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'e representation of particles of complex shapes is one of the key challenges of numerical simulations based on the discrete
element method (DEM). A novel algorithm has been developed by the authors to accurately represent 2D arbitrary particles for
DEM modelling. In this paper, the algorithm is extended from 2D to 3D to model convex polyhedral particles based on
multisphere methods, which includes three steps: the placement of spheres at the corners, along the edges, and on the facets in
sequence. To give a good representation of a polyhedral particle, the spheres are placed tangent to the particle surface in each step.
All spheres placed in the three steps are clumped together into a clump in DEM. In addition, the mass properties of the clump are
determined based on the corresponding polyhedral particle to obtain accurate simulation results. Finally, an example is used to
validate the robust and automatic performance of the algorithm in generating a sphere clumpmodel for an assembly of polyhedral
particles. A current FORTRAN version of the algorithm is available by contacting the authors.

1. Introduction

Discrete element method (DEM), initially proposed by
CUNDALL and STRACK in 1979 [1], provides a powerful
tool to perform numerical simulations of discrete particle
systems. In most discrete element software, complex
particles are simplified as discs (in 2D) or spheres (in 3D)
for easy implementation of contact detection and time-
saving. However, it is not accurate to represent a particle
with only one disc or sphere, because one disc or sphere on
its own cannot capture all the characteristics of the
complex geometrical shape of most granular particles.
'erefore, DEM modelling of granular materials in which
the particles are represented by discs or spheres suffers
from limited capability in capturing essential aspects of
interparticle interactions and corresponding mechanical
behaviors [2, 3].

To obtain more realistic behavior of particles, some
particle shape approximations have been introduced into
DEM towards realistic particle shape modelling [4]. Basi-
cally, there are two different methods: new primitive
methods and multisphere methods. 'e new primitive
methods mainly lie in the direct implementation of non-
spherical primitives such as ellipsoids [5–7], polyhedra
[2, 8, 9], and spherocylinders [10, 11] in DEM. It is a
common drawback for new primitive methods that some
complicated algorithms need to be developed for contact
detection and determination of contact forces, leading to the
deterioration of computational efficiency in the simulations.
On the other hand, multisphere methods are based on that a
nonspherical particle is represented by a clump of rigid
spheres which may vary in size and even overlap each other
[12]. A fairly comprehensive review of some available
multisphere methods can be founded in scientific literatures
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[13–18]. Currently, multisphere methods have been applied
widely in DEM simulations and implemented into some
DEM-packages such as PFC3D [19] and YADE [20] because
contact detection and force calculation are still based on
some simple algorithms valid for spheres and are, therefore,
very efficient and robust.

Polyhedral particles are widely encountered in the field
of granular materials such as railway ballast [21, 22], con-
crete aggregate [23], and soil-rock mixture (S-RM) [24]. In
those numerical simulations, they are often simplified as
convex and irregular polyhedra whose surfaces consist of
several triangle facets. DEM offers a means of obtaining
micromechanical insight into the behaviors of granular
materials mentioned above. However, how to accurately
represent polyhedral particles with clumps of spheres is still
one of the key challenges for researchers in DEM simula-
tions. Although the available multisphere methods have
been proposed to represent such polyhedral particles with
clumps of spheres, they cannot give a good approximation of
the particle shape. In this work, a novel algorithm developed
by ZHANG et al. [25] is extended from 2D to 3D to ac-
curately represent convex and irregular polyhedral particles
based on multisphere methods for DEM simulations.

