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Structure material properties are heterogeneous in nature and would be characterized with different statistics at different length
scales due to the spatially averaging effects. *is work develops a framework for the modal analysis of beam structures with
random field models at multiple scales. In this framework, the random field theory is adopted to model heterogeneous material
properties, and the cross-correlations between material properties are explicitly considered. *e modal parameters of a structure
are then evaluated using the finite element (FE)method with the simulated heterogeneousmaterial properties taken as input.With
the aid of Monte Carlo simulation, the modal parameters are analyzed in a probabilistic manner. In addition, to accommodate the
necessity of different mesh sizes in FE models, an approach of evaluating random field parameters and generating random field
material properties at different length scales is developed. *e performance of the proposed framework is demonstrated through
themodal analysis of a simply supported beam, where the formulation of themultiscale random field approach is validated and the
effects of heterogeneous material properties on modal parameters are analyzed. Parametric studies on the random field pa-
rameters, including the coefficient of variation and the scale of fluctuation, are also conducted to further investigate the relations
between the random field parameters at different scales.

1. Introduction

To evaluate the sustainability of structures (e.g., buildings
and bridges) is a long-lasting problem in civil engineering
community [1–3]. Structures are often subjected to dynamic
loads, such as winds, waves, earthquakes, traffic, and human
activities, which could gradually deteriorate the life-long
sustainability of a structure. *e force magnitudes or di-
rections of dynamic loads keep varying with time, leading
structures to exhibit complex mechanical behaviours. Modal
parameters, including modal frequencies, mode shapes,
modal masses, and modal damping ratios, are a set of in-
herent parameters that characterize the dynamic properties
of a structure [4]. Despite the changeable nature of dynamic
loads, modal parameters keep constant and are independent
of the types and ranges of the external dynamic loads [5].
Modal analysis aims at determining the modal parameters of
a structure and hence has become an essential task for a wide
range of applications, such as serviceability analysis [6],

vibration control [7, 8], load estimation [9], structural
damage identification [10, 11], and structural health mon-
itoring [12, 13].

*e theories and methods to determine the modal pa-
rameters of a structure are relatively well developed. For
structures with simple geometries, e.g., cantilever beam,
plate, or shell structures, the analytical solutions of their
modal parameters might be available [4]. In regard to
complex structures with arbitrary shapes and various con-
stituents, the finite element (FE) method is usually employed
to approximate the modal parameters in a discrete manner
[14–17]. Technically, the modal parameters of a structure are
determined completely by its material properties (e.g., mass,
stiffness, damping, etc.) [4]. In earlier years, studies on
modal analysis considered structures such as homogeneous
materials for simplicity (e.g., [14, 15]). However, the material
properties of a structure are spatially variable in nature
[18–24]. *e spatial variability could result from various
factors, such as fluctuations inmaterial constituents, fracture
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defects, and variable historic loading conditions. Recently,
modal analysis with the consideration of spatially varying
material parameters has been on the rise [25–28], partially
due to the development of probabilistic FE analysis strategies
and the increase in computational power.

Within the studies of probabilistic modal analysis, the
approaches of simulating a heterogeneous structure can be
basically classified into two categories: the random variable
approach and the random field approach. In the random
variable approach, the material properties of a structure are
modelled as a set of random variables that are independent
with each other (i.e., without any correlation).*is approach
is most suitable for modelling structures that consist of
simple components, and each component is discretized into
a single element during the FE analysis. For example, Ding
et al. [29] introduced a 1% uncertainty with Gaussian dis-
tributions into the elemental stiffness parameters of a planar
truss structure to account for the modelling errors. In the
random field approach, the material property is modelled by
a set of random variables with an autocorrelation. *at is,
two elements in the vicinity of each other tend to have
similar material properties due to a high correlation with
each other. Such correlation decreases with the increasing
separation distance between those two elements. *e second
category, i.e., the random field approach, is more appro-
priate for modelling continuous structures. In this category,
for example, Su et al. [26] considered Young’s modulus and
density of a simply supported beam as a random field with a
normal distribution and developed a reliability-based
method for structural damage identification based on the
response surface method and Monte Carlo simulation
(MCS).

