction process and are defined as
variable factors, while others remain constant during the
construction process and are defined as constant factors. For
example, although the properties of the soil change gradually
with varying soil depth, the soil characteristics of each layer
remain almost unchanged.*us, its impact on the safety risk
can be reflected by the soil depth, and thus this factor is
defined as a constant factor.

3.2. Real-Time Prediction Module for Existing Tunnel
Deformation. To more rapidly control the safety risk to
adjacent existing tunnels, it is necessary to effectively predict
the real-time deformation of adjacent tunnels during the
construction process (for example, using the excavation
condition today to predict the deformation of existing
tunnels tomorrow). *e analysis in Section 3.1 demonstrates
that the factors causing tunnel deformation are very com-
plex, and thus, it is difficult to use conventional prediction
methods. BP neural networks have strong adaptability for
complex nonlinear predictions, which allows the real-time
prediction of tunnel deformation using this method. During
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application of the deformation prediction model, the vari-
able factors are used as inputs. For the constant factors, real-
timemonitoring data of the tunnel deformation were used as
training samples to integrate the internal law governing the
influence of the constant factors into the model and reduce
human intervention. *e trained prediction model can then
be used to predict the deformation of the tunnels. *e real-
time monitoring data can be continuously inputted into the
real-time updated prediction model. *e operating mech-
anism of the real-time prediction model for tunnel defor-
mation is shown in Figure 2.

3.3. Safety Risk Assessment Module. After the real-time de-
formation of the tunnel is predicted by the model in Section
3.2, the limit values for tunnel deformation referring to the
Chinese specification technical code for protection of existing
structures of urban rail transit are used as the warning
thresholds for the deformation of the existing tunnel. When
the tunnel deformation reaches 30%, 50%, and 70% of the

warning threshold, the corresponding risk level and cor-
responding warning level are obtained. *e classification of
the risk levels and corresponding warning levels are sum-
marized in Table 2.

3.4. Establishment of the Safety Risk Early Warning System.
*e safety risk early warning system employs BIM as the
platform, wireless sensors and manual monitoring as the
data collection methods, the prediction model for defor-
mation of the adjacent existing tunnel caused by deep
foundation pit construction as the basis for data processing,
and the allowable deformation limits given in tunnel-related
specifications as the early warning thresholds. *e data
monitoring module, real-time tunnel deformation predic-
tion module, safety risk assessment module, and safety risk
early warning module are integrated into Navisworks with
the help of API development to establish the early warning
system. *is system is connected to the BIM collaborative
management platform to realize data sharing. *e system
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has the ability to provide dynamic, visual, and real-time risk
warnings. *is allows for optimization of the safety risk
warning method for excavation adjacent to existing metro
tunnels, which can ensure a smooth construction process
and safe operation of the existing metro tunnels. *e overall
operation framework of the built early warning system is
shown in Figure 3, and a specific demonstration of the

early warning system will be given through a case study
(Section 4).

4. System Operation and Case Study

4.1. Engineering Background. A square construction project
located on the east side of the Zhengzhou high-speed railway

Table 1: Summary of factors affecting safety risks.

Primary factors Secondary factors Factor categories

Characteristics of the foundation pit

Real-time depth of excavation point (a)

Variable factors

Real-time width of excavation point (b)
Real-time length of excavation point (h)

Horizontal distance from an excavation point to a tunnel section (d)
Vertical distance between an excavation point and tunnel (v)

Excavation time (t)

Support methods for the excavation

Parameters related to the diaphragm wall
Parameters related to soil stabilization

Parameters related to anchorages
Parameters related to the supporting structure

Construction scheme
Construction technology
Construction procedure
Loads outside the pit

Soil properties

Soil density (c) Constant factorsInternal friction angle (ψ)
Cohesive force (c)

Static lateral pressure coefficient (k)
Compressive modulus (E)

Characteristics of existing metro tunnels
Structural strength of the tunnel

Structural cracking degree of the tunnel
Embedded depth of the tunnel

Historical monitoring 
data of variable factors

Training 
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Figure 2: Operation mechanism of the real-time prediction model for metro tunnel deformation.

Table 2: Security risk classification and alarm signal selection.

Risk level Total deformation/threshold Risk alarm signal Signal color
Low level (I) δ < 0.3 Risk ignored Blue
Moderate level (II) 0.3≤ δ < 0.5 Risk concerned Green
High level (III) 0.5≤ δ < 0.7 Risk controlled Yellow
Extreme level (IV) 0.7≤ δ Risk prevented Red
δ � deformation amount/threshold.
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station and the south side of the long-distance bus station is
considered in this case study. *e shield section of existing
metro line 1 passes through the middle of the square plot.
*e main functions of the project are the construction of an
underground garage and underground shopping mall,
which are arranged symmetrically on either side of themetro
shield. *e depth of each foundation pit is approximately
20m, the length is approximately 177m, and the width is
approximately 110m.*e vertical distance between the edge
of the foundation pit and the tunnel is approximately 33m,
as shown in Figure 4.