2. Representation of Convex
Polyhedral Particles

2.1.Algorithm. 'e algorithm developed by Zhang et al. [25]
in 2D is briefly introduced firstly in this section. Figure 1
shows schematic operations of the algorithm for the rep-
resentation of a star-like particle by a clump of discs. As
shown in Figure 1, the algorithm includes three steps:
placement of discs at the corners (Figure 1(a)), placement of
discs along the edges (Figure 1(b)), and placement of discs in
the domain (Figure 1(c)). All discs placed in the three steps
can be combined as a clump in DEM simulation. To obtain a
good representation of the particle, some discs are placed
tangent to the interior side of the particle boundary in the
first two steps, as shown in Figure 1(b). To be specific, some
identical discs are placed at each corner, whose centers are
located on the interior angle bisector of each corner in the
first step, as shown in Figure 1(a); some identical discs
tangent to each other are placed along the interior side of
each edge in the second step, as shown in Figure 1(b). In the
last step, a series of substeps are performed to place some
discs in the domain step by step based on a local Delaunay
tessellation, as shown in Figures 1(d)–1(f). In each substep, a
set of the centers of some placed discs are selected to create a
local Delaunay mesh based on Delaunay triangulation first.
'en, the segments are extracted from the local Delaunay
mesh. Afterward, two discs connected by each of the seg-
ments are called a front element, and some front elements
are selected to place new disks, as shown in Figures 1(d)–
1(f).

Similarly, the algorithm is extended from 2D to 3D for an
accurate representation of convex polyhedral particles by a
clump of spheres, as shown in Figure 2. In 3D, it requires
that the surface of an irregular polyhedral particle is rep-
resented by a triangle mesh where a vertex (denoted by Vi)

corresponds to a corner (denoted by Ci) surrounded by the
facets containing the vertex, as shown in Figure 2(a). 'e
algorithm in 3D also includes three steps: placement of
spheres at the corners (Figure 2(b)), placement of spheres
along the edges (Figure 2(c)), and placement of spheres on
the facets (Figure 2(i)). All spheres placed in the three steps
are clumped together into a clump in DEM simulations. For
the sake of clarity, a tetrahedral particle is used to dem-
onstrate each step of the algorithm, as shown in Figure 2.

In the first step, some spheres of the identical radius (rs
′)

are placed at each corner based on the condition that a
sphere placed at a corner needs to be tangent to any three of
the facets surrounding the corner, whose central position
(xs, ys, zs) can be determined by the following equations:

nx1 xs − xp1  + ny1 ys − yp2  + nz1 zs − zp3  � rs
′,

nx2 xs − xp2  + ny1 ys − yp2  + nz1 zs − zp3  � rs
′,

nx2 xs − xp2  + ny1 ys − yp2  + nz1 zs − zp3  � rs
′,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

in which (nxi, nyi, nzi) and (xpi, ypi, zpi) are, respectively, the
unit normal vector of a facet and the position of a point on
the facet, and subscripts 1, 2, and 3 denote any three of the
facets surrounding a corner. As shown in Figure 2(b), three
spheres are placed at the corners C1, C2, and C3 according to
the condition of placement of spheres at the corners.

In the second step, some spheres of identical radius rs
″

are placed one by one along each edge, as shown in
Figure 2(c).'is process is similar to that of the placement of
discs along the edges. Taking an edge V1V2, for example, the
process of placement of spheres along this edge is given as
follows: the first sphere (the blue one shown in Figure 2(c)) is
placed according to the condition of being tangent to the two
facets (V1V2V3 and V1V4V2) connected by the edge V1V2
and the sphere placed at the corner C1 in the first step (the
red one shown in Figure 2(c)) and then the second one is
placed next to the first placed one according to the similar
condition (the yellow one shown in Figure 2(c)).'e process
of placement of spheres along the edge V1V2 is completed
until the placed sphere overlaps with the sphere located at
the corner C2 in the first step, and it is replaced by a new one
(the green one shown in Figure 2(c)) which is tangent to the
two facets, the last-placed sphere, and the sphere placed at
the corner C2 in the first step. For the spheres placed along
the edge V1V2 (the blue and yellow ones in Figure 2(c)),
their central positions (xs, ys, zs) can be obtained according
to the following equations:

xs − xs1( 
2

+ ys − ys1( 
2

+ ys − ys1( 
2

� r″ + r″( 
2
,

nx1 xs − xp1  + ny1 ys − yp1  + nz1 zs − zp1  � r″,

nx2 xs − xp2  + ny2 ys − yp2  + nz2 zs − zp2  � r″,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(2)

where (nxi, nyi, nzi) and (xpi, ypi, zpi) are, respectively, the
unit normal vector of a facet and the position of a point on
the facet, and subscripts 1 and 2 denote the two facets
containing the same edge. Similarly, spheres are placed along
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other edges such as V2V3 and V1V3 by repeating the above
operations. As shown in Figure 2(c), twenty-four spheres
are, respectively, placed along each of the edges (V1V2,
V2V3, and V1V3) in this example.