In reference to the random field approach, a random
field is generally characterized by two components: a dis-
tribution model that describes the probability density dis-
tribution of all the possible values of a material property at
different locations and a correlation function that describes
the correlation between the material properties of two lo-
cations. *ere are classical solutions for the distribution
model (e.g., normal distribution and lognormal distribution
[30]) and correlation function (e.g., single exponential
function [31]), the parameters of which are usually deter-
mined through a site investigation process [32–34]. Cur-
rently, the random field theory has been widely used in
geotechnical engineering to address the random heteroge-
neity of natural and artificial soils [35–39]. It has led to many
inspiring studies in a wide range of applications. For ex-
ample, the random field theory has been used to perform
probabilistic stability analyses of slopes and footings [40, 41],
to perform probabilistic evaluation of seabed liquefaction
[42, 43], to depict the effectiveness of soil compaction [44],
and to characterize the levels of soil contamination [45]. *e
application of the random field theory in structural engi-
neering for characterizing structure material properties is
comparably less, whereas it is on the rise recently.

When applying the random field approach to simulate a
heterogeneous structure, it is important to recognize that the
statistics of a material property are determined upon ele-
ments with a specific size, i.e., the size of testing samples

during site investigation. *ere could be considerable dis-
crepancies between the statistics of elements with different
sizes. For example, the variance of a material property of a
large element tends to be smaller than that of a smaller
element due to the spatially averaging effects. *us, the
random field parameters characterized at a certain scale
cannot be directly applied to generate a random field of
material property at another scale. However, in FE analysis,
the mesh size does not need to be the same as the size of the
testing samples. *ere are cases in which large element sizes
are adopted to reduce computational expenses. Modelling a
heterogeneous material at different scales, which is essential
in the FE-based structural modal analysis, remains a topic
less explored. Key knowledge gaps exist in generating
random field material properties at different scales and in
understanding the scale effects on modal analysis.

*is work aims to develop a framework for the prob-
abilistic characterization of structural dynamics with ran-
dom field models at multiple scales. In particular, an
approach of evaluating random field parameters and gen-
erating random field material properties at different scales is
developed to accommodate the necessity of different mesh
sizes in the FE-based structural modal analysis. *e re-
mainder of this paper is organized as follows. Section 2
details the formulation of the random field models at
multiple scales. Section 3 describes the framework of the
probabilistic FE-based structural modal analysis. Section 4
reports the results of an illustrative example using a simply
supported beam, through which the formulation of the
multiscale random field model is validated and the scale
effects on the modal parameters of a structure are investi-
gated. Based upon the results presented, concluding remarks
of this work are summarized in Section 5.

2. Multiscale Random Field Models

2.1. Simulation of a Random Field. It is known that material
properties of a structure vary in space with an autocorre-
lation structure. *e random field theory is an effective
method for simulating such spatially varying and auto-
correlated material properties [46–50]. For simplicity, this
work focuses on stationary random fields, where (1) the
distribution, as well as the corresponding statistics, of each
variable remains constant everywhere and (2) the correlation
between the variables at different locations depends only on
the separation distance [51, 52]. A nonstationary field can be
transformed into a stationary field by removing a lower-
order polynomial trend [51] or by applying a space defor-
mation [53].

Mathematically, a random field can be quantified as a set
of random variables at various locations, and these variables
are compliant to a joint multivariate distribution [20, 39].
Considering a stationary Gaussian field with a number of n

locations of interest, the random field can be quantified as a
set of random variables Z, with Z � [Z1, Z2, . . . , Zn] rep-
resenting the material property value at locations
i � 1, 2, . . . , n. *e correlation between variables Zi and Zj

can be described by a correlation function ρ(Δx), where the
underlying variable Δx represents the separation distance
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between locations i and j. For example, a single exponential
function [31], as adopted in this work, is written as

ρ(Δx) � exp −
2Δx
θ

 , (1)

where θ is the scale of fluctuation. *e Cholesky decom-
position approach developed by [54] is an effective method
to generate realizations of random but autocorrelated var-
iables. By using Cholesky decomposition, the correlated
random variables can be related to a set of independent
random variables through

Z � LU, (2)

where U is a vector of independent random variables with
the same statistics of variable Z and L is the Cholesky de-
composition of covariance matrix C satisfying C � LLT. *e
covariance matrix C consists of components ρij (calculated
from equation (1)), which characterize the covariance of the
material property values at location xi and xj.

Insomuch that there are multiple material properties and
these material properties exhibit a cross-correlation between
each other, these multiple material properties can be sim-
ulated following a similar Cholesky decomposition process
[49, 55, 56].

X[n×m]
� Z[n×m] L′[m×m]

 
T

, (3)

where X[n×m] represents the matrix of m cross-correlated
material properties at n locations, Z[n×m] represents the value
matrix of the m cross-independent material properties at n

locations simulated from equation (2), and L′[m×m] repre-
sents the Cholesky decomposition of the covariance matrix
R, of which the component Rij represents the covariance
between the material properties Xi and Xj, where
i, j � 1, 2, . . . , m are the material property indexes.

2.2. Random Field Parameters at Different Scales. As men-
tioned above, the statistics of a random field are evaluated
from testing samples with a certain size. In order to establish
a relation between the random field parameters at different
scales, it is assumed that the value of a material property at
the coarse scale is an average of the values of this material
property at the corresponding fine-scale locations. As an
example shown in Figure 1, an element at the coarse scale
corresponds to four elements at the fine scale. *e value of
material property Zc at the coarse scale is approximated by
averaging the four values Z

f
i at the fine scale. Generally, the

relation between material property values at different scales,
by averaging effects, can be given as [20]

Z
c

�
1
N



N

i

Z
f
i , (4)

whereN is the number of fine-scale elements that covers by a
coarse-scale element.

Assuming that the random field parameters (e.g.,
mean, standard deviation, and correlation) of a material
property are given at the fine scale, the statistics of this

material property at the coarse scale can be derived
through equation (4). Specifically, the mean of Zc can be
obtained by taking the expectation of equation (4), such
that

μZc � E
1
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where E(·) represents the expectation operator. Accord-
ingly, the variance is calculated as

σ2Zc � E Z
c

( 
2

  − E Z
c

( 
2

�
1

N
2 

N

i



N

j

ρ
Z

f

i
Z

f

j

σ
Z

f

i

σ
Z

f

j

− μ2Zc ,

(6)

where ρ
Z

f

i
Z

f

j

represents the correlation between material
properties at locations i and j at the fine scale. By definition,
the correlation betweenmaterial properties at locations i and
j at the coarse scale is given as
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where COV(·) represents the variance operator. In a similar
fashion, substituting Zc

i and Zc
j with equation (4) and

simplifying yields
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, (8)

where variables Zi,k and Zj,l represent the values of material
property at fine-scale elements k and l that correspond to
coarse-scale elements i and j, respectively.

With the random field statistics given at the fine scale,
the random field statistics at the coarse scale can be
evaluated based on the formulations presented above. By
virtue of the theorem that a linear combination of a
multivariate normal random vector also has a normal
distribution [30], the material property at the coarse
scale, as an average of the material property values at the
fine scale, also exhibits a Gaussian random field. Random
fields of material properties at the coarse scale can then be
simulated following the general procedures provided in
Section 2.1.

Coarse scale

Fine scale

Scale up by averaging

Zc

Z1
f Z2

f Z3
f Z4

f

Figure 1: Illustration of the material properties at coarse and fine
scales and the averaging effect.
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2.3. Non-Gaussian Distributions. It is assumed in the pre-
vious section that the random field being considered is a
Gaussian process. Besides normal distributions, the beta,
gamma, and lognormal distributions are also commonly
used and have their unique applications in natural and social
sciences [20, 30]. In regard to the case that the fine-scale
material properties follow a general distribution, the random
field parameters at the coarse scale can still be evaluated
using the same formulations presented in the previous
section. However, the distribution of the coarse-scale ma-
terial properties becomes an unknown. To resolve this
problem, Chen et al. [20] proposed several options to ap-
proximate the coarse-scale distributions, which are sum-
marized as follows.

(i) Empirical function: realizations of material prop-
erties at the fine scale are first simulated and av-
eraged. Empirical probability density function or
cumulative density function for the coarse-scale
material property can then be obtained by fitting
these simulated realizations.

(ii) Fine-scale distribution: when the number of fine-
scale elements covered by a coarse-scale element is
small, it is appropriate to approximate the coarse-
scale material property using the same fine-scale
distribution model, but with a different set of model
parameters to reflect the statistics change after
upscaling from fine scale to coarse scale (see
equations (5) and (6)).

(iii) Gaussian distribution: when the number of fine-
scale elements covered by a coarse-scale element is
sufficiently large, in reference to the central limit
theorem, it is more appropriate to approximate the
coarse-scale material property using Gaussian
distribution.

3. Framework of Probabilistic FE Analysis

*e framework of probabilistic FE analysis of structural
dynamics consists of three main components: (1) hetero-
geneous structural material properties are simulated using
the random field theory; (2) with the simulated heteroge-
neous material properties, the modal parameters of a
structure are evaluated based on FEmodels; and (3), with the
aid of MCS, the modal parameters of this structure are
analyzed in a probabilistic manner. *is section presents the
formulation of the FE-based modal analysis and the ap-
proach of integrating random fields into FE models.

3.1. FE-BasedModal Analysis. In reference to a general solid
mechanics problem, the generalized equation of motion is
given as

∇ · σ + ρb � ρa, (9)

where σ is the stress tensor, b is the body fore vector, a is the
acceleration vector, and ρ is the material density. For the
most basic problem involving a linear elastic material which

obeys Hooke’s Law, the matrix equations take the form of a
dynamic spring mass system.

M €U + C _U + KU � F, (10)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively; U is the displacement vector; €[·] and
_[·] represent the first-order and second-order time derivative
operators, respectively; and F is the force vector. For vi-
brational modal analysis, the damping is generally ignored,
leaving only the first and third terms on the left-hand side
[4]:

M €U + KU � 0, (11)

which is the general form of the eigensystem encountered in
structural engineering using FE analysis. *e modal fre-
quencies and mode shapes can be obtained by solving the
generalized eigenvalue problem

KΦ � ω2MΦ, (12)

where ω and Φ represent the modal frequencies and mode
shapes, respectively.

3.2. IntegrationwithRandomFieldMaterialProperties. In FE
analysis, the domain is discretized into a mesh, where the
underlying material properties are also represented in a
discrete manner. *ere are several strategies that can be
employed to approximate material properties using their
values at finite nodes, such as the midpoint method, the
shape function method, the integration point method, the
optimal linear estimation method, the spatial average
method, and the weighted integral method [57]. In this
work, the midpoint method, which was first introduced by
Der Kiureghian and Ke [58], is adopted owing to its
simplicity in implementation and computational effi-
ciency. *at is, the material property at each element is a
constant and takes the material property value at the
centroid of that element. To incorporate multiscale ran-
dom fields in FE analysis, the target mesh size in a FE
simulation is first determined, and the statistics of a
material property at this target mesh size are calculated
from the statistics of this material property at the refer-
ence scale using the multiscale random field approach.
*en, the simulation domain is discretized into a mesh of
the target mesh size and the material properties in each
element are generated using the random field theory.
Lastly, the random fields of material properties are im-
ported into the FE simulation code so that each element
has its specific material property value. With the incor-
poration of random fields, probabilistic FE analysis can be
performed following the MCS scheme. *e interested
reader is also referred to [59, 60] for a general workflow of
incorporating random fields in FE analysis. It should be
noted that the MCS technique could be computationally
expensive as it requires to run the simulation repeatedly
for a large number of trials. *ere are several other ap-
proaches that are developed to improve computational
efficiency, such as the subset simulation technique [61],
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support vector machine method [62], and the Bayesian
regression technique [63].

4. Numerical Simulations

In this section, a simply supported beam is taken as an
example to verify the formulation of multiscale random field
models and to investigate the effects of random field
properties on the modal parameters of a structure. *e beam
has a span of 60m (see Figure 2) with the cross-sectional area
and the moment of inertia taken to be 11.2m2 and 20.87m4,
respectively. In practice, the statistics of a material property
at a reference scale could usually be determined through a
site investigation process. Particularly, to determine the
scales of fluctuation, the semi-variogram is first calculated
and scales of fluctuation are determined by fitting the semi-
variogram with an adopted correlation function [22]. With
the statistics of a material property characterized from the
testing samples at the reference scale, the statistics of this
material property at a coarse scale could be determined using
the developed multiscale random field approach. In this
work, the fields of the mass density and Young’s modulus
along the beam are both assumed to follow a stationary
Gaussian process with a cross-correlation. *e statistics of
the mass density and Young’s modulus fields at the reference
scale (i.e., mesh size of 0.5m) are listed in Table 1. *e cross-
correlation between mass density and Young’s modulus is
taken as 0.8. *is beam example has been previously studied
in Su et al. [26] to demonstrate a reliability-based framework
for damage identification. However, the cross-correlation
between mass density and Young’s modulus and the scale
effects on random field statistics were not considered in that
work.

4.1. General Results of ProbabilisticModal Analysis. To begin
with, the simulation of random fields at different scales and
the scale effects on the random field statistics are investi-
gated. With the procedures described in Section 2.1, random
fields of mass density and Young’s modulus can be simu-
lated, and example realizations of them are given in Figure 3.
In this example realization, the mass density and Young’s
modulus at each location are random but varying spatially in
a somewhat smooth manner. A positive cross-correlation
between the mass density and Young’s modulus can be
identified by observing the phenomenon that locations with
a larger mass density also exhibit a greater Young’s modulus
and vice versa.

For a probabilistic FE analysis considering random field
material properties, MCSs are usually required to approach a
statistical characterization of the structural dynamic re-
sponses. In this regard, 10,000 realizations of the mass
density and Young’s modulus are generated and will later be
cast into the FE model to conduct modal analysis. Herein,
the results of the 10,000 simulated random fields are first
analyzed to investigate the effectiveness of the random field
approach andMCSs.*ematerial properties at themiddle of
the beam are probed, and the results of the histogram, mean,
and coefficient of variation (COV) of the 10,000 realizations

are gathered in Figure 4. As can be observed from the
histograms, the distributions of mass density and Young’s
modulus appear as a bell curve and can be well fitted by
normal distributions. As the number of MCSs increases, the
mean and COV asymptotically approach their specified
values.

With the 10,000 realizations of material properties,
modal parameters of this beam are calculated, respectively.
Figure 5 presents the statistics (i.e., histogram, mean, and
COV) of the first-order modal frequencies based on the
10,000MCSs.*e values of modal frequency also appear as a
normal distribution with a mean of 13.45 and a standard
deviation of 0.33. *e COV is calculated to be about 0.025,
which is considerably large if comparing with the COV of
mass density and Young’s modulus (i.e., 0.05 and 0.1, re-
spectively). *e results indicate that the material hetero-
geneity has a considerably significant impact on the
structure dynamic responses. Similar to the evolution pat-
tern of material properties, the mean and COV of modal
frequencies also asymptotically approach constants after a
sufficient number of MCSs.

As the beam is discretized into 120 elements with 240
degrees of freedom, the mode shapes are vectors of 240
components. For visualization purposes, components
corresponding to the deflections of the beam are
extracted and rearranged and normalized to a unit vector.
Figure 6 shows the profile of the first-order mode shape
along the beam. *e 90% confidence interval (CI) of the
mode shape at each location forms a very tiny band,
indicating relatively small variations due to material
heterogeneity. To gain more insights into the effects of
material heterogeneity on mode shapes, the modal as-
surance criterion (MAC) [64] is further investigated. *e
MAC is a statistical indicator that is most sensitive to
large differences and relatively insensitive to small dif-
ferences in the mode shapes. *is yields a good statistic
indicator and a degree of consistency between mode
shapes [64]. In this work, the MAC values for mode
shapes between the heterogeneous case and the homo-
geneous case are calculated and used to study the het-
erogeneity effects. Figure 7 shows the results of the
histogram, mean, and COV of the first-order mode shape.
For all 10,000 MCSs, the MAC values reside within a
narrow range that from about 0.999 to 1. *e mean of
these MAC values is almost one, and the COV is next to
zero (e.g., about 1.5e − 4). *e results further indicate that
material heterogeneity exhibits a considerably small
impact on mode shapes.

4.2. Validation of Multiscale Random Field Models. In this
section, the effectiveness of the proposed multiscale
random field models will be investigated. With the ran-
dom field statistics given at the reference scale, i.e., 0.5 m,
the random field statistics at coarse scales can be calcu-
lated based on the proposed multiscale random field
approach. In this work, mesh sizes of 2, 3, 4, 5, 6, and 8
times of the reference size are considered. After 10,000
MCSs, the statistics of the material property values of each
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Figure 3: An example realization of the random fields of mass density and Young’s modulus with 120 elements. *e beam has a span of
60m.
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Figure 2: Geometry and boundary conditions of the example beam problem.

Table 1: Random field parameters of the mass density ρ and Young’s modulus E of the example beam at the reference scale.

Distribution Mean Coefficient of variation Scale of fluctuation (m)
ρ Normal 2500 kg/m3 0.05 30
E Normal 32.5GPa 0.10 30
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element are calculated and compared with the analytical
solutions (i.e., equations (5), (6), and (8)). Figure 8
presents the COV of Young’s modulus for the random
fields at different scales. For each mesh, the COVs of each
mesh element exhibit a slight variation, but all reside in a
reasonable range around the analytical solution. *e COV

of Young’s modulus decreases with the increasing mesh
size, which is consistent with the fact of the spatially
averaging effects.

*e results of the correlation between material prop-
erties at different locations are presented in Figure 9. Ba-
sically, the correlation between material properties at two
locations decreases with the increasing separation distances.
With the same separation distances, the mesh elements with
a greater size exhibit stronger correlation between each other
than those with a smaller size. To better visualize the cor-
relation change due to the mesh size effects, the magnitudes
of correlation change of a coarse scale with respect to the
reference scale are calculated, and both the analytical and
simulated results are shown in Figure 9(b). Overall, the
correlation changes based on analytic solution and simu-
lated random fields exhibit very good agreement. *e
magnitudes of the correlation change due to the scale effects
first increase with the increasing separation distances and
then vanish as the correlation approaches zero.

Next, the effectiveness of usingmultiscale random fields for
modal analysis is investigated.*emodal analysis of the simply
supported beam is conducted based on amesh size of 4m, i.e., 8
times that of the reference size 0.5m. Random field material
properties are generated using two approaches: (1) direct
simulation, in which the random field material properties
corresponding to the reference mesh size are first generated
and are then added up and averaged to generate the random
field material properties for the target mesh size; and (2) the
proposed multiscale approach, in which the random field
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statistics for the target mesh size are first evaluated based on
equations (5), (6), and (8) and then cast into the general
procedures of simulating randomfields to generate the random
field material properties at the target scale. Herein, the direct
simulation approach is adopted as a benchmark to verify the
proposed multiscale approach. Figure 10 presents the cumu-
lative distribution of the first- and sixth-order modal fre-
quencies based on the 10,000 MCSs. *e results of the direct
simulation approach and multiscale simulation approach ex-
hibit very good agreement, indicating good effectiveness of the
proposedmultiscale approach. Similar analyses onmode shape
and MAC values can be also conducted but are not presented
here as they are shown to be insensitive to the mesh size effects
in the previous section.

To gain a more quantitative insight into the results of
probabilistic modal analysis and the mesh size effects, the
statistics of the modal frequencies based on meshes with
different sizes are summarized in Table 2. For modal fre-
quencies of different orders, the probabilistic modal analysis
with different mesh sizes provide almost identical results.
*ere is, however, a slight but notable phenomenon that the
higher order modal frequencies (e.g., sixth-order modal
frequencies) exhibit a tiny increasing trend with the in-
creasing mesh sizes. *e sixth-order modal frequencies
increase from 484.78 to 487.42 when the mesh size in modal
analysis is enlarged by eight times.

4.3. Parametric Study on COV. Since the COV and corre-
lation at different scales are essentially affected by the COV
and correlation at the reference scale (the mean remains
constant at different scales), it is then of interest to study the
general relations between the COV and correlation at dif-
ferent scales for different values of COV and scales of
fluctuation. For such purposes, parametric studies on the
COV and the scale of fluctuation were conducted. With the
COV of Young’s modulus at the reference scale changing
from 0 to 0.2, COV and correlation at the coarse scales can
be calculated. Figure 11 presents the results of COV and
correlation at the coarse scales for different values of COV at
the reference scale. Two main observations can be made
based on these results. First, the COV at a coarse scale
increases linearly with the increasing COV at the reference
scale, while the increasing ratio decreases with the increasing
mesh sizes. Second, the correlation at a coarse scale is in-
dependent from the COV at the reference scale no matter
what size of mesh at the coarse scale is used.

Figure 12 shows the evaluation of the statistics of the
modal frequency with the increase of the COV at the ref-
erence scale. *e mean of modal frequencies exhibits a tiny
yet notable decreasing profile with the increasing COV at the
reference scale. When COV increases from 0.02 to 0.2, the
mean of the first modal frequency exhibits a decrease of
about 1.1% (i.e., from 13.49 to 13.34). *e variation of the
COV of modal frequency is more significant than the mean.
It increases almost linearly with the increasing COV at the
reference scale. *e COV of the first-order modal frequency
is about 0.05 when the COV of Young’s modulus at the
reference scale increases to 0.2.

Figure 13 presents the results of MAC values for different
values of COV at the reference scale. *e MAC values are
calculated based on the mode shapes of the heterogeneous
case and the homogeneous case. Similar to the evolution
profile of modal frequencies, the mean of the MAC values
decreases and the COV increases with the increasing COV at
the reference scale. When the COV at the reference scale
increases to 0.2, the difference between the MAC mean and
unity is less than one thousandth, and the MAC COV is also
less than 0.001. Overall, the results indicate that material
heterogeneity exhibits minimal impacts on mode shapes.

4.4. Parametric Study on Scale of Fluctuation. Lastly, the
random field statistics and modal parameters for different
scales of fluctuation are analyzed. Figure 14 presents the
results of the COV and correlation with the scale of fluc-
tuation increasing from 10 to 50m. With an increase in the
scale of fluctuation, the COV at the target scale increases and
approaches the COV at the reference scale; the correlation
decreases and approaches the correlation calculated at the
reference scale. Generally, a random field would exhibit
severe variations in space if the scale of fluctuation is small,
and it would appear as a homogeneous field if the scale of
fluctuation approaches infinite. In the case of a homoge-
neous field, the material property is the same everywhere in
the domain and becomes a single random variable. *e
results indicate that the effects of mesh size on the random
field statistics become less significant with the increase of
scale of fluctuation.

*e statistics of the first-order modal frequency for
different scales of fluctuation are presented in Figure 15.
Although the mean of the modal frequency exhibits an
increasing trend with the increasing scale of fluctuation, the
variation of the mean is deemed to be negligible, i.e., less
than 0.1%.*e COV of the modal frequency increases as the
scale of fluctuation increases. *is is reasonable because the
COV increases and the correlation of the random fields
decreases with the increase in the scale of fluctuation. *e
increase of COV and decrease of correlation indicates a
greater variation in the material property fields and thus
results in a greater variation in the modal parameters. *e
COV of the modal frequency exhibits considerably signif-
icant variations (i.e., increases from about 0.016 to 0.028),
when the scale of fluctuation changes from 10 to 50m.

*e statistics of the first-order MAC values for different
scales of fluctuation are presented in Figure 16. Although the
mean of the MAC values first decreases and then increases
while the COV first increases and then decreases with the
increasing scale of fluctuation, the variations in the mean
and COV are next to negligible. Based on the results of
probabilistic modal analysis with different mesh sizes and
different random field statistics, it is indicated that material
heterogeneity has considerably significant impacts on modal
frequencies and should be considered in applications such as
reliability-based structural damage identification, while it
has negligible impacts on mode shapes as well as MAC
values and thus could be ignored in such applications for
computational simplicity.
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Figure 10:*e cumulative distribution of modal frequencies based on the 10,000 MCSs: (a) first-order modal frequency and (b) sixth-order
modal frequency.

Table 2: Modal frequencies based on the meshes with different sizes.

Mesh size (m)
Modal frequency (mean± standard deviation, Hz)

1st 2nd 3rd 4th 5th 6th
0.5 13.45± 0.33 53.84± 1.19 121.17± 2.61 215.42± 4.58 336.64± 7.11 484.78± 10.20
1.0 13.46± 0.33 53.86± 1.19 121.21± 2.59 215.52± 4.55 336.78± 7.06 485.02± 10.15
1.5 13.45± 0.33 53.85± 1.19 121.20± 2.60 215.50± 4.56 336.80± 7.07 485.07± 10.16
2.0 13.45± 0.33 53.86± 1.19 121.23± 2.59 215.59± 4.53 336.97± 7.04 485.42± 10.12
2.5 13.46± 0.33 53.88± 1.19 121.30± 2.59 215.72± 4.55 337.23± 7.09 485.90± 10.17
3.0 13.46± 0.33 53.87± 1.18 121.29± 2.57 215.76± 4.53 337.37± 7.05 486.26± 10.12
4.0 13.45± 0.33 53.87± 1.20 121.31± 2.62 215.88± 4.60 337.81± 7.17 487.42± 10.31
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Figure 11: Random field statistics for different values of COV at the reference scale: (a) COV at the target scale and (b) correlation at the
target scale when the separation distance is 16m (i.e., about half of the scale of fluctuation).
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5. Conclusions

*e statistics (e.g., mean, variance, and scale of fluctuation)
of a material property would have different values at dif-
ferent length scales due to the spatially averaging effects.*is
work presents a framework for the probabilistic modal
analysis of beam structures with random field models at
multiple scales. An approach of evaluating random field
parameters and generating random field material properties
at different scales is developed based on element averaging.
Probabilistic analysis of a simply supported beam is per-
formed as an example, and the validity of the multiscale
random field approach and the effects of random field
properties on structure modal parameters are investigated.
With the results presented, the following conclusions can be
drawn.

(1) *e uncertainty in a material property decreases,
whereas the correlation increases with the increase of

element size due to the spatially averaging effects,
while the mean remains constant. Heterogeneous
material properties with different element sizes can
be effectively generated using the developed multi-
scale random field approach.

(2) *ere is relatively significant uncertainty in the
modal frequencies as a result of the heterogeneous
material properties, while the uncertainty in mode
shapes is considerably small. *e structural dy-
namics can be accurately characterized using the
multiscale random field approach, which allows for
the usage of coarse meshes in the FE simulations and
thus improves the computational efficiency.

(3) *e uncertainty in a material property characterized
at a coarser scale increases with the uncertainty at the
reference scale, while the correlation remains un-
changeable with respect to the variation of uncer-
tainty at the reference scale. With an increase in the
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Figure 15: Statistics of the first-order modal frequency for different scales of fluctuation: (a) mean and (b) COV.*emesh size is 4 times the
reference size.
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scale of fluctuation at the reference scale, the un-
certainty at a coarser scale increases, whereas the
correlation at a coarser scale decreases.

(4) *e uncertainty in modal frequencies increases with
the uncertainty in material properties, and it also
increases with the increase of the scale of fluctuation.
Material heterogeneity has considerably significant
impacts on modal parameters and should be prop-
erly considered in applications such as structure
reliability analysis.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e author declares that there are no conflicts of interest.

Acknowledgments

*is study was supported by the National Foundation of
China under grant no. 51108472. *e support is gratefully
acknowledged. *e author would like to appreciate the
comments and discussions from Prof. Junjun Zheng at
Economics and Management School of Wuhan University.

References

[1] J. E. Padgett and C. Tapia, “Sustainability of natural hazard
risk mitigation: life cycle analysis of environmental indicators
for bridge infrastructure,” Journal of Infrastructure Systems,
vol. 19, no. 4, pp. 395–408, 2013.

[2] R. Sebastian, “Asset management business model for design,
realization, and maintenance of fibre reinforced polymer
bridges,” Advances in Civil Engineering, vol. 1, 2013.

[3] J.-S. Tan, K. Elbaz, Z.-F. Wang, J. S. Shen, and J. Chen,
“Lessons learnt from bridge collapse: a view of sustainable
management,” Sustainability, vol. 12, no. 3, p. 1205, 2020.

[4] Z. Fu and J. He, Modal Analysis, Elsevier, Amsterdam,
Netherlands, 2001.

[5] L. Wang, M. Huang, and Z.-R. Lu, “Blind separation of
structural modes by compact-bandwidth regularization,”
Mechanical Systems and Signal Processing, vol. 131, pp. 288–
316, 2019.

[6] B. Ellingwood and A. Tallin, “Structural serviceability: floor
vibrations,” Journal of Structural Engineering, vol. 110, no. 2,
pp. 401–418, 1984.

[7] R. Alkhatib andM. F. Golnaraghi, “Active structural vibration
control: a review,” ;e Shock and Vibration Digest, vol. 35,
no. 5, p. 367, 2003.

[8] C. Cui, R. Ma, X. Hu, and W. He, “Vibration analysis for
pendent pedestrian path of a long-span extradosed bridge,”
Sustainability, vol. 11, no. 17, p. 4664, 2019.

[9] J.-s. Hwang, A. Kareem, and W.-j. Kim, “Estimation of modal
loads using structural response,” Journal of Sound and Vi-
bration, vol. 326, no. 3-5, pp. 522–539, 2009.

[10] A. Tatar, A. Niousha, and F. R. Rofooei, “Damage detection in
existing reinforced concrete building using forced vibration
test based on mode shape data,” Journal of Civil Structural
Health Monitoring, vol. 7, no. 1, pp. 123–135, 2017.

[11] M. Alwash, B. F. Sparling, and L. D. Wegner, “Influence of
excitation on dynamic system identification for a multi-span
reinforced concrete bridge,” Advances in Civil Engineering,
vol. 1, 2009.

[12] E. P. Carden and P. Fanning, “Vibration based condition
monitoring: a review,” Structural Health Monitoring: An
International Journal, vol. 3, no. 4, pp. 355–377, 2004.

[13] Y. Zhang, C.-W. Kim, and J. Lin, “Removing environmental
influences in health monitoring for steel bridges through
copula approaches,” International Journal of Steel Structures,
vol. 19, no. 3, pp. 888–895, 2019.

[14] J. K. Sinha, M. I. Friswell, and S. Edwards, “Simplified models
for the location of cracks in beam structures using measured
vibration data,” Journal of Sound and Vibration, vol. 251,
no. 1, pp. 13–38, 2002.

[15] G. Chellini, G. De Roeck, L. Nardini, and W. Salvatore,
“Damage analysis of a steel-concrete composite frame by
finite element model updating,” Journal of Constructional
Steel Research, vol. 66, no. 3, pp. 398–411, 2010.

[16] A. C. Altunı¸sık, F. Y. Okur, and V. Kahya, “Structural
identification of a cantilever beam with multiple cracks:
modeling and validation,” International Journal of Mechanical
Sciences, vol. 130, pp. 74–89, 2017.

[17] Y.-L. Xu, C.-D. Zhang, S. Zhan, and B. F. Spencer, “Multi-level
damage identification of a bridge structure: a combined
numerical and experimental investigation,” Engineering
Structures, vol. 156, pp. 53–67, 2018.

[18] M. B. Jaksa, J. S. Goldsworthy, G. A. Fenton et al., “Towards
reliable and effective site investigations,” Géotechnique,
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