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The prediction of concrete strength is an interesting point of investigation and could be realized well, especially for the concrete
with the complex system, with the development of machine learning and artificial intelligence. Therefore, an excellent algorithm
should put emphasis to receiving increased attention from researchers. This study presents a novel predictive system as follows:
extreme gradient boosting (XGBoost) based on grey relation analysis (GRA) for predicting the compressive strength of concrete
containing slag and metakaolin. One of its highlights is a feature selection methodology, i.e., GRA, which was used to determine
the main input variables. Another highlight is that its performance was compared with the frequently used artificial neural
network (ANN) and genetic algorithm-artificial neural network (GA-ANN) by using random dataset and the same testing
datasets. For three same testing datasets, the average R? values of ANN, GA-ANN, and XGBoost are 0.674, 0.829, and 0.880,
respectively, indicating that XGBoost has the highest absolute fraction of variance (R*). XGBoost can provide best result by testing
the root mean squared error (RMSE) and mean absolute percentage error (MAPE). The average RMSE values of ANN, GA-ANN,
and XGBoost are 15.569 MPa, 10.530 MPa, and 9.532 MPa, respectively, and those of MAPE of ANN, GA-ANN, and XGBoost are
11.224%, 9.140%, and 8.718%, respectively. Thus, the XGBoost definitely performed better than the ANN and GA-ANN. Finally, a
type of application software based on XGBoost was developed for practical applications. This vivid software interfaces could help
users in prediction and easy and efficient analysis.

1. Introduction

A series of dilemmas including waste emission and over-
consumption of energy and natural resources have been
currently pressing worldwide concerns because of global
population explosion and rapid urbanization. According to
the International Energy Agency report, 4.8 billion tons of
cement will be produced worldwide by 2050, resulting in the
emission of 3.8 billion tons of CO, [1]. Therefore, it is
beneficial to find and utilize active admixtures with high-
quality and low-energy consumption as alternatives of
cement, partly or totally [1, 2]. In addition, those active
admixtures can even enhance the properties of concrete such
as compressive strength, antipermeability, and corrosion
resistance [3]. Therefore, mix proportion of concrete, es-
pecially the high-performance concrete, has been in

increasing demand. Mix design of concrete is difficult to
achieve for researchers, as it must reach a specific strength
level, which is the most important property of concrete.
Currently, combining with machine learning, some re-
searchers utilize various basic prediction models, such as
logistic regression (LR), random forest model (BRF), sup-
port vector machine (SVM), and artificial neural network
(ANN) [4-6]. These models are commonly used for pre-
dicting compressive strength of concrete, irrespective of
costly and time-consuming nature. The artificial neural
network, inspired by biological systems of the human brain,
can learn and generalize from experience without prior
knowledge. It has powerful pattern classification and pattern
recognition capabilities [7]. Bilim et al. [8] conducted var-
ious ANNs and indicated their strong potential for pre-
dicting the compressive strength of granulated blast furnace
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slag concrete. Saridemir et al. [9] investigated ANNs for
predicting the compressive strength of concrete including
metakaolin and silica fume, exhibiting good performance.
However, the determination of weights and biases of ANN is
a complicated process, and the standard ANN algorithm has
a slow convergence rate and is easy to fall into the local
minimum. As a matter of course, there are many kinds of
intelligent algorithms used to optimize the superparameter
parameters of the basic model such as conjugate simulated
annealing [10], gradient algorithm [11], and genetic algo-
rithm (GA) [12]. Among those algorithms, the performance
of GA is excellent, attributing to its advantages such as
scalability, adaptation, speed, fault tolerance, modularity,
autonomy, and parallelism. Firouzi et al. [13] proposed an
integrated GA-ANN approach, appropriate for finding
optimum reliability-based inspection plans based on min-
imum life cycle costs.

The ANN model needs a lot of parameters, and the
learning process is like a black box. Hence, it is difficult to
carry out the actual derivation step by step, affecting the
credibility. In addition, in the learning process, it is easy to
appear overfitting state; therefore, some researchers used GA
to optimize the internal structure parameters of the neural
network. Although GA is a solution for optimizing the
neural network, its programming process is complex and the
search speed is slow. Therefore, another new model,
XGBoost, will be introduced later.