4.1.1. Engineering Geology. According to the geological
drilling results and in situ test results, the project scope
comprises an exploration depth of 55m. With the exception
of a shallow part composed of miscellaneous fill, the ex-
cavation is mainly in quaternary Holocene and upper
Pleistocene series of alluvial and diluvial formations. *e
exposed soil layers are shown in Figure 5.

4.1.2. Hydrogeological Survey. *e aquifer in the exploration
depth is divided into two layers: phreatic water in the upper
layer and confined water in the lower layer. Phreatic water
occurs mainly in silt and silty clay above 16.0–18.0m (ab-
solute elevation: 70.0m), which are weakly permeable layers.
Confined water mainly occurs in fine sand below
16.0–18.0m. With high water content, strongly permeable
layers, and a micro-confined aquifer, this layer has a certain

hydraulic connection with the upper phreatic water. *e
phreatic layer is separated from the confined water layer by
the fifth silty clay layer.

*e groundwater level at the site was measured using an
exploration borehole. *e static water level measured in the
exploration borehole was between 10.3 and 17.0m below the
surface, corresponding to absolute elevations of between
74.81 and 76.79m. *e static water level of the lower
confined water was approximately 12.0–19.0m below the
ground surface, corresponding to an absolute elevation of
approximately 74.0m.

4.2. Establishment of the Project BIM and Layout of the
Monitoring System

4.2.1. Establishment of the Project BIM. *e project BIM not
only has a realistic appearance but also contains additional
component characteristic information. *e completed
BIM is used in various stages of the construction process,
replacing traditional communication based on two-di-
mensional drawings, which allows information to be
transferred among project members more accurately,
intuitively, and efficiently. In the construction process,
the corresponding BIM structure model and electro-
mechanical equipment model are established and applied
for the layout of the precipitation well, collision in-
spection, and engineering quantity statistics, as shown in
Figure 6.
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4.2.2. Layout of the Monitoring System. To obtain real-time
monitoring data of the tunnel deformation, which is used to
train the prediction model and allow the prediction model to
be updated in real time, reasonable monitoring of the tunnel
deformation is required. During excavation, the adjacent
existing tunnel deformation (convergent deformation and
uplift deformation) was synchronously monitored. *e
monitoring locations are shown in Figure 7. *ere were 31
automatic monitoring sections in each tunnel; the distance
between the monitoring sections at the three cross-passages

was 5m, while the rest of the monitoring sections were
separated by 10m.

4.3. Establishment of the Prediction Model Based on the BP
Neural Network

4.3.1. Establishment of the Prediction Model. *e real-time
monitoring data for the variable factors (manual monitoring
or automatic monitoring) are used as the input values. *e
real-time deformation (uplift deformation and convergent
deformation) and deformation rate (uplift deformation rate
and convergent deformation rate) of the tunnels are used as
the output values. *e corresponding monitoring data for
deformation of the tunnels are used as the training set for the
training model to establish a BP neural network prediction
model that can predict the deformation of the tunnels in real
time. *e training set consisted of 3224 data sets obtained
from the monitoring of 31 tunnel sections for 104 d. *e
design of the BP neural network includes defining the
number of nodes in the input layer, number of neurons in
the output layer, number of hidden layers, and number of
neurons in each hidden layer. According to Kolmogorov’s
theory, a three-layer neural network such as the one used in
this study can guarantee a complex mapping from any di-
mension, n, to output dimension,m. *erefore, a three-layer
neural network model is ideal for conditions in which the
training set is not large and the dimensions of the input and
output layers are also not large. *e network topology of the
prediction model is shown in Figure 8. *e number of nodes
in the input layer is equal to the number of input variables,
the number of neurons in the output layer is equal to the
number of output variables, and the number of neurons in
the hidden layer is preliminarily determined by①; the final
number of neurons in the hidden layer is determined by trial
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calculations. During the trial calculations, the model in-
cluding 13 hidden layer neurons produced the smallest mean
squared error and the highest precision; therefore, the optimal
number of hidden layer neurons was determined to be 13.

M �
�����
n + m

√
+ a, (1)

wherem and n are the number of output layer and input layer
neurons, respectively, and a is a constant between 0 and 10.

