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Nonuniform microcrack identification is of great significance in mechanical, aerospace, and civil engineering. In this study, the
nonuniform crack is simplified as a semielliptical crack, and simplified calculation methods are proposed for damage severity and
damage identification of semielliptical cracks.)e proposed methods are based on the calculation method for uniform cracks.)e
wavelet transform and the intelligent algorithm (IA) are used to identify the damage location and the damage severity of the
structure, respectively. )e singularity of the wavelet coefficient can be used to identify the signal singularity quickly and ac-
curately, and IA efficiently and accurately calculates the structural damage severity. )e particle swarm optimization (PSO)
algorithm and the genetic algorithm (GA), widely used, are applied to identify the damage severity of the beam. Numerical
simulations and experimental analyses of beams with transfixion and semielliptical cracks are carried out to evaluate the accuracy
of the semielliptical crack calculation method and the method of wavelet analysis combined with PSO and GA for nonuniform
crack identification. )e results show that the wavelet-particle swarm optimization (WPSO) and the wavelet-genetic algorithm
(WGA) can accurately and efficiently identify the structural semielliptical damage location and severity and that these methods are
not easily influenced by noise. )e damage severity calculation method for semielliptical cracks can accurately calculate the
semielliptical size and can be used to identify damage in beams with semielliptical cracks.

1. Introduction

In the field of aerospace, mechanical engineering, and civil
engineering, the damaged component will appear fatigue
failure under long-term load, which has a huge impact on
safety of structure. )erefore, the structural damage iden-
tification and life prediction are of great significance and
importance. In the long-term service of steel structure, the
notch is caused by the welding defect or the external force,
and the crack is one of the most common form of damages.
)e form of crack is a problem that cannot be ignored in
damage identification. Only when the size of a crack in a
certain direction is large, can the damage in that direction be
approximately reduced to a uniform crack, while for the
nonuniform damage, there will be a big error in simplifying
it to a uniform crack. At present, the related research studies
mainly focus on the damage identification of uniform cracks
[1–5] but few on the damage identification of nonuniform

cracks and nonuniform propagation [6]. )e author has not
found the calculation equation for the damage identification
of semielliptical cracks at present. )erefore, the damage
identification of beams with nonuniform microcracks is
studied, and the damage calculation method of the beam
with semielliptical cracks is proposed.

In the past decades, a large number of experts and
scholars have made great efforts to develop nondestructive
identification technology to identify structural damage. )e
nondestructive identification method based on structural
vibration is widely used. Experts and scholars in relevant
fields have used the vibration response as the basis for
damage detection in the past decade [7, 8] and proposed
some relevant methods [9, 10]. In 1979, Cawley and Adams
[11] applied natural frequency to damage identification.
Although the method based on natural frequency has the
advantages of fast and easy implementation, it has found
many disadvantages with the development of research, such
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as insensitive to microdamage, vulnerable to noise, tem-
perature, and humidity, low sensitivity to local damage, and
difficult to accurately locate and quantify damage [12–14].
Modal shapes can be used as an index to identify structural
damage with characteristics of insensitivity to temperature,
humidity, and other environmental conditions. )e dis-
placement modal shape, as a global parameter, is less sen-
sitive to local damage, which makes it difficult to accurately
locate the damage and quantify the damage.)e strain mode
has more information than the displacement mode and can
be used as an index to accurately locate the damage location.
)e modal shape of the nondestructive structure should be
smooth and continuous [15]. )e structural damage will be
accompanied by the reduction of the local stiffness, and the
modal shape of the damaged area will no longer be con-
tinuous and smooth. )e detection of such discontinuity is
the main target of the vibration-based damage detection
method.

Wavelet transform is widely used in the field of structural
health detection and damage detection because of its good
denoising ability and singularity detection for signal. Wavelet
transform can find singular points from the modal shape of
the structure without prior knowledge of the damage area,
which makes the singularity of wavelet coefficient become an
excellent index of the damage location of the structure and can
display the damage location intuitively.)erefore, the method
of detecting the discontinuity of structural modal shape based
on wavelet singularity has attracted the attention of re-
searchers. Some researchers have applied WT to decompose
the structural acceleration and modal shape to identify the
damage [5, 16]. For example, Zhu and Law [17] presented a
crack identification technique for bridge beam structures
under the moving load and analyzed the displacement mode
of the bridge structure through continuous wavelet transform
(CWT) to identify the crack damage location of the bridge
structure. He et al. [18] furthered this by applyingmoving load
to excite the bridge structure to obtain displacement response
and applied discrete wavelet transform (DWT) to decompose
the displacement response to locate the potential damage
location. Zhou and Li [19] proposed a damage identification
method based on the curvature mode and two-dimensional
continuous wavelet transform, which is utilized to identify the
damage of composite sandwich panels.)e curvature mode is
processed by two-dimensional continuous wavelet transform,
and the damage index is constructed by the periodicity and
wavelet transform coefficient of the structure to identify the
structural damage. Xu et al. [6] improved the two-dimensional
modal curvature with complex wavelet transform and ob-
tained the two-dimensional modal curvature of wavelet. )e
identification ability of the two-dimensional modal curvature
of complex wavelet was analyzed and verified by experiments
through the plate with nonuniform cracks, and the applica-
bility of the method was further discussed by taking the plate
sluice with nonuniform cracks as an example. )e results
show that the two-dimensional mode curvature of complex
wavelet can characterize the length, degree, and nonunifor-
mity of nonuniform cracks, which provides a suitable tool for
the identification and characterization of plate structure
cracks under noisy conditions. Although wavelet transform

based on vibration can effectively identify the structural
damage location, the microdamage severity identification
method based on wavelet is not as reliable as the damage
location identification method based on wavelet, especially in
the case of errors in the measurement of structural vibration
data.)erefore, IA is applied to identify the structural damage
severity in this study.