The extreme gradient boosting (XGBoost) is a novel ma-
chine learning algorithm mainly used for supporting classifi-
cation, regression, and ranking. In recent years, it has gradually
attracted attention owing to its excellent performance of strong
learning ability and fast convergence during parallel learning
computations shown in many Al competitions. In KDDCup
competition including commercial sales forecast, the team of
Top 10 used the XGBoost algorithm for web page text clas-
sification, customer behavior prediction, ad click rate predic-
tion, and hazard risk prediction and other fields [14]. In
consideration of those outstanding achievements, in this study,
XGBoost was applied for predicting the compressive strength
of concrete containing slag and metakaolin. In addition, the
performance of the model was compared with the commonly
used ANN and superior GA-ANN in order to reflect the
advantages or disadvantages of XGBoost.

Before predicting the compressive strength of concrete
based on ANN, GA-ANN, and XGBoost, the determination
of main influencing factors of concrete strength (i.e., the
input variables of prediction models) is a primary thing
because it is beneficial to reduce the dimensions of the model
and improve prediction accuracy [15]. In this study, there is
a highlight that a feature selection methodology, grey re-
lation analysis (GRA), was used to determine the main input
variables. Figure 1 shows the overall process of predicting
compressive strength of concrete containing slag and
metakaolin. To train and test those prediction models, 600
groups of data selected from 18 research papers (Table 1)
were utilized, after a necessary pretreatment process, i.e.,
unifying the compressive strength of concrete under dif-
ferent dimensions to avoid the influence of dimension effect.
Those data were divided into training dataset and testing
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dataset. The quantitative analysis of prediction performance
of ANN, GA-ANN, and XGBoost was obtained by testing
the value of absolute fraction of variance (R?), mean absolute
percentage error (MAPE), and root mean squared error
(RMSE).

2. Preprocessing and Preanalysis of
Selected Data

2.1. Preprocessing of Data

2.1.1. Unifying the Compressive Strength of Concrete.
Because of the dimension effect, the values of compressive
strength will be valid just when they are compared under a
uniform dimension. A cube with a length of 100 mm was
frequently used in 600 groups of collected data. Therefore, it
acts as the uniform dimension in this study. For other values
of compressive strength of concrete under different di-
mensions, they would be first transformed by the formula of
Neville [32], as shown in the following equation:
0.697

P
P, = " Wieh d) + (Widy M

where P is the compressive strength of concrete under other
dimensions; P, is the compressive strength of cube
(length = 150 mm, approximately 5.9 inches); V'is the specimen
volume; h is the height; and d is the maximum transverse
dimension of specimen. Notably, all the numerical values must
be calculated with a unit of inch. By the formula of Neville and
another simple conversion (cube with 150 mm length to cube
with 100 mm length), the scaling factor (the value of P/P)
based on the uniform dimension of cube with a length of
100 mm was calculated, as listed in Table 2.

2.1.2. Normalization of Data. In the system of data-driven
modelling, in order to eliminate the influences of outliers,
missed values, and bad data, all raw data should be nor-
malized to fit the range of [0, 1]. It ensures that the raw data
collected by major journals are more suitable for modelling,
and it also helps to achieve better results and significantly
speeds up the calculation [32]. The linear mapping function
is as follows:

X, =g 2)

max min

where X represents the original value; X,;, and X, are the
minimum value and maximum value of dataset, respectively;
and X,, is the value after mapping, noting that the outputs
will be remapped to their corresponding real values by the
inverse mapping function before calculating any perfor-
mance criterion [31].

3. Preanalysis of Data: Feature
Selection Methodology

Generally speaking, the compressive strength of traditional
concrete was determined by various factors, including ce-
ment type, water-binder ratio (W/B), sand ratio, dosage of
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FIGURE 1: The overall process of GA-ANN and XGBoost for predicting the compressive strength of concrete.

TaBLE 1: Data source and number of data.