As shown in Figures 2(d)–2(l), spheres of radius r″
′
s

between [rmin and rmax] are placed on each facet by a series
of substeps based on a local Delaunay tessellation in the
last step, where rmin and rmax are the minimum and
maximum radii of the spheres to be placed. If rmin is equal
to rmax, the radii of the placed sphere are identical. And
the smaller the value of rmin, the more spheres to be placed
on each facet, which gives a more accurate representation
of a polyhedral particle. 'is process is similar to that of
placement of discs in the domain. Taking a facet V1V2V3,
for example, the process of the placement of spheres on
the facet is given as follows: a Delaunay mesh is created
based on a set of points made up of the centers of the
spheres including the ones placed at the corners V1, V2,
and V3 in the first step and placed along the three edges of
the facet in the second step, as shown in Figure 2(d); the
segments are extracted from the Delaunay mesh, and
similarly, two spheres connected by each of them are
taken as a front element, as shown in Figure 2(d); some
rational front elements are selected based on a constraint
(it will be presented later), and they are used to place new
spheres on the facet according to the condition of that a
newly placed sphere is tangent to both spheres of the
corresponding front element and the facet V1V2V3, as

shown in Figure 2(e). If the central positions and radii of
two spheres of a front element are, respectively, repre-
sented by (xs1, ys1, zs1), (xs2, ys2, zs2), and (rs1, rs2), the
central position of a new sphere to be placed based on the
front element (xs, ys, zs) can be determined according to
the following equations:

xs − xs1( 
2

+ ys − ys1( 
2

+ ys − ys1( 
2

� r
‴

+ rs1 
2
,

xs − xs2( 
2

+ ys − ys2( 
2

+ zs − zs2( 
2

� r
‴

+ rs2 
2
,

nx1 xs − xp1  + ny1 ys − yp1  + nz1 zs − zp1  � r
‴

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where (nx1, ny1, nz1) and (xp1, yp1, zp1) are, respectively, a
unit normal vector of a facet and the position of a point on
the facet. A new sphere is placed on the facet if it does not
overlap with the existing spheres placed on the facet and
located inside the polyhedral particle. 'e first substep is
finished when all rational segments are used to attempt to
place new spheres on the facet, as shown in Figure 2(e).
'en, the centers of the newly placed spheres are also added
into the set of points, and the next substep will be performed
by repeating the operations, as shown in Figures 2(i)–2(k).
'e process of placement of spheres on the facet V1V2V3 is
completed until no new spheres can be placed on the facet in
the current substep, as shown in Figure 2(l).

Angle bisectors
of corners

C4

C1C2

C3

C5

C6

C7

C8C10

C11

(d) (e) (f)

(a) (b) (c)

 A front element

 A segment

Red discs placed newly

 A front element

 A segmentSegments

Figure 1: Schematic operations of the algorithm to represent a star-like particle: (a) placement of discs at corners; (b) placement of discs
along edges; (c) placement of discs in the domain; (d), (e), and (f) the first, thirteenth, and nineteenth substeps in the third steps.
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As shown in Figure 2(f ), some unexpected segments
extracted from a Delaunay mesh may exist. However, a new
sphere cannot be successfully placed on the facet based on a
front element corresponding to a long segment. 'erefore, a
constraint for a front element is suggested to save the cal-
culating time. A front element is called a rational one and
used to place a new sphere on the facet only if the length of
its corresponding segment satisfies the following relation:

Lij − ri − rj ≤ 2rmax, (4)

where ri and rj are the radii of two spheres of a front el-
ement, respectively, and Lij is the length of the segment
corresponding to the front element.