IA is widely used in many subjects with the character-
istics of simple, universal, and convenient for parallel
processing and so on. )e common method of applying IA
to structural damage identification is to describe the
problem of damage identification as an optimization
problem of objective function. )e idea is the difference
between the calculation results of the finite element model
and the structural experiment data is defined as the objective
function. When the objective function reaches the global
minimum value, the input parameters of the finite element
model are taken as the physical parameters of the actual
structure so that the structural damage identification
problem is transformed into the extreme value problem of
the corresponding objective function. Finally, IA is applied
to quickly and accurately calculate the optimal solution of
the objective function in the solution space. Some experts
and scholars have already applied the intelligent optimiza-
tion algorithm to structural damage identification. Hao and
Xia [20] applied GA to search the minimum value of the
objective function and identified the structural damage lo-
cation by considering the change of frequency and mode
shape as the damage parameters. Sahu and Nayak [21] took
the natural frequency of the structure as parameters and
introduced a method of data filtering in GA to filter the data
so as to obtain the rigidity of the structure. )is method
improved the adaptability of GA to data pool and solution
space and improved the calculation accuracy of GA.
Begambre and Laier [22] proposed the particle swarm op-
timization-simplex (PSOS) algorithm to identify structural
damage, and compared with the simulated annealing and the
basic PSO, it is proved that the PSOS algorithm has better
performance in identifying the structural damage location
and severity. Nanda et al. [23] proposed particle swarm
optimization with incremental swarm size (I-PSO) tech-
nique to identify the location and quantity of cracks in beam
structures. )e minimum value of objective function is
calculated by I-PSO to identify the damage of structure, and
the numerical simulation analysis shows that I-PSO can
effectively identify the damage of the structure and is robust
to noise. Guedria [24] defined the damage identification of
plate structure as a nonlinear optimization problem and
calculated the minimum value of the constructed objective
function with the accelerated differential evolution (ADE)
algorithm so as to accurately identify the damage location
and severity of plate structure. Compared with the standard
difference evolution algorithm, ADE has three improve-
ments, which make ADE have the advantages of fast con-
vergence, automatic balance of global and local search
ability, and avoiding premature convergence of local optimal
solution. )e numerical simulation results show that ADE
can effectively identify structural damage and is difficult to
be influenced by noise. Moradi et al. [25] applied the bees
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algorithm to identify the cracks in the beam structures and
predicted a single open edge crack in the cantilever beam
through numerical simulation and experimental research.
)e results show that the method can predict the size and
location of the crack well. Guo and Li [26] proposed a two-
step damage identification method based on Bayesian theory
and improved the immune genetic algorithm. Firstly,
Bayesian theory is utilized to integrate the two information
sources of structural modal strain energy and frequency to
identify the location of structural damage, and then the
immune genetic algorithm is used to identify the severity of
structural damage.)e simulation results show that the two-
step method can accurately identify the structural damage
location and severity, and the improved genetic algorithm is
better than the simple genetic algorithm and optimal
strategy genetic algorithm. Yu and Xu [27] transformed the
structural damage identification problem into a constraint
optimization problem, which was solved by the ant colony
optimization-based algorithm. )rough the numerical
simulation and the experiment of a 3-story building rigid
frame, the results show that regardless of weak damage or
multiple damages, the identification accuracy is very high
and the noise immunity is better. Zhao et al. [28] combined
the tabu search method and chaos search method to opti-
mize the artificial bee colony algorithm and improved the
exploration and development ability of the algorithm. )e
numerical simulation and experiment proved that the
proposed method can effectively identify structural damage
and has good robustness under the condition of sufficient
measurement data.

IA can accurately identify the structural damage location
and severity, but the parts of the structure without damage
will also be calculated by IA, which greatly affect the
identification efficiency of IA. )erefore, to improve the
identification efficiency, it is worth studying that the damage
location should be located firstly and then the damage se-
verity of the damage location should be calculated by IA. At
present, there are many methods to identify structural
damage with two steps, most of which combine with IA to
identify structural damage are using IA to identify the
damage severity. Xiang and Liang [1] proposed a two-step
approach for detecting multiple damages in thin plates. In
the first step, the mode shape of two-dimensional wavelet
transform was used to reveal the singularity and hence the
damage locations. )e damage severities at the identified
locations are then assessed in the second step by PSO. )e
simulation studies of a simply supported plate with multiple
damages show that the proposed method is effective in
multidamage detection and performed reasonably well even
the natural frequencies are not precisely measured, and the
analysis shows that the higher natural frequency is, the more
accurate results of damage severity identification will be.
Ravanfar et al. [2, 29] defined the structural damage index by
wavelet packet entropy in the structural damage identifi-
cation of beams to identify the damage location, and then
GA was utilized to calculate the damage severity of the
damage location. )e influence of different noise level,
damage condition, wavelet type, and decomposition level on
damage location recognition was studied. )e results of

numerical simulation and experimental analysis show that
the combination of wavelet and GA can effectively and
accurately identify the structural damage location and se-
verity and can be applied to the damage identification of the
engineering structure. In this study, the inverse problem
method is used to calculate the damage severity, and the IA is
used to calculate the objective function set in the program as
the inverse problem calculation objective. )e structural
damage severity can be obtained by calculating the mini-
mum value of the objective function. Nanthakumar et al.
[30], according to the principle of solving inverse problem,
employed a collocation formulation for solving 2nd order
boundary value problems. Anitescu et al. [31] proposed an
algorithm to solve the inverse problem of detecting inclusion
interfaces in a piezoelectric structure and gave the calcu-
lation formula of inclusions with three-dimensional struc-
ture and different materials. )e numerical example results
proved that the proposed iterative method can determine the
location and approximate shape of material subdomains
under high noise conditions.

)e singularity of wavelet coefficient is intuitive and
concise, and the IA has the advantages of high efficiency and
reliability. )e combination of wavelet analysis and IA can
effectively synthesize the advantages of both so as to max-
imize the efficiency of structural damage identification.
Compared with other IAs, PSO and GA are widely applied in
structural damage identification [32–37]. In this study, the
microdamage severity is defined to be within 10%. Because
the author is restricted by the experimental equipment, the
microdamage only refers to the damage in the depth di-
rection of the damage form, and the width of the damaged
form is the same as the width of the high sensitivity vibration
sensor used in the experiment. In this study, the beam
structural damage width is not a parameter to be considered
in the calculation of damage severity, so the width of
damaged form has no effect on the structural damage
identification. )e proposed calculation method and iden-
tification method of beam structural semielliptical damage
can be verified by notch damage identification. After the
structural modal data were obtained, the wavelet transform
is combined with PSO and GA, respectively, to process the
modal data so as to identify the structural microdamage.

Whether the structure has boundary damages or not, the
wavelet coefficients obtained by WT decomposition signal
will have boundary distortion which will lead to the dis-
tortion of WT identification of boundary damage. At
present, the existing solutions to boundary distortion are
signal expansion [38, 39], zero compensation [40, 41], ex-
trapolation signal expansion [42], truncation boundary
signal, [8] and so on. )ese methods are based on the
method of distorting the original signal to avoid boundary
distortion, which will lead to the increase in computational
complexity and the loss of information, resulting in the
unreliable damage identification. When the damage occurs
at the boundary, the above methods cannot solve the
problem of boundary damage identification. )erefore, this
study will not consider the boundary microdamage of the
structure only consider the location where the damage exists
between 1/5 and 4/5 of the length of the beam.
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)ere are currently damage identification methods for
nonuniform cracks, but the author has not identified any
specific calculation method for the damage size of non-
uniform cracks. To calculate the damage size of a nonuni-
form crack, it can be simplified into a semielliptical crack.
)e specifics of this simplified method are described in
Section 2. In this study, the damage severity of transfixion
cracks is calculated firstly, and the damage severity of beams
with semielliptical surface cracks is defined using the same
moment of inertia (assuming that the damage severity is the
same).)e wavelet is combined with PSO and GA to identify
the damage severity of beams with nonuniform cracks,
respectively, and the semielliptical crack size is calculated
based on the identified damage severity. )e validity and
accuracy of the crack damage identification method (based
on the wavelet-intelligent algorithm) are verified by notch
damage identification. )e calculation method for the
damage size of beams with semielliptical cracks is verified by
numerical simulations and experiments; the results show
that the proposed method is of high accuracy and can be
used effectively for semielliptical cracks calculations in en-
gineering structures.

2. Calculation Model of Semielliptical Crack

In this study, a the uniform crack is defined as having a
height that does not change along the thickness direction of
the beam, and the nonuniform crack is defined as having a
height that changes along the thickness dimension of the
beam. )e uniform crack in beam structures is a crack with
equal height transfixion along the thickness direction, and
the nonuniform crack in beam structures is semielliptical
crack along the thickness direction.)ese two types of cracks
are the object used to explain the damage identification
method for the nonuniform crack.