Author of data source Year Number of data
Liu et al. [16] 2018 12
Duan et al. [17] 2013 16
Sujjavanich et al. [18] 2017 55
Mermerdas et al. [19] 2012 84
Giineyisi et al. [20] 2008 36
Yunfeng et al. [21] 2017 90
Ramezanianpour et al. [22] 2012 48
Shekarchi et al. [23] 2010 20
Shi et al. [24] 2015 18
Shannag et al. [25] 1995 32
Shafiq et al. [26] 2015 21
Khatib et al. [27] 2008 30
El-diadamony et al. [28] 2016 20
Giineyisi et al. [29] 2012 30
Perez-cortes et al. [30] 2019 14
Dinakar et al. [31] 2013 16
Poon et al. [1] 2001 28
Bilim et al. [8] 2009 30

Total 600

water-reducing agent, and curing age. For concrete con-
taining slag and metakaolin, the content of slag, MK, and the
Si/Al of metakaolin (Si/Al of MK) should also be included in
consideration of some samples; therefore, the Fly ash con-
tent should be considered as an important factor. The se-
lection of main influencing factors among various factors is
significant in order to improve the efficiency and accuracy of
the prediction models. In this study, GRA, a feature selection
methodology, was used to address the abovementioned
problem for obtaining the most influential and significant
factors.

3.1. Determination of the Analysis Sequence. First, we con-
struct the reference matrix (compressive strength of con-
crete) X, (k) (where k=1, 2, ..., 600, i.e., the number of
sample datasets) and comparative matrix (cement type,

water-binder ratio (W/B), sand ratio, dosage of water-re-
ducing agent, curing age, slag content, fly ash content, MK
content, and Si/Al of MK) X; (k) (wherei=1,2,...,9,i.e.,the
number of factors and k=1, 2, ..., 600). The equations in
Table 3 are the mathematical forms for the construction of
the reference matrix and the comparative matrix [33].

3.2. Dimensionless Treatment. For the purpose of reducing
the numerical fluctuation, the normalization process can be
determined as follows:

X; (k)

(k) = — i
%0 = Y X, (k)

n=600, i=1,23,...,9. (3)

3.3. Calculation of Grey Relational Coefficient. Subsequently,
the grey relational coefficient {; can be calculated, according
to the following equation [33]:

min mkin|x0 (k) = x; (k)| + p - max mkax|x0 (k) = x; (k)|

(i (k) =

>

Ixo (k) — x; (k)| +p- max m’?x|x0 (k) - x; (k)|
(4)

where |x, (k) — x; (k)| represents the absolute difference
between the two sequences; p, the distinguishing coeflicient,
is usually 0.5, and it represents the significance of
max max |x, (k) — x; (k)|. The smaller the p is, the higher its
di'stingkuishability is. Therefore, p=0.5 was considered, as it
can offer more moderate distinguishing effects and better

stability [34].

3.4. Calculation of Grey Relational Grade (y;) and Rank of
Results. As shown in equation (5), it is worth noting that the
grey relational grade (y;) can be used for measuring the
degree of correlation between the comparative matrix and
the reference matrix. The y; being close to 1 indicates the



TaBLE 2: Scaling factor of compressive strength of concrete under
different dimensions.

Shape Size (mm) Scaling factor (P/Py)
Cylinder d=100, h=200 0.72
Cube 1=40 1.16
Cube 1=50 1.13
Cube 1=70 1.07
Cube 1=75 1.06
Cube 1=100 1.00
Cube 1=150 0.91

strong correlation, whereas y; being close to 0 depicts the
weak correlation.

1 n
yi== Y k), k=12,...,600. (5)
g

The size of the grey correlation grade y; objectively
reflects the influencing degree of each factor on the com-
pressive strength of concrete; therefore, choosing the in-
fluential and significant factors is important. In this study,
MATLAB 7.0 was used to calculate y; of nine factors.
According to the results of grey relational grade, the rank
(cement type >sand ratio > W/B>MK content > slag con-
tent > curing age > dosage of water-reducing agent > Si/Al of
MK > fly ash content) was obtained, as shown in Figure 2.
However, too many input factors will decrease the calcu-
lation efficiency of the models and complicate the model
architecture of the input layer and output layer pattern and
thus will be unfavorable for the building models. Thus, the
factors such as Si/Al of MK and fly ash content, considered
as the weak factors, were not taken into account to optimize
the model structure because of its low grey correlation grade
(y;<0.9).

After the abovementioned three steps of preprocessing
and preanalysis of data source, i.e., unifying the compressive
strength of concrete, normalization of data, and selection of
main influencing factors, the datasets are ready for training
and testing the prediction models. The characteristics of the
prepared dataset are listed in Table 4.

4. Main Theories and Parameters of ANN, GA-
ANN, and XGBoost

4.1. Artificial Neural Network (ANN)

4.1.1. Artificial Neuron. ANN is inspired by understanding
of the biological nervous system [35] and is a mathematical
model that imitates the behavioral feature of the human
neural network for distributed and parallel processing of
information. These are massively parallel complex systems
made up of many processing neurons connected by con-
nection weights (w;), as shown in Figure 3.

A single neuron’s structure is simple. However, a
complete network system containing a mass of basic neurons
can be skilled in processing nonlinear problems. Figure 3
shows the notational convention where the orange graphics
represents a computational unit and X; is an input variable
and multiplied by the respective weight W;. After that, the
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results combined with bias term b will be transferred to every
neuron in the next layer of the network. The summed values
(one per neuron in the layer) are then forwarded to the next
layer of the network usually via an activation function such
as sigmoid function, as shown in equation (6) [36]. The
output from the activation function Y can be determined by
equation (7), and it will act as the final result or the input
variable of the next layer.

%)=

1
l+e ™ ©

Y=f<iW,-Xi+b>. (7)

i=1

4.1.2. Feed-Forward Neural Network and Backpropagation
Algorithm. The feed-forward neural network is one of the
simplest neural networks. Each neuron is only connected to
the one in the previous layer. Take the output of the
previous layer and output it to the next layer. There is no
feedback between the layers. It is one of the most widely
used and rapidly developed ANNs [37]. Commonly, the
feed-forward neural network consists of one input layer,
several hidden layers, and one output layer of neurons [38].
The original data are considered as the input information
accepted by the first layer (input layer) and then is
transmitted to the corresponding neurons of the second
layer (hidden layer); at last, it will pass forward to the
output layer. Besides, the number of input nodes can be
regarded as the input parameters (main influencing factors
mentioned previously), and the output node is the target
prediction result. Figure 4 shows the framework of the
ANN with 7 input nodes and 1 output node used in this
study. Notably, in terms of empirical and experimental data
types, the number of neurons of the hidden layer needs to
be debugged multiple times for creating an optimal pre-
dictive neural network model.

There is no feedback process between the layers in the
abovementioned ANN model. In order to get a better
prediction model, some algorithms such as the frequently
used backpropagation (BP) algorithm were added to the
ANN for adjusting parameters. The essence of the BP al-
gorithm is decreasing the difference between the actual
result and the desirable result in each output layer by the
fine adjustment of the weights in the back-propagated
process. When the BP algorithm is injected into the for-
ward-feeding neural network, the feed-forward neural
network shows excellent performance such as strong
generalization ability, fast convergence, and simple
structure [39].

During the process of back-propagation, all of the
weights should be updated by the BP algorithm in the neural
network according to the following formula [40]:

Wﬁ(n+1):Wji(n)+;7~8j-X,-+-AWji(n). (8)

In equation (8),  is the number of times, # is the learning
rate, §; means the error signal, and a is the expression of
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TaBLE 3: Mathematical forms for the construction of the reference matrix and the comparative matrix.

Compressive strength: X, (k) =X, (1), X, (2), Xy (3), ..., X, (600)

Reference matrix

Cement type: X; (k) =X; (1), X; (2), X; (3), ..., X; (600)
W/B:X, (k)=X, (1), X, (2), X5 (3), ..., X, (600)
Sand ratio: X5 (k) =X5 (1), X5 (2), X5 (3), ..., X5 (600)

Dosage of water-reducing agent: X, (k) =X, (1), X4 (2), X4 (3), ..., X4 (600)

Curing age: X5 (k) =Xs (1), X5 (2), X5 (3), ..., X5 (600)
Slag content: X¢ (k) =Xs (1), X6 (2), X5 (3), ..., Xs (600)
Fly ash content: X, (k) =X, (1), X7 (2), X; (3), ..., X; (600)
MK content: Xg (k) =Xg (1), X5 (2), Xg (3), ..., Xg (600)
Si/Al of MK : X, (k) =Xo (1), X (2), Xg (3), ..., Xy (600)

Comparative matrix

Analysis of data based on GRA

0.98 T T T T T T
Cement type 0.977
W/B 0.959 ¢ Sand ratio 0.964
L 096 ¢ m
g
o MK content 0.939
g content 0.
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FIGURE 2: The grey correlation grade values of nine factors.

TaBLE 4: The characteristics of dataset (600 groups of data selected from 18 research articles).

Factors Minimum values Maximum values Average Standard deviation
W/B 0.18 0.60 0.35 0.10

Sand ratio (%) 0.33 1 0.45 0.09
Cement type (four types) 1 4 — —

Slag content (%) 0 20 0.83 0.83

MK content (%) 0 20 9.01 6.90
Dosage of water-reducing agent (%) 0 35 0.83 0.84
Curing age (days) 1 180 37.37 43.48
Compressive strength (MPa) 8.93 130.85 68.55 22.68

‘ 8;=(t;=X;)- X;- (1-X;). ©)

w

Activation
function

FIGURE 3: A simple artificial neuron model.

momentum factor. The difference between the target value
and the true value can be evaluated by the error signal §; for
an output unit j [41]:

The error signal §; is a function of the error signals of
those units in the next higher layer, connected to unit j and
the weights of those connections [9]:

8;=X;-(1 —Xj);akwkj. (10)

As shown in equation (10), it is worth noting that the ky,
layer means the layer in front of the jy, layer. The training
procedure should be working until the iterative process
converges. The updated connection weights are captured
from the final trained network [42].

Although the BP algorithm has been widely used, it still
has some shortcomings, such as long training time and easy
to fall into local minimum. Therefore, some optimized
algorithms were developed by researchers for combining
with the ANN model to get a better prediction
performance.
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5. Parameters Optimized by Genetic Algorithm

5.1. Genetic Algorithm. The training process of ANN is a
procedure of optimization of model parameters, and it starts
from a random initial solution and iteratively finds out the
optimal parameter values. During each iteration, the error
function is first calculated at the current gradient, and then
the search direction is determined based on the gradient.
However, on this occasion, the optimization of parameters is
likely to sink into local minimum (e.g., using the BP al-
gorithm). At this point, the genetic algorithm (GA) was
chosen for training the networks to better approximate the
global minimum [43].

As one of the most commonly used intelligent optimi-
zation algorithms, GA is a mathematical computation model
simulating the natural selection of Darwin’s biological
evolution theory and the process of biological evolution of
genetic variation. Moreover, it is a characteristic method-
ology inspired by the physical phenomenon of biological
evolution (selection, crossover, and mutation) to seek the
global optimal solutions in space. In the field of artificial
intelligence, it produces significant influence on optimiza-
tion main parameters of the artificial neural network (ANN)
[44]. Thus, for creating a powerful model with a higher
prediction accuracy, it is necessary to utilize the genetic
algorithm to optimize initial weights and thresholds of the
ANN model.

5.2. The Operating Procedure of GA. Figure 5 shows the main
operation procedure of GA used for the optimization of
ANN. GA’s key elements such as population size, numbers
of generation, and fitness function and key operation pro-
cedure including selection, evolution, and mutation directly
affect the final optimization result, making them definitely
important in the operating procedure.

In this study, GA was combined with ANN to get its
desired weights and thresholds. During the optimization
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process, the initial weights and thresholds of the network
could be construed as individuals with prediction errors of
the initial ANN as its genetic information. Then, the genetic
operation of selection, crossover, and mutation is repeated,
to search the optimal individual, namely, the optimal
weights and thresholds of ANN (GA-ANN).

6. The Extreme Gradient Boosting
Methodology (XGBoost)

XGBoost is a machine learning algorithm based on decision
tree with a process of gradient promotion [45]. It is one of
the most successful machine learning algorithms at present
and has been extensively used by researchers in some
competitions of machine learning attributing to its excellent
learning performance and fast calculation speed, even more
used than the popular deep neural network method. In
addition, the XGBoost algorithm is generally considered to
be superior to ANNs in processing small- and medium-sized
structured data although ANNs show excellent performance
in analyzing unstructured model data such as pictures, text,
audio, and video.

In a word, the main calculation process of XGBoost is an
accumulation of iterative results after T times, as shown in
equation (11) [46], where i is the number of samples; T'is the
number of decision trees, and ?i(T) is the final predicted value
of the iy sample in the Decision tree with number
T. Function f, (x;) represents the calculation formula of the
i, sample in the T decision tree equation (12)), w is the
weight vector corresponding to the leaf node, and g(x;) is a
function of the feature vector x; mapped to the leaf node of
the decision tree.

T
70 =9 + Y £ (x;), wheref, (x) =" =0,  (11)

i
t=1

£ (%) = g (x)- (12)

To better understand the running process of the
XGBoost model, the training process of a traditional deci-
sion tree was first introduced, as shown in Figure 6, indi-
cating W/B, curing age, and sand ratio (not all the main
factors for simple example), as the decision items for pro-
cessing the data of four samples. The training process steps
are as follows: (i) sample 1 is screened out when the limit is
W/B > 0.4; (ii) sample 3 is separated from other samples for
curing age <3; (iii) samples 2 and 4 are divided by the sand
ratio of 0.3; and (iv) a traditional decision tree completes an
accurate prediction model with some potential problems.

Figures 7-9 show the training process of the XGBoost
model. Figure 7 represents the Tree 1 with W/B as the
discriminant condition, similar to the first branch of Fig-
ure 6. The difference is that the output results of the leaf
nodes are averaged to represent the training output values of
the four samples (i.e., w, (x) wherei=1, 2, 3, 4), and then the
training error of each sample is obtained by calculating the
deviation of the predicted value from the true value. The
obtained errors in Tree 1 will be used as the input values of
Tree 2 (Figure 8) and the curing age (<3 or >3) will act as the
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Training set Testing set

Factors Sample 1 Sample2 Sample3 Sample4 Sample 5
W/B 0.45 0.4 0.4 0.4 0.4
Sand ratio 0.4 0.21 0.21 0.35 0.21
Cement type 3 3 3 3 3
(four types)

Slag content (%) 10 20 10 0 10
MK content (%) 0 0 0 0 0
Dosage of water-

reducing agent (%) 2 2 1 2
Curing age (days) 3 7 3 28 7
Compressive ® ® ® ®

strength (MPa) 70 81 79 80 Unknown

Note: 70' 81279° 80* in the decision tree on the left
represents the compressive strength of the first,
second, third and fourth samples respectively

FI1GURE 6: The training process of a traditional decision tree.

discrimination standard. Then, the value of w,,, will be
obtained based on the average value of decided errors. The
predictive values of samples were obtained by the sum-
mation of w, and w,. The calculated training errors in Tree 2
will be used as input into Tree 3. Similarly, a decision tree
based on sand ratio was established, as shown in Figure 9,
and the average values are all 0, i.e., w3 () = 0, where i=1, 2,
3, 4. Then, the final predicted values of samples 1, 2, 3, and 4
were calculated by equation w; () + w;(x) + @3(x,) and found
as 69.5, 80.5, 79.5, and 80.5 MPa, respectively. At this point,
the model training is finished. You can find that the output
values in XGBoost are different than those in the traditional
decision tree. To be more specific, the predictive values of
four samples are not equal to their true values in XGBoost

and thus seem to be worse than the traditional decision tree;
however, it can solve a big problem of traditional decision
tree, i.e., overfitting.

For instance, the traditional decision tree and the
XGBoost were used, respectively, to predict the strength
value of sample 5, indicating that the traditional decision
tree will output the strength value of 81 MPa and that by the
XGBoost model is 80.5MPa. The following analysis can
prove the competitive prediction ability of XGBoost.
Compared with sample 2, except that the slag content of
sample 5 is less than sample 2, other variables have exactly
the same values. In combination with the general con-
clusion of the influence of slag content on the concrete
strength, the compressive strength of sample 5 was
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FIGURE 7: The training process of an XGBoost model (Tree 1).
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FIGURE 9: The training process of an XGBoost model (Tree 3).

obtained as predicted to be less than 81 MPa. In the same
way, it was easy to know that the strength value of sample
5 will be more than that of sample 3 (i.e., 79 MPa) on
account of the increasing curing age of samples under the
same mix proportion. Hence, the approximate range of
the strength of sample 5 will be in the range 79-81 MPa,
indicating that the predictive result of XGBoost
(80.5MPa) is more reasonable and the predictive per-
formance of XGBoost is superior than that of the tradi-
tional decision tree. This phenomenon is caused by the
overfitting training process of the traditional decision
tree. It is sometimes inclined to focus on the character-
istics of the training data and summarizes the internal
rules of the training set (four samples). However, for the
new test dataset (sample 5), it cannot reveal its internal
change rule. Therefore, a single decision tree model is not
generalizable.

7. Setting Structural Parameters and Learning
Rate of ANN, GA-ANN, and XGBoost

In this study, the prediction performances of ANN, GA-
ANN, and XGBoost were tested and compared. In order to
avoid the influence of network structures on the ability of
prediction models, the structural parameters of ANN and
GA-ANNs were fixed, namely, with the same hidden layers
and nodes, as listed in Table 5. Because XGBoost is a
definitely different model with a tree structure compared
with ANN and GA-ANN, it has different parameters, but
some parameters similar to those in ANN and GA-ANN
were set.

The programming of ANN, GA-ANN, and XGBoost was
performed on the MATLAB 7.0 platform, combined with the
dataset (600 groups of data selected from 18 research papers)
prepared for the training and testing prediction models.
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TaBLE 5: Setting parameters of ANN, GA-ANN, and XGBoost.

Structural parameters ANNs GA-ANNs Hyperparameters XGBoost
Input layer nodes 6 6 Maximum depth 6
Hidden layers 2 2 Minimum child weight 1
Hidden layer nodes 80 (first) 60 (second) 80 (first) 60 (second) Gamma 0
Output layer nodes 1 1 Subsample 1
Training parameters Colsample by tree 1
Epoch times 10 10 Regularization alpha 0
Initial learning rate 0.01 0.01 Initial learning rate 0.01
Maximum iterations 100 100 Number of iterations 30

The prediction ability of those models was tested by
comparing the value of absolute fraction of variance (R*),
root mean squared error (RMSE), and mean absolute per-
centage error (MAPE). The detailed results are as follows.

8. Results and Discussion

8.1. Comparison of R?, RMSE, and MAPE of ANN, GA-ANN,
and XGBoost with Random Testing Dataset. To train and test
those prediction models, 600 groups of data after pre-
processing were randomly divided into a training dataset
(containing 480 groups of data, i.e., 80% of the total dataset)
and a testing dataset (containing 120 groups of data, i.e., 20%
of total dataset). The values of the absolute fraction of
variance (R%), root mean squared error (RMSE), and mean
absolute percentage error (MAPE) were adopted to com-
prehensively evaluate the prediction performances of these
models. The detailed equations are as follows:

2 _ (nYr 40, - ¥ 638, 0)

(n Z?:l t12 - (Z?:l ti)z)(n Z?:1 Oi2 - (Z?:l Oi)z)’

1 n
RMSE =\~ 3" (- 0,
i=1
Tt — 0.
MAPE = - Mx 100 |,
n Yiati

(13)

where t; is the true value, O; is the predictive value, and n is
the total number [41, 47].

Figure 10 shows the values of R*>, RMSE, and MAPE of
the three prediction models by using the test dataset. It is
easy to find that the values of R*, RMSE, and MAPE of ANN
are 0.708, 13.38 MPa, and 9.72%, respectively. With the
parameters optimized by the genetic algorithm (GA), the
prediction performance is better attributing to the better
values of R* (0.837), RMSE (11.74 MPa), and MAPE (8.26%)
of GA-ANN. The third image shows the prediction results of
XGBoost. As we know, XGBoost is often known to deal with
the classifying problems owing to its excellent performance,
but surprisingly, it has also achieved good performance for
dealing with regression prediction problems. As shown in
Figure 10 (the third), the data points are more concentrated
on the line y=x and nearly without the deviation
beyond + 25 MPa (the red dotted lines) of predictive values

compared with target values. The results of R* (0.872), RMSE
(8.62 MPa), and MAPE (8.25%) are also good, better than
those obtained by GA-ANN.

The above analysis and discussion indicate superior
prediction performance of XGBoost than those by ANN and
GA-ANN; however, the results were obtained based on the
random testing dataset, indicating that the dataset applied to
XGBoost is different with those of ANN and GA-ANN. A
special case where the dataset applied to XGBoost is easy to
predict was tested, exhibiting good result. In order to
eliminate the possibility of that special case and get a more
persuasive conclusion, the R*, RMSE, and MAPE were tested
by using the same testing dataset as described in the fol-
lowing section.

8.2. Comparison ofRZ, RMSE, and MAPE of ANN, GA-ANN,
and XGBoost with the Same Testing