4.3.2. Validation of the Prediction Results. To test the ef-
fectiveness of the developed model, the prediction model
was used to predict the uplift deformation of tunnel section
DM12 during the excavation process from 9March 2016 to 1
June 2016, and the prediction results were compared with
the actual monitoring results to evaluate the prediction
accuracy. *e results showed that the maximum absolute
error of the prediction was 1.22mm, and the maximum
relative error was 8.1% (under normal circumstances, an
error within 2mm is considered acceptable), which satisfies
the accuracy requirement. *e comparison between the
prediction data and the monitoring data and the

corresponding error curve are shown in Figures 9 and 10,
respectively.

4.4. Development and Operation of the ANN–BIM-Based
Early Warning System

4.4.1. Navisworks Development Platform.

(1) Selection of development platform
In this study, Navisworks is selected as the platform,
and development is carried out to realize each
functional module of the safety risk early warning
system. In addition, .NET API is used to develop the
safety risk early warning system on the Navisworks
platform.

(2) Implementation of Navisworks API
*is study uses the Navisworks API to implement
custom family lookup, access object properties,
modify model parameters, and perform other op-
erations. *rough the permutation and combination
of these basic operations, the basic functions of the
safety risk early warning system can be realized. *e
specific methods are described below.

(1) Custom family lookup: in the safety risk early
warning system, the monitoring point for each early
warning indicator will bind a corresponding family
component. After opening the model document, the
primary task is to distinguish the component cor-
responding to the monitoring point from the
common components. Navisworks API provides
three methods to find objects: the search class built
into the .NET API and traversal and LINQ database
lookup in .NET itself. To identify the early warning
indicator components more rapidly, the search class
and LINQ methods are selected in this study.

(2) Access to object properties: during use of the safety
risk early warning system, several monitoring points
are often required for each early warning indicator.
To enable the system to identify the monitoring
points and type of early warning monitoring indi-
cator corresponding to each monitoring component,
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the monitoring component in the Revit model
should be described in detail according to the
component type properties, as shown in Figure 11. In
this case, the monitored tunnel is divided into nine
sections, each of which will present the maximum
deformation value in the section.

(3) Modification of model parameters: the most im-
portant feature of the BIM technology is to provide a
visual means of browsing. To make full use of the
advantages of visualization in the safety risk early
warning system, it is necessary to modify the model
parameters; the corresponding spatial position,
color, and other appearance parameters of the model
are modified according to the monitoring data for
the variable factors, which allows the risks to be
directly reflected in the BIM model.

4.4.2. Integration of the Safety Risk Prediction Model.
*e tunnel deformation prediction module based on the BP
neural network and the safety risk assessment module are
integrated into the BIM-based early warning system with the
help of computer language to improve the efficiency and
accuracy of the safety risk prediction. In the process of
computer realization, the tunnel deformation prediction
module is divided into two parts: prediction model training
and tunnel deformation prediction. *e first step is to
implement the prediction model based on the BP neural
network into a computer language, train the model, and
integrate the model into the BIM platform. *en, the
DataReader function is used to read the monitoring data in

the database and input them into the trained prediction
model to obtain the prediction results for the tunnel de-
formation. *e third step is to read the prediction results
into the safety risk assessment module, evaluate the safety
risk, and make a signal alarm to realize integration of the
safety risk prediction model.

4.4.3. Operation of the Early Warning System. *emenu for
the safety risk early warning system is embedded in the
“Windows” bar under the “View” menu in Navisworks. *e
safety risk early warning system menu consists of two parts:
the default function of the early warning system and the
browsing function of early warning signals, as shown in
Figure 12.

To cope with different engineering environments and
different national or local standards, the threshold values of
different indicators are preset in the early warning system to
ensure the safety risk assessment models run correctly, as
shown in Figure 13.

*e browsing function for the early warning signals is
the core function of the system. According to the description
in Section 4.3, the safety risk is divided into four levels,
corresponding to safety risk warning signals shown in red,
blue, yellow, and green from high to low risk. If a safety
manager wants to quickly check the specific safety risk signal
of a tunnel section, he or she can select the section, click the
“Early Warning System” menu, and input the latest data for
the variable factors based on a large amount of data entered
in the previous period (Figure 14). According to the early
warning signals, the safety manager can then take corre-
sponding risk countermeasures, as shown in Figure 15.

For example, on 29 April 2016, the safety risk early
warning system issued a red warning signal indicating
“extreme risk”. When one red section was selected, the uplift
deformation exceeded the threshold value (Figure 15).
According to the warning signal for the safety risk, corre-
sponding countermeasures should be taken promptly to
prevent a further increase in the risk.