Another constraint proposed by Liu et al. [26] is con-
sidered in the third step to save the calculating time, which
focuses on ones which are selected from the existing spheres
for the generation of a Delaunay mesh in the next substep.
Similarly, a sequence number indicating the sequence of
substeps is assigned to spheres placed on the facet in each
substep. For example, the sequence number of all spheres
placed on a facet in the nth substep is marked as n, and the
spheres have the same sequence and are marked by the same
color if they are placed in the same substep, as shown in
Figures 2(h) and 2(i). Suppose that ln represents the se-
quence number of the spheres placed in the current substep;
then, the center of an existing sphere placed in previous
substeps would be regarded as amember of a set of points for
the next generation of a Delaunay mesh if the sequence
number of the sphere l satisfies as follows:

l≥ ln − h, (5)

where h called an advancing-front thickness in Ref. [26] is
an integer number greater than 0. If h is set to a larger
number, it will require more calculating time to complete
the processes of placements of spheres on a facet because all
the placed spheres are selected for the generation of a
Delaunay mesh in the next substep. On the other hand, if h

is set to 1, only the spheres placed in the current substep are
selected for the generation of a Delaunay mesh in the next
substep. In this case, the algorithm may be not convergent,
especially for complex polyhedral particles. 'erefore, it is
a good strategy that the spheres placed in the last several
substeps are only selected for generation of a Delaunay
mesh in the next substep, and the generated Delaunay mesh
is called a local Delaunay mesh, as shown in Figures 2(g)
and 2(h).

2.2. Parameters and Comparation. As presented in the last
section, the spheres are placed based on different conditions
in the three steps, and their central positions can be obtained
easily by solving the corresponding equations such as
equations (1)–(3) by the method presented in Ref. [27].
Determination of the radii of the spheres placed in each step

and the parameters of the algorithm are introduced as
follows.

In the first two steps, rs
′ and rs

″ denote the radius of a
sphere to be placed at a corner and along an edge, re-
spectively. In general, there is no relation between rs

′ and rs
″.

For simplicity, a relation of rs
′ � rs
″ is adopted here, which

means that the radii of all spheres placed at the corners and
along the edges are identical. In addition, a parameter Ns,
denoting the number of spheres placed along the shortest
edge, is proposed to determine rs

′ and rs
″ indirectly. For

example, for a polyhedral particle, the length of its shortest
edge (Lmin) are determined by comparing those of all its
edges. 'en, rs

′ and rs
″ are determined based on the relation

of rs
′ � rs
″ � Lmin/2Ns when Ns is given by users.

In the third step, r″
′
s denotes the radius of a sphere to be

placed on a facet, which ranges randomly and uniformly in
an interval of [rmin, rmax]. Two parameters (fr and
rmin/rmax) are proposed to determine the interval of
[rmin, rmax]. fr is defined as a ratio of rmin to rs

′ or rs
″, and

rmin/rmax is defined as a ratio of rmin to rmax. 'e relation
between the radii of the spheres placed in the three steps are
established by these two parameters, which is easy and
convenient in use. In addition, the advancing-front thick-
ness (h) is a key parameter for the efficiency and convergence
of the algorithm, and it is suggested based on our experience
that h is between 5 and 7.

As introduced previously, the algorithm only includes
four input parameters including Ns, fr, rmin/rmax, and h

for clump generation of a polyhedral particle. And it is
also very convenient for users to generate the clumps of
different numbers of spheres by adjusting Ns. As shown in
Figure 3, two clumps of different numbers of spheres for a
polyhedral particle are generated by the algorithm when
Ns is, respectively, 5 and 10. It can be clearly seen from
Figure 3 that the clumps generated by the algorithm can
give a good approximation to the particle shape. Table 1
lists all parameters of the algorithm for the polyhedral
particle.

In order to show the validity of the algorithm for the
representation of convex polyhedral particles, the com-
paration between the proposed algorithm and the algorithm
in PFC 5.0 is conducted. By contrast, it can be seen from
Figures 3 and 4 that the clump generated by the proposed
algorithm gives a better approximation to the particle shape.

2.3. Mass Properties of a Clump. A polyhedral particle is
represented by a clump consisting of multiple spheres as a
rigid body in the discrete element modelling. 'e shape
representation of the clump is only used for contact judg-
ment in DEM simulations, while its motion is dominated by
the equations of translational and rotational motions, which
are determined by its mass properties including the total
mass (m), center of mass (x), and inertia tensor (I3×3). To
obtain accurate simulation results, the mass properties of the
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clump should give a precise approximation to that of the
polyhedral particle. In this work, the mass properties of a
clump are determined based on the corresponding poly-
hedral particle rather than the spheres, while the spheres are
only used for shape representation. By separating the mass
properties and shape representation, the clump can give an
accurate representation of a convex polyhedral particle in
terms of particle shape and mass properties.