In fracture mechanics, the definition of crack not only
refers to the cracks caused by various factors but also the
micro defects existing in the materials, such as pores, knife
marks, and bubbles produced in smelting, which are called
cracks. In the view of mechanics, cracks can be divided
into open, sliding, and tearing types, as shown in Figure 1
[43].

In the current damage research, cracks can be treated
as two categories: transfixion cracks and nontransfixion
cracks. It is an ideal way to simplify the crack as a
transfixion crack, but in practical engineering, the crack in
the structure can be approximately simplified as a trans-
fixion crack only when the crack in a certain direction is
large in size. In general, the nontransfixion cracks are more
suitable for practical application, which makes the non-
transfixion cracks not to be ignored in structural damage
identification. Nontransfixion cracks are classified as
embedded cracks and surface cracks.

)e embedded crack refers to the structural internal
defect, and the size of the crack is small relative to the size of
the component. According to the law of crack propagation,
the embedded crack can be simplified as elliptical crack, as
shown in Figure 2.

)e long axis of the ellipse is 2c, and the short axis is 2a.
)e coordinate (xp, yp) of point p on the crack ellipse
boundary satisfies the elliptic equation:

x
2
p

c
2 +

y
2
p

a
2 � 1, (1)

which is expressed by parameter θ as follows:

xp � c cos θ,

yp � a sin θ.

⎧⎨

⎩ (2)

)e surface crack is located on the structural surface and
is often simplified as the semielliptical sheet crack [44], as
shown in Figure 3. In practical engineering, there are more
structures with semielliptical surface cracks. )erefore, this
paper will study the calculation formula and damage
identification of the damage severity and damage size of the
beam structure with semielliptical crack damage.

In this section, the relationship between the damage
severity and the rigidity of the structure with transfixion
cracks is defined first, and then the damage severity of the
semielliptical surface crack is defined. Finally, the rela-
tionship between the damage severity of semielliptic surface
crack and the crack depth a is defined by fitting the func-
tional relationship between section size b, h, and a.

2.1. Transfixion Cracks. )e stiffness reduction method is
used to simulate the damage of the beam with transfixion
cracks, and the following assumptions are made:

(1) )e damage is linear without considering the crack
opening and closing.

(2) )e structural damage is expressed as the decrease in
stiffness.

(3) )e damage does not affect the structural stability.
(4) )e damage occurs in the interior of the structure,

which only affects the eigenvalue and mode shape of
the structure, and the boundary conditions remain
unchanged.

(5) )e crack size is relatively small compared with the
beam, so the influence of the height change of the
beam is ignored, and the change of the central axis of
the beam caused by the crack is not considered.

Figure 4 shows a beam with transfixion crack. h is the
section height, b is the width, xd is the distance between the
crack location and the left end of the beam, Δl is the crack
width, and hd is the crack depth.

)e section moment of inertia Id at the crack is as
follows:

Id �
1
12

b h − hd( 
3

�
1
12

bh
3 1 −

hd

h
 

3

� I0 1 −
hd

h
 

3

,

(3)

where I0 is the moment of inertia of the undamaged section.
Definition ε � (hd/h) is damage severity, then equation (3)
becomes the following:
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Figure 1: Classification of mechanical characteristics of cracks: (a) opening type; (b) sliding type; (c) tearing type.
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Id � I0(1 − ε)3. (4)

2.2. Semielliptical Cracks. )e beam with symmetrical
nontransfixion semielliptical surface cracks is shown in
Figure 5, where c s the half length of crack (semielliptical
semimajor axis) and a is the crack depth (semielliptical
semiminor axis).

)e semielliptical crack area A of the damaged beam
section can be expressed as follows:

A �
1
2
πac. (5)

Equation (5) shows that a and c are variables related to
the semielliptical crack area. According to the law of crack
propagation, the deeper a of the semielliptical crack is, the
longer 2c of the crack length will be. Morozov [45] proposed
a graphic analysis method to calculate the critical size (depth
and length) of semielliptical cracks. )e American Society of
Mechanical Engineers considers that the ratio of crack depth
(semielliptical semiminor axis) a to semielliptical semimajor
axis c is constant. )e British Standard “Guidelines for
several methods of acceptance criteria for welding defects”
holds that the crack length c remains unchanged until the
crack shape becomes circular and the circle crack remains at
the end of the crack. Newman and Raju [46] controlled the
ratio range between crack depth a and crack length c when
studying the empirical equation of crack stress intensity
factor, and the proposed classical crack shape hypothesis
method has been widely used to solve the surface crack
problem of crack depth a. In the steady state of crack
propagation, Ibso and Agerskov [44] take the ratio of crack
depth to crack half length a/c � 1/4 as the fixed value in
crack research. Based on the above discussion, this paper
refers to the study of Ibso and assumes that the area of a
semiellipse as follows:

A �
1
2
πac � 2πa

2
. (6)

Equation (6) shows that the crack depth becomes the
only variable to change the section moment of inertia when
the section size is constant.

)e damage of section will cause the change of stiffness,
which is caused by the decrease in the moment of inertia
without considering the change of the elastic modulus of the
material. When the moment of inertia of the section with
semielliptical surface crack in the same section of the beam is
the same as that of the section with transfixion crack, the
damage severity will be the same.

Definition 1. Isd is the moment of inertia of the damaged
section of the beam with a semielliptical surface crack, and εs

is the damage severity of the beam with a semielliptical
surface crack. Based on the above discussion, the damage
severity of the section with semielliptical surface crack and

the section with transfixion crack in the beam is treated
equivalently; that is, εs � ε when Isd � Id. It is very com-
plicated to calculate the principal moment of inertia for the
damaged section with a semielliptic surface crack, so the
main moment of inertia of the damaged section is obtained
by CAD software in this study.

)e damage severity ε can be defined by the decrease in
the transfixion crack height h, while the damage severity
cannot be defined directly by the semielliptical surface crack
height h. In this paper, the damage severity is equivalent with
the moment of inertia of the damage section; the functional
relationship among the section size, the crack depth (the
semiminor axis of the semiellipse) a, and the damage se-
verity ε is established, and the damage severity εs of the
structure with the semielliptical surface crack is corre-
sponding to the damage severity ε of the structure with the
transfixion crack.

Taking the simple supported beam model with the
section size of 60mm× 80mm as an example, the rela-
tionship between crack depth a and damage severity ε0 of the
semielliptical surface crack was found by selecting 10 cross
sections with different crack depths. )e fitting curve is
shown in Figure 6.

)e expression of the curve in Figure 6 is as follows:

ε0 � −0.0066 +
2.87731

10.97251
���
π/2

√ exp −2
a − 15.14937
10.97521

 
2

 .

(7)

In addition, when the crack depth is the same and the
section size is different, the damage severity will change. Eight
simple supported beams with different section sizes b and h

are taken as the research objects. When the crack depth is the
same, the damage severity ε1 of each beam is regarded as a
group of data. As shown in Table 1, two groups of data with
different crack depth are selected to fit the relationship be-
tween the section area ratio (bh/60 × 80) and the damage
severity ratio (ε1/ε0). )e calculation results are shown in
Table 1, and the average value of (ε1/ε0) of different a values is
shown in Table 2 so as to fit the calculation formula:

ε1
ε0

� 0.9999
bh

60 × 80
 

− 1.009

. (8)

Substituting equation (7) into equation (8), we can
obtain the following:

c
ha

Figure 5: Beam with semielliptical crack.
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ε1 �
5179.9907
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Figure 6: Relationship between a and ε0.

Table 1: )e relation between cross section area and damage severity.

a (mm) B (mm) h (mm) ε1 ε0 (bh/(60 × 80)) (ε1/ε0)

3.75

30 50 0.058302

0.0175683

0.3125 3.312597
35 50 0.049067 0.364583333 2.787919
40 60 0.035565 0.5 2.020727
45 60 0.031346 0.5625 1.781001
50 70 0.024198 0.729166667 1.374886
55 70 0.021896 0.802083333 1.244074
60 80 0.01761 1 1.000565
65 80 0.016209 1.083333333 0.92097

1.25

30 50 0.006353

0.0018519

0.3125 3.17644
35 50 0.005435 0.364583333 2.717603
40 60 0.00398 0.5 1.989873
45 60 0.003534 0.5625 1.767181
50 70 0.002736 0.729166667 1.367993
55 70 0.002486 0.802083333 1.243001
60 80 0.002 1 0.999815
65 80 0.001845 1.083333333 0.922619

Table 2: Average calculation results of ε1/ε0 (a� 1.25mm and 3.75mm).

(ε1/ε0) (a� 3.75mm) (ε1/ε0) (a� 1.25mm) Average value of (ε1/ε0)

3.312597 3.17644 3.244518177
2.787919 2.717603 2.752760992
2.020727 1.989873 2.00530003
1.781001 1.767181 1.774090595
1.374886 1.367993 1.371439421
1.244074 1.243001 1.243537162
1.000565 0.999815 1.000190063
0.92097 0.922619 0.921794422
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)e significance of equation (9) is that it provides a
method to calculate the size of nonuniform cracks for
structures with nonuniform cracks. After identifying the
structural nonuniform cracks, the approximate size of the
nonuniform cracks can be quickly calculated by equation
(9), which can provide specific data for the follow-up steps of
structural health monitoring.

3. Theoretical Background

3.1. )e Principle of Wavelet Singularity. Defining
ψ(t) ∈ L1(R)∩ L2(R) and 

+∞
−∞ ψ(t)dt � 0, ψ(t) is called a

basic wavelet or a mother wavelet. ψ(t) is scaled and
translated as follows:

ψa,b(t) �
1
���
|a|

√ ψ
t − b

a
 , a, b ∈ R, a≠ 0, (10)

where a and b are the scale factor and translation factor,
respectively, and ψa,b(t) is the wavelet function.

Defining ψ(t) as the basic wavelet, the continuous
wavelet transform (CWT) of f(t) ∈ L2(R) is defined as
follows:

Wf(a, b) �
1
���
|a|

√ 
+∞

−∞
f(t)ψ∗

t − b

a
 dt �〈f,ψa,b〉,

(11)

where a≠ 0, band t are continuous variable, and ψ∗(t) is the
complex conjugate of ψ(t).

)e convolution form of wavelet transform is as follows:

Wf(a, b) �
1
���
|a|

√ 
+∞

−∞
f(t)ψ∗

t − b

a
 dt �

��
|a|


f∗ ψ|a|(b),

(12)

where ψ|a|(t) � |a|− 1ψ∗(−t/a).
Defining θ(t) as a smooth function and derivative

ψ(t) � (dθ(t)/dt) of any low-pass function θ(t) is band-
pass function, which satisfies 

+∞
−∞ ψ(t)dt � 0, the wavelet

function with scale factor s is as follows:

ψs(t) �
1
s
ψ

t

s
  �

1
s

dθ(t/s)

dt
�

dθs(t)

dt
. (13)

)e continuous wavelet transform of the basic wavelet
corresponding to function f on s is as follows：

Wf(s, u) � s
1/2

f∗ψs( (u) � s
1/2 d

du
f∗ θs (u), (14)

where s> 0, and equation (14) shows that the modulus
maximum |Wf(s, u)| of the wavelet transform is the
maximum of the first derivative of f smoothed by θs and
corresponds to the singular point of signal.

3.2. Damage Location Identification. At the moment of
damage, the mass of the beam structure with micro-
damage is basically the same, so it can be considered that
the structural damage is essentially the reduction of
stiffness EI. )e stiffness of both sides of the damaged

location is not equal, i.e., EI(v+)≠EI(v− ). When ] � x, the
deformation condition and internal force balance con-
dition of the position still meet the following conditions
[47]:

Vertical displacement:

w v
+

(  � w v
−

( ). (15)

Rotation angle:

dw v
+

( 

dx
�

dw v
−

( )

dx
. (16)

Bending moment:

EI v
+

( 
d
2
w v

+
( 

dx
2 � EI v

−
( )

d
2
w v

−
( )

dx
2 . (17)

Shearing force:

EI v
+

( 
d
3
w v

+
( 

dx
3 � EI v

−
( )

d
3
w v

−
( )

dx
3 , (18)

where the superscripts + and − are used to denote the
quantities just at the right and left of the discontinuous
point. k is the curvature of the section, ρ(x) is the radius of
curvature, M is the bending moment, ε is the strain, μ is the
severity of deformation, and h is the distance from the point
on the section to the neutral layer.

According to equations (17) and (18), microdamage will
also cause the curvature mode and strain mode on both
sides of the damage location to be unequal. In addition, the
curvature mode and strain mode far away from the damage
location of the structure will not change greatly, so the
curvature mode and strain mode of the structure will
mutate at the damage location. Previous research studies
show that the strain mode is more sensitive to the
microdamage of the structure, so the strain mode of the
damaged structure will be analyzed by the continuous
wavelet transform in this study, and the singular point
(modulus maximum point) of the structural strain mode
signal will be used to identify the damage location of the
structure.

3.3. Strain Mode. Strain is the first derivative of displace-
ment, so each displacement mode corresponds to the cor-
responding strain mode, and the strain mode reflects the
structural inherent characteristics. Because the strain modes
cannot be measured directly, the curvature mode can be
used to measure the strain modes indirectly. According to
the material mechanics, the bending static relation of the
beam can be obtained as follows:

ρi �
1
di

�
Mi

EiIi

, (19)

where i is the section position of measuring point i, Mi is the
bending moment of section i, EiIi is the flexural rigidity of
section i, di is the radius of curvature at section i, and ρi is the
curvature of section i. According to the approximate
equation of bending deformation of the beam,
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ρ �
d
2
y

dx
2 , (20)

where x is the coordinate along the length direction of the
straight beam and y is the bending deflection of the beam.
According to equations (19) and (20), the difference equa-
tion of three equidistant continuous measuring points along
the beam can be obtained:

ρi �
Mi

EiIi

�
yi+1 − 2yi + yi−1

Δ2
, (21)

where i − 1, i, and i + 1 are three adjacent continuous
measuring points with equal distance along the beam, ρi is
the curvature of section i, yi is the bending deflection of
section i, yi+1 and yi−1 are the bending deflection of section
i − 1 and section i + 1 of the measuring points, respectively,
and Δ is the bending deflection of two adjacent measuring
points. )e strain εi of the measuring point i of the beam can
be expressed as follows:

εi � −
h

di

� −h
yi+1 − 2yi + yi−1

Δ2
� −hρi, (22)

where h is the distance between the surface of the measuring
point on the beam and the neutral layer, and equation (22)
shows that the strain mode is the second-order difference or
second derivative of the displacement mode.

3.4. Principle of PSO. PSO is a population-based stochastic
optimization technology, which has the advantages of simple
to use, fast convergence, and good robustness. )e basic idea
of PSO is to find the optimal solution through the coop-
eration and information sharing among individuals in the
group. When PSO is used to solve the optimization problem,
finite possible solutions of the optimization problem can be
initialized to the particle swarm, and the individual fitness
and average fitness of the whole population will be con-
tinuously improved by the iterative process. When the
optimal solution of the problem is obtained or the optimal
particle position in the solution space is found, the indi-
vidual fitness of the particles in the group no longer changes
significantly, and the population will stop iteration and
output the optimal solution of the problem at the same time.

)e PSO’s process is as follows:

(1) Establishing the unknown function: )e method of
the element stiffness reduction is used to simulate the
damage severity ci of the structural damage element,
and the unknown value c of objective function is
constructed by taking ci of all structural damage
elements to be identified as an unknown component.
If the stiffness of the damaged element isEI, the
damage severity is c, and if the stiffness of the
damaged element is EIi, then

EIi � (1 − c)EI. (23)

Since the damage is set as microdamage, it is as-
sumed that the mass and elastic modulus E of the
damaged element do not change before and after the
structural damage, only the size of the element
changes before and after the structural damage.

(2) Constructing the objective function: In this study,
based on the comprehensive consideration of the
global and local attributes of the structure, frequency
and displacement mode are adopted as the calcu-
lation parameters of the objective function, as shown
in the following equation:

minF �Fω

m

i�1

ftest
i − fcal

i (c)

ftest
i

 

2

+ Fϕ

n

i�1


k

j�1
ϕtestij − ϕcalij (c) 

2

, (24)

where the weighting factor Fw � Fφ � 1. ftest
i and

fcal
i are the i-th order natural frequencies measured

and calculated, respectively, ϕtestij and ϕcalij are the
displacement modes of the i-th order j-th node
measured and calculated after normalization, re-
spectively, m is the order of natural frequency, n is
the order of the displacement mode, and k is the
node number. )e unknown value c, which mini-
mizes the function minF, is the set of damage se-
verity ci of the structural all damaged elements.

(3) Establishing fitness function: )e objective function
is directly used as the fitness function of PSO to
identify the structural damage severity, that is,
FIT1 � minF.

(4) Establishing PSO and solving the fitness function.

3.5. Principle of GA. GA has strong global search ability and
is not easy to fall into local optimum. When GA is used to
solve the optimization problem, the possible solution of the
optimization problem can be regarded as an individual in a
certain population, then all the possible solutions in the
solution space constitute an initial population. When the
initial population is placed in the optimization problem, the
individuals in the group can judge the advantages and
disadvantages of their own chromosomes through the fitness
function, and then the individual chromosomes are selected
that can better adapt to the optimization problem according
to the principle of survival of the fittest. Finally, the selected
individuals produce a new generation of individuals with
higher adaptability to the optimization problem through
genetic evolution such as crossover and mutation. By re-
peating the above genetic evolution mechanism, the pop-
ulation can improve its own fitness and the average fitness of
the whole population. When the fitness of the individuals in
the population does not change significantly or the optimal
individual within the population has been found, the whole
population will stop genetic evolution and output the op-
timal individuals within the current population.
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Taking WPSO as an example, Figure 7 shows the flow
chart of structural damage identification combined with
wavelet transform and PSO.

4. Numerical Simulation

To validate the correctness of the proposed method in
nonuniform damage identification and the ability of com-
bining wavelet with IA to identify nonuniform micro-
damage, the numerical simulation is carried out for the fixed
support steel beam. In this study, two scenarios are con-
sidered, as shown in Table 3.)emodeling parameters of the
fixed support steel beam are shown in Table 4. Considering
that the size of the vibration sensor used in the experiment is
26mm, the beam element size is set to 26mm.

)ere are two purposes to set scenario 1: (1) to verify that
the wavelet-intelligent algorithm can quickly and accurately
identify the structural damage; (2) scenario 1 is used as a
reference for scenario 2.

4.1. Selection ofMotherWavelet. MATLAB 2015b is used for
wavelet transform. In order to obtain the best wavelet co-
efficient graph, the suitable mother wavelet has to be se-
lected. Research studies have shown that researchers choose
the appropriate mother wavelet based on different criteria.
For example, Ovanesova and Suarez [48] selected the mother
wavelet based on regularity, symmetry, and the ability to
accurately reconstruct the analysis signal. Zhong andOyadiji
[49] selected the mother wavelet based on the number of
vanishing moment and the effective support. However, in
most cases, there are no fixed rules for the selection of
mother wavelet, and the appropriate mother wavelet is based
on different situations [50]. In most cases, the trial and error
method is applied to select a mother wavelet [51]. In this
study, the trial and error method is used to transform the
data for many times. According to the results of wavelet
transform, DB wavelet is selected for wavelet transform
because it can provide the best identification result and
resolution for wavelet coefficients.

Step 1: predict the damage location of the structure

Obtain the modal data of damaged structure

Use wavelet transform of modal data to obtain 
wavelet coefficient graph

Predict the damage location through singular points 
of wavelet coefficient 

Step 2: calculate the damage severity

Construct the structure model without damage by 
MATLAB

Calculate the modal shape of the damage location 

Input modal data of
damaged structure into

calculation program

Use MATLAB to run PSO

Randomly initialize the velocity and position of 
each particle

Evaluate the pbest of the particle
Evaluate the gbest of the particle

Update the velocity of particle according to equation (28)
Update the position of particle according to equation (29)

Satisfy predefined stopping criteria

End and output results

Yes

No

Evaluate the fitness values of each particle

BeginBegin

Figure 7: )e damage identification flow chart of WPSO.
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4.2. Scenario 1. Taking a fixed steel beam as the object, the
damage form is set as a transfixion crack along the thickness
direction, and its model is shown in Figure 8. According to
the experimental model in later chapters, the two ends of the
fixed beam are rigidly connected. )e steel beam is made of
Q235 steel, and the section size is b × h � 60mm × 80mm,
and the material parameters are shown in Table 4. According
to Table 4, the finite element modeling of Figure 8 is carried
out by using ANSYS finite element software. Points A and B
of the beam end adopt the fixed support so that the beam end
has no displacement in any direction. )e finite element
model of the fixed beam is divided into 43 elements in the
order of A − B, as shown in Figure 8, and the element nodes
are coded in turn. )e damaged elements and damage se-
verity of the fixed beam are set as follows: the damage se-
verity of element 12 is 4%, the damage severity of element 25
is 20%, and the damage severity of element 38 is 10%. )e
element stiffness is reduced to simulate the damage. )e
WPSO and WGA are used to identify the damage location
and severity of the fixed beam.

4.2.1. Structural Damage Location Identification. )e finite
element model of the fixed beam is established according to
Figure 8, and the structural displacement mode is calculated
by using ANSYS. MATLAB is used to take the second de-
rivative of the structural displacement mode to obtain the
strain mode. )en, the wavelet toolbox in MATLAB is used
to select the DB wavelet to transform the strain modal data,
and the wavelet coefficient is obtained as shown in Figure 9.

Figure 9 depicts that there are sudden changes near
points 10, 23, and 36 in the wavelet coefficient graph. )e

strain mode data, calculated by the second-order derivation
of the displacement mode withMATLAB, will be reduced by
two. )erefore, points 10, 23, and 36 in the wavelet coef-
ficient diagram actually correspond to elements 12, 25, and
38 in the fixed beam model. Around the damage location,
there will be sudden changes that are influenced by the
damage, but the maximum value point of the modulus
corresponds to the damage location. )us, it can be judged
that the damage of the fixed beam occurs in elements 12, 25,
and 38, which is consistent with the damage element setting
of the finite elementmodel of the fixed beam and verifies that
the wavelet singularity principle can accurately identify the
structural transfixion damage location.

4.2.2. Structural Damage Severity Identification. According
to Figure 8, the fixed beam is modeled by using MATLAB.
)e elements’ nodes are numbered in the order of A-B, and
the element stiffness is assembled according to the num-
bering order to obtain the overall stiffness, thus completing
the modeling. MATLAB is applied to program PSO and GA,
respectively, and the damage severity of damaged element
identified by wavelet transform can be regarded as the
unknown value of fitness function. PSO and GA will run on
the same computer ten times to reduce the randomness of
the calculation. Due to the randomness of the results cal-
culated by PSO and GA each time, the maximum value and
minimum value will not be deleted from the results to ensure
the fairness of each calculation result.

(1) As shown in Figures 10 and 11, the structural damage
severity and calculation error identified by PSO are
shown, respectively.
Figures 10 and 11 show that the accuracy of PSO in
structural damage severity identification is high, and
the error is within 0.5%. Moreover, the higher the
damage severity is, the smaller the damage error
fluctuation is. )e results also show that PSO has no
prematurity and local optimum in the ten calcula-
tions, which indicates that PSO can effectively
identify the damage severity of the structure with
transfixion crack.

(2) As shown in Figures 12 and 13, the structural damage
severity and calculation error identified by GA are
shown, respectively.
Figures 12 and 13 show that the accuracy of GA in
structural damage severity identification is slightly
lower than that of PSO, and the error is within 0.55%.
Moreover, the higher the damage severity is, the

Table 3: Damaged scenarios of the fixed beam.

Scenarios Damage form Element
quantities

Element size
(mm)

Length of beam
(mm)

Damaged
element

Severity
(%)

Damage depth: h or a
(mm)

1 Transfixion crack 43 26 1118
12 4 1.1
25 20 5.7
38 10 2.8

2 Semielliptical
crack 48 26 1248 25 7.26 7.5

38 4.87 6.2

Table 4: Parameters of the fixed beam.

Parameters Value
Density (ρ) 7800 kg/m3

Poisson’s ratio (v) 0.3
Elasticity modulus (E) 2.1GPa
Length (L) 1.3m

1118mm

26mm

B

26mm

1 44

A

Figure 8: Model of the fixed beam with transfixion crack.
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smaller the damage error fluctuation is. )e results
also show that GA has no prematurity and local
optimum in the ten calculations, which indicates that
GA can effectively identify the damage severity of the
structure with transfixion crack.

PSO′ is defined as the average time of PSO running ten
times. Figure 14 depicts the running time ratio of GA, PSO
to PSO′, and it shows that PSO takes only 1/3 of GA time to
identify the damage severity. Figures 11 and 13 show that the
identification accuracy of GA and PSO is basically the same.

4.3. Scenario 2. Taking a fixed steel beam structure as the
object, the damage shape is set as a semielliptical crack in the
surface of the fixed beam, and its model is shown in Figure 15.
According to the experimental model in later chapters, the two
ends of the fixed beam are rigidly connected. )e steel beam is
made of Q235 steel, and the section size is
b × h � 60mm × 80mm, and the material parameters are
shown in Table 4. According to Table 4, the finite element
modeling of Figure 15 is carried out by using ANSYS finite
element software. Points A and B of the beam end adopt the
fixed support so that the beam end has no displacement in any
direction.)e finite elementmodel of the fixed beam is divided
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Figure 9: Wavelet coefficients.
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Figure 10: Damage severity identification of PSO.
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Figure 12: Damage severity identification of GA.
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into 48 elements in the order of A − B, as shown in Figure 15,
and the element nodes are coded in turn. )e damaged ele-
ments and damage severity of the fixed beam are set as follows:
the damage severity of element 25 is 7.26% and the damage
severity of element 38 is 4.87%, reducing the element stiffness
to simulate the damage. )e WPSO and WGA are used to
identify the damage location and severity of the fixed beam.

4.3.1. Structural Damage Location Identification. )e finite
element model of the fixed beam is established according to
Figure 15, and the structural displacement mode is calcu-
lated by using ANSYS. MATLAB is used to take the second
derivative of the structural displacement mode to obtain the
strain mode. )en, the wavelet toolbox in MATLAB is used
to select the DB wavelet to transform the strain modal data,
and the wavelet coefficient is obtained as shown in Figure 16.

Figure 16 depicts that there are sudden changes near
points 23 and 36 in the wavelet coefficient graph, and the
mutation values of points 23 and 36 relative to the sur-
rounding points are the largest. According to the analysis in
Section 4.2.1, it can be judged that the damage occurred in
elements 25 and 38 of the fixed beam which is consistent
with the damage element setting of the finite element model
of the fixed beam and verifies that the wavelet singularity
principle can accurately identify the structural semielliptical
damage location.

4.3.2. Structural Damage Severity Identification. According
to Figure 15, the fixed beam is modeled by using MATLAB.
)e elements’ nodes are numbered in the order of A-B, and

the element stiffness is assembled according to the num-
bering order to obtain the overall stiffness, thus completing
the modeling. MATLAB is applied to program PSO and GA,
respectively, and the damage severity of damaged element
identified by wavelet transform can be regarded as the
unknown value of fitness function. PSO and GA will run on
the same computer ten times to reduce the randomness of
their calculation. Due to the randomness of the results
calculated by PSO and GA each time, the maximum and
minimum will not be deleted from the results to ensure the
fairness of each calculation result.

(1) Figures 17 and 18 depict the structural damage se-
verity and calculation error identified by PSO,
respectively.
Figures 17 and 18 show that the accuracy of PSO in
structural damage severity identification is high, and
the error is within 0.55%. Moreover, the higher the
damage severity is, the smaller the damage error
fluctuation is. )e results also show that PSO has no
prematurity and local optimum in the ten calcula-
tions, which indicates that PSO can effectively
identify the damage severity of the structure with
semielliptical crack.

(2) Figures 19 and 20 depict the structural damage se-
verity and calculation error identified by GA,
respectively.
Figures 19 and 20 show that the accuracy of PSO in
structural damage severity identification is high, and
the error is within 0.55%. Moreover, the higher the
damage severity is, the smaller the damage error
fluctuation is. )e results also show that GA has no
prematurity and local optimum in the ten calcula-
tions, which indicates that GA can effectively identify
the damage severity of the structure with semi-
elliptical crack.

Figure 21 depicts the running time ratio of GA and PSO
to PSO′, and it shows that PSO takes only 1/3 of GA time to
identify the damage severity. Figures 18 and 20 show that the
recognition accuracy of GA and PSO is basically the same.

)e analyses of Sections 4.2.2 and 4.3.2 show that the
accuracy of damage identification of PSO and GA adopted in
this study is basically the same, but the time spent by PSO is
far less than that of GA, which indicates that PSO is more
suitable for damage identification in this study.

According to the damage severity identified by PSO and
GA, the semiminor axis a of semielliptical crack is inversely
calculated by equation (9), and the calculation results are
shown in Table 5. )e identification error of the semiminor
axis is calculated according to Table 5, as shown in
Figures 22(a) and 22(b), which show that the maximum
error of semiminor axis a is not more than 0.1% for element
25 with larger damage severity, while the maximum error of
semiminor axis a is not more than 0.15% for element 38 with
smaller damage severity. )e maximum errors of damage
severity identified by PSO and GA are less than 0.55%. )e
above shows that the calculation method of the semiminor
axis a of the semielliptical crack obtained in this study is very
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Figure 14: Ratio of operation time of PSO and GA to PSO′.
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Figure 15: Model of the fixed beam with semielliptical crack.
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accurate, and the error obtained by describing the damage
with the semiminor axis is less than that of the damage
severity describe the damage.

4.4.Noise Effect onDamage Identification. Noise is inevitable
in the real life. To simulate the influence of noise on wavelet
transform, we add white noise to the signal calculated by
using ANSYS in scenario 2. )e signal is transformed by
wavelet, and the antinoise ability of wavelet is judged by
observing the wavelet coefficient graph. Noise intensity is
defined by signal-to-noise ratio (SNR) as follows:

SNR(dB) � 20 log10
AS

AN

, (25)

where AS and AN are the root-mean-square value of dis-
placement mode signal and noise, respectively.

)e SNRs 10 and 15 dB are applied to study the influence
of different noise levels on damage identification. Figure 23
depicts the wavelet coefficient of numerical simulation of the
fixed beam with semielliptical crack. Wavelet transform is
applied to the numerical simulation data added with noise,
and the wavelet coefficient graphs of noise influence are
shown in Figure 24. It can be seen from Figure 24 that the
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Figure 16: Wavelet coefficients.
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Figure 17: Damage severity identification of PSO.
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Figure 19: Damage severity identification of PSO.
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Figure 20: Error of PSO.
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noise has no obvious influence on the damage location by
wavelet analysis, and the damage location can be clearly
located through the wavelet coefficient. )is is because the
displacement mode is less sensitive to noise, and the in-
fluence of noise will be further reduced after the displace-
ment mode is calculated to obtain the strain mode. )e
wavelet coefficients of the signal are obtained after wavelet
transform, which also reduces the influence of noise on the
signal. )erefore, it can be inferred that under the influence
of noise, wavelet transform can work well in semielliptical
crack identification.

5. Experimental Study

5.1. Experimental Setup and Procedure. To study the effec-
tiveness of the proposed method in calculating the non-
uniform damage, an experimental investigation is carried
out on the fixed beam, as shown in Figure 25.)e transfixion
crack and semielliptical crack are shown in Figure 26, which
are manufactured by a milling machine, and the accuracy of
manufactured damage is 0.1mm.)e Q235 rectangular steel
beamwith a span of 1300mm is adopted, and the section size
is b × h � 60mm × 80mm. )e beam’s material properties

are as follows. Density is ρ � 7800kg/m3, Poisson’s ratio
isμ � 0.3, and elastic modulus is E � 2.1 × 1011N/m2. )e
two ends of the beam are fixed as shown in Figure 25. )e
detailed experimental scenarios of the beam are shown in
Table 6, and the stiffness reduction method is used to
simulate the damage severity.

Taking scenario 2 as an example, the excitation
method, the element division of the beam, and the ar-
rangement of the sensor are introduced. )e experimental
devices and sensor layout are shown in Figure 25. )e
beam is excited by using the hammer, and the excitation
points are selected randomly on the upper surface of the
beam. In Figure 25(a), the node division method of the
beam is as follows. )e middle point of the beam is taken
as the symmetrical point to divide the element at both
ends. After the element is divided, the end node of the first
element at one end is taken as node 1 to the last element at
the other end for node numbering in turn. Sixteen high
sensitivity vibration sensors are used to collect the vi-
bration data of the beam structural unit nodes. Node 1 is
taken as the reference point, and the sensors are arranged
on the central axis of the upper surface of the beam
according to the node number successively from node 1,
as shown in Figures 25(a) and 25(b). According to the
quantity of nodes to be measured, the vibration data of all
nodes can be collected in scenario 2 after 4 times of ex-
periments. )e node numbering rule and sensor ar-
rangement rule of scenario 1 are the same as that of
scenario 2. )e collected vibration data are processed with
a DH5922D analysis system to obtain the first three orders
of displacement modal data of the beam structure. )en,
the corresponding strain modal data can be calculated by
taking the second derivative of the displacement modal
data in MATLAB.)e wavelet coefficients of the first three
strain modes of the beam structure in scenario 2 are shown
in Figure 27. )e first three orders of the strain mode are
calculated with the wavelet transform, and it is deter-
mined that the second-order strain mode has the best
identification effect.
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Figure 21: Ratio of operation time of PSO and GA to PSO′.

Table 5: Calculation value of a.

No.
Element 25, a

(mm)
Element 38, a

(mm)
PSO GA PSO GA

1 7.5042 7.4942 6.1949 6.2009
2 7.4977 7.5106 6.2149 6.1906
3 7.5037 7.5052 6.2125 6.204
4 7.5062 7.5067 6.2064 6.2064
5 7.5022 7.5037 6.19 6.2131
6 7.5057 7.5057 6.1942 6.2022
7 7.5072 7.4982 6.1912 6.1949
8 7.5052 7.5057 6.2015 6.1876
9 7.4967 7.4982 6.1936 6.1918
10 7.4992 7.4982 6.1869 6.2125
Actual value, a (mm) 7.5 6.2
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5.2. Experimental Results. Figure 28 shows the wavelet co-
efficient graph of the beam structural second-order strain
modal data after being denoised and wavelet transformed.
Because the MATLAB wavelet toolbox cannot denoise an
odd number of data points, the datum of node 49 in scenario
2 is deleted. As can be seen in Figure 28, because of noise in
the experimental data, the damaged and nondamaged points
have singular values after denoising by the wavelet toolbox.
)e structural damage location corresponds to the modulus
maximum point in the numerical simulation, and the
modulus maximum point in the range of singular points in
Figure 28 is the damaged point, which corresponds to the

damage location of the beam. As shown in Figure 28(a), the
damage information that corresponds to element 12 in
scenario 1 has been covered by noise, which indicates that
the damage information is easily affected by noise and other
environmental factors in the structural microdamage
identification experiment. Figure 28(b) depicts the wavelet
coefficient graph of scenario 2, which shows that the wavelet
coefficient points that correspond to the damage element
have mutations.)e above analysis shows that the minimum
damage severity that can be identified by the structural
damage experiment is between 4% and 5% due to the in-
terference of noise. PSO and GA are used to calculate the
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Figure 22: Identification error of semiminor axis: (a) identification error of element 25; (b) identification error of element 38.
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Figure 23: Wavelet coefficient of beams with semielliptical cracks without noise influence.
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Figure 24: Wavelet coefficient of beams with semielliptical cracks influenced by noise: (a) SNR� 10 dB; (b) SNR� 15 dB.
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Figure 25: Experimental device layout: (a) sensor layout; (b) experimental beam; (c) experimental equipment.
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Figure 26: Damage form: (a) transfixion crack; (b) semielliptical crack.
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damage severity of the beam under 2 scenarios with 10 runs
each, and the calculation results are shown in Table 7. )e
semiminor axis a′ of the semielliptical crack can be inversely
calculated by equation (9) and Table 7, and the results are
shown in Tables 8 and 9. As show in Tables 7–9, the
minimum absolute error of PSO in identifying the damage
severity of scenario 2 is 1.1184%, with a corresponding a′ of
6.8409mm and an error of 0.6409mm; the minimum ab-
solute error of GA in identifying the damage severity of
scenario 2 is 1.3993%, with a corresponding a′ of 6.9922mm
and an error of 0.7922mm.

As demonstrated by the above analyses, WPSO and
WGA can effectively identify the damage location within the
beam and the severity of the damage in both theory and
experiments. Furthermore, the semielliptical crack calcula-
tion formula can be used to accurately calculate the struc-
tural damage size. Multiple factors in the experiment
influence its accuracy, including environmental noise, and
errors in the manufacturing process. )ese factors can re-
duce the efficacy of the damage severity identification by
PSO and GA and introduce errors in the calculation results
of semielliptical damage. However, the calculation results

Table 6: Details of experiment scenarios.

No. Element
number

Element size
（mm）

Length
（mm）

Damaged
element Form Severity c

(%) Damage depth h or a (mm)

1 43 26 1118
12

Transfixion
4 1.1

25 20 5.7
38 10 2.8

2 48 26 1248 25 Semiellipse 7.26 7.5
38 4.87 6.2

0.05

0

–0.05
5 10 15 20 25 30 35 40 45

Coefficients line - Ca, b for scale a = 1 (frequency = 0.800)

(a)
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Coefficients line - Ca, b for scale a = 1 (frequency = 0.800)

(b)
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Figure 27: Wavelet coefficients of the strain mode in scenario 2: wavelet coefficient of (a) the first-order strain mode; (b) the second-order
strain mode; (c) the third-order strain mode.

5 10 15 20 25 30 35 40

0.02

0
–0.02

Coefficients line - Ca, b for scale a = 1 (frequency = 0.800)

(a)

5 10 15 20 25 30 35 40 45

0.05

0
–0.05

Coefficients line - Ca, b for scale a = 1 (frequency = 0.800)

(b)

Figure 28: Wavelet coefficients of the second-order strain mode of the experimental beam: (a) scenario 1; (b) scenario 2.
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demonstrate that the calculation formula for semielliptical
damage is an important reference value and has value for
engineering applications.

6. Conclusions

Due to the complexity of nonuniform crack damage iden-
tification, two methods are proposed: (1) a method to
identify the structural nonuniform microdamage based on
the wavelet-intelligent algorithm and (2) a simplified cal-
culation method for nonuniform crack based on fracture
mechanics. By simplifying the nonuniform microcrack into
a semielliptical crack, the relationship between the damage

severity of the semielliptical crack and the semiminor axis of
the crack can be obtained by mathematical derivation and
fitting. )e validity and accuracy of the crack damage
identification method based on the wavelet-intelligent al-
gorithm are verified by notch damage identification. Based
on the numerical simulations and experimental study, the
main conclusions obtained are as follows:

(1) )e wavelet transform of the strain modal can be
used to effectively identify the location of structural
nonuniform cracks, and this method is robust
against noise. However, the smaller damage infor-
mation will be submerged by larger environmental
factors, which makes the structural damage location
cannot be accurately identified.

(2) )e numerical simulation shows that the wavelet
analysis can identify a minimum damage severity of
4%, while in the experiment, the wavelet can identify
a minimum range of damage severity from 4% to 5%
due to interference from external factors. )is in-
dicates that the proposed method can identify
smaller structural damage when there are fewer
external factors.

(3) Although PSO and GA have some errors in identi-
fying the structural damage severity, they can still be
used to effectively identify the severity of nonuniform
structural damage. )e calculation results for the
semiminor axis of the semielliptical crack show that
the proposed formula can accurately calculate the
damage size based on the damage severity.)ismeans
that the proposed methods have a significant theo-
retical foundation and practical engineering value for
nonuniform damage identification.

)e simplified calculation method for nonuniform
cracks and the damage identification method based on the
wavelet-intelligent algorithm show great potential in both
numerical simulation and experiment. )e simulations and
experiments of notch damage verified the validity and
correctness of the calculation method and identification
method of nonuniform microcrack damage in this study.
Noise and other influences in the experiment reduce the
effectiveness of damage severity identification. Further work
needs to be done on reducing these external influences to

Table 8: Calculation results of a′ based on PSO.

No.
Element 25 Element 38

a′ (mm) a-a′ (mm) a′ (mm) a− a′ (mm)
1 8.0548 0.5548 6.8546 0.6546
2 8.0741 0.5741 6.8441 0.6441
3 8.0705 0.5705 6.8409 0.6409
4 8.0718 0.5718 6.8415 0.6415
5 8.0606 0.5606 6.8414 0.6414
6 8.0662 0.5662 6.8479 0.6479
7 8.0674 0.5674 6.8554 0.6554
8 8.0577 0.5577 6.8526 0.6526
9 8.0568 0.5568 6.8534 0.6534
10 8.0639 0.5639 6.8556 0.6556

Table 9: Calculation results of a’ based on GA.

No.
Element 25 Element 38

a′ (mm) a-a′ (mm) a′ (mm) a-a′ (mm)
1 8.0667 0.5667 7.0039 0.8039
2 8.0566 0.5566 7.0011 0.8011
3 8.0808 0.5808 7.015 0.815
4 8.0719 0.5719 6.9978 0.7978
5 8.0871 0.5871 7.0063 0.8063
6 8.0863 0.5863 6.9922 0.7922
7 8.0622 0.5622 7.0072 0.8072
8 8.0686 0.5686 7.0014 0.8014
9 8.0759 0.5759 7.0052 0.8052
10 8.0408 0.5408 6.9934 0.7934

Table 7: Calculation of damage severity c′.

No.
c′ of element 25 c′ of element 38

PSO GA PSO GA
1 0.084101 0.084354 0.060135 0.062913
2 0.084512 0.084139 0.059943 0.062859
3 0.084435 0.084656 0.059884 0.063121
4 0.084463 0.084465 0.059895 0.062798
5 0.084224 0.084792 0.059892 0.062957
6 0.084343 0.084774 0.060012 0.062693
7 0.084369 0.084258 0.060149 0.062974
8 0.084162 0.084396 0.060098 0.062865
9 0.084143 0.084552 0.060113 0.062937
10 0.084295 0.083801 0.060154 0.062716
c 0.0726 0.0487
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improve the identification efficiency of IA. )e work en-
vironment of practical engineering applications is complex
and changing. To address the challenges that this presents,
the problems described above must be solved to allow the
structural nonuniform damage identification method (based
on the wavelet-intelligent algorithm) and the semielliptical
damage calculation method to be reliably applied to real-
world structures.
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