5. Discussion

Predicting the deformation of adjacent existing metro
tunnels caused by the construction of deep foundation pits is
an important task. Although the conventional finite element
simulation method is usually carried out before excavation,
the environmental conditions of the excavation are often
different from the ideal conditions determined by the nu-
merical simulation method, which will introduce certain
errors, leading to serious safety problems, including
fatalities.

Compared to some risk assessment methods with in-
sufficient prediction accuracy [17] or timeliness [18], the
above case study demonstrates that the BP neural network
can effectively solve this problem. *is method uses the
variable factors affecting the deformation of existing metro
tunnels as input variables, and the existing deformation data
as the training signal, in order to integrate the internal law
for the effect of the constant factors (or those with small
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Figure 10: Prediction error in the uplift deformation of tunnel
section DM12.
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changes) on tunnel deformation into the model. In addition,
the BP neural network predictionmodel can also realize real-
time prediction, thus providing data support for the early
warning of safety risks.

In the building of the BP prediction model, the design of
the input and output neurons of the model is determined by
the number of input and output variables. *e numbers of
neurons in the input and output layers of this model are six
and four, respectively. For the number of hidden layers and
the number of neurons in each layer, because a three-layer
BP network structure can complete anym-to n-dimensional
complex mapping, one hidden layer is used in the model,
which can ensure effective operation and reduce the model

complexity and calculations. Based on an empirical method,
the approximate number of hidden layer neurons is initially
determined, and then the optimal number is determined
through trials. To balance the accuracy of each output value
and observe its advantages and disadvantages, the mean
squared error of each output value is used as a reference
standard in the trial calculation. By changing the number of
neurons in the hidden layer, the mean square error of the
output was at a minimum with 13 neurons in the hidden
layer. *erefore, as a whole, the network structure of the
model was optimized.

After establishing the network structure of the BP
prediction model, through development with the API, the

Figure 11: Revit component type parameter setting.

Entrance

Figure 12: Menu of the safety risk early warning system.
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Figure 14: Manual input interface for variable factors.

Figure 13: Interface for the preset threshold values.

Figure 15: Overview of risk indicators on 8 April.
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model is connected to the BIM-based early warning system.
*e model is trained using samples taken from actual
monitoring data, and then the trained model is used to
predict the deformation risk of the tunnels. Based on the
prediction results of the model, the prediction accuracy can
satisfy the construction requirements.

For common safety risk early warning systems [9, 10],
when a safety risk occurs, the system can only provide a risk
alarm, and it is difficult to visualize the safety risk. In the
case study, when the safety risk early warning system for
excavation adjacent to an existing metro tunnel is estab-
lished, BIM is used as the data platform, which provides
support for visualizing the safety risk. When a safety risk is
identified, the system can provide visual outputs including
the risk level, location, and other information, thus greatly
improving the efficiency of the risk control decision-
making.

6. Conclusion

*e excavation of a deep foundation pit will cause defor-
mation of any adjacent existing metro tunnels. When the
deformation exceeds a certain range, it will create serious
safety risks for the metro operation. To effectively reduce
this risk, a BP neural network prediction model is estab-
lished in this study, and the proposed model can predict the
deformation of the existing metro tunnel in advance.

To achieve effective real-time early warnings, this study
employs the visualization characteristics of BIM, takes BIM
as the data platform, and utilizes the .NET API interface and
corresponding information technology to carry out devel-
opment in Navisworks. Four submodules (DMS, DPS,
SRAS, and SREWS) are integrated into Navisworks, and an
intelligent early warning system for the construction safety
risk of deep excavations adjacent to existing metro tunnels is
established.

To validate the feasibility and effectiveness of the pro-
posed system, this system is applied to predict the safety risk
of the East Square excavation of the Zhengzhou high-speed
railway station adjacent to existing Metro 1 tunnel. *e
accuracy of short-term (more than 7 days) prediction of
safety risks can reach 98% and the accuracy of long-term
(more than 60 days) prediction can reach 92%. *e corre-
sponding early warning signals can be simultaneously and
accurately presented in the BIM model. *e results pre-
sented in this study demonstrate that this system can ac-
curately predict the safety risk.

Enacting the risk-based early warning system to reduce
the on-site accident rate will require further research to be
undertaken to simplify the information flow of the system
and optimize the system structure. Furthermore, we try to
use control-based applications to access the API and
develop an independent safety risk early warning system.
In addition, although the remote monitoring data
transmission module has been integrated into the system,
its application is not widespread in those excavations
adjacent to existing metro tunnels. It seems that the
stability and accuracy of this module need to be further
improved.
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