For a polyhedral particle with uniformmass distribution,
its basic mass properties including m, x, and I3×3 can be
determined easily by the method proposed in Refs. [28, 29]
and are regarded as those of the clump to represent the
polyhedral particle.

3. Examples

In the last section, an example is used to show the capability of
the algorithm to generate a clump of multispheres for a poly-
hedral particle, as shown in Figure 3. In this section, another
example is used to validate the robust and automatic perfor-
mance of the algorithm in generating the clumps for an assembly
of polyhedral particles. Figure 5 shows a flowchart of clump
generation for an assembly of polyhedral particles. In this ex-
ample, each convex polyhedral particle in the assembly is
constructed based on the convex hull of several points randomly
selected on the surface of a sphere, as shown in Figure 6(a). As
shown in Figure 6(b), the assembly includes 366 polyhedral

Local Delaunay meshes 

Unexpected segments 

V3

V4C4

C3

A new sphere placed
base on a front element 

Segments 

C1 V1

V2

C2

(g) (h) (i)

(d) (e) (f)

(a) (b) (c)

Figure 2: A flow chart of the algorithm for clump generation for a polyhedral particle:(a) the tetrahedral particle; (b) placement of spheres at
corners; (c) placement of spheres along edges; (d), (e), (f ), (g), (h), and (i) placement of spheres on a facet.
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Table 1: Parameters of the algorithm to represent a polyhedral particle by a clump of spheres.

Clumps Ns fr rmax/rmin h

Clump-1 15 0.5 1.5 6
Clump-2 10 0.5 1.5 6

(a) (b) (c)

Figure 4: Representation of a polyhedral particle by a clump of spheres by the algorithm in PFC5.0: (a) and (b) the polyhedral particle and
the clump; (c) the clump.

(a) (b) (c)

Figure 3: Representation of a polyhedral particle by a clump of spheres by the proposed algorithm: (a) the polyhedral particle; (b) Cluster-1;
(c) Cluster-2.

Input an assembly of convex polyhedral particles

Loop each polyhedral particle

Loop all corners and place the spheres at each corner
base on equation (1)

Loop all edges and place the spheres along each edge
base on equation (2)

Loop all facets and place the spheres on each facet
base on equation (3) to equation (5)

Export the model into AutoCAD

No

Yes

Figure 5: A flowchart of clump generation for an assembly of convex polyhedral particles by the proposed algorithm.
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particles constructed based on different spheres. Based on the
assembly of polyhedral particles, the clump for each polyhedral
particle is generated by the algorithm based on the parameters
listed in Table 1 for Clump-2. For DEM simulation later, an
interface is also implemented into the algorithm to facilitate
users to export the clumps into PFC3D [14]. Figure 6(c) shows
the clumps imported in PFC3D, and Figure 6(d) shows the
clumps after settlement under gravity in PFC3D.

4. Conclusions

(1) A novel algorithm was extended from 2D to 3D to
accurately represent convex polyhedral particles
based on the multisphere method for DEM mod-
elling in this work. In 3D, the algorithm includes
three steps, and all spheres placed in the three steps
are clumped together into a clump in DEM simu-
lations. Clumps can give a better approximation to
the particle shape because the spheres are placed
tangent to the particle surface in each step. On the
other hand, the mass properties of clumps are de-
termined based on the corresponding polyhedral
particles to obtain accurate simulation results.

(2) 'e algorithm includes four input parameters, where
the advancing-front thickness (h) is a key parameter
for the efficiency and convergence of the algorithm.
Based on our experience, it is suggested that h is
between 5 and 7 for complex polyhedral particles.

(3) A current FORTRAN version of the algorithm is
available upon request for academic use, and an
interface is provided to import the sphere clump
model into PFC3D. It is quite easy and convenient
for users to generate sphere clump models by the
algorithm for DEM modelling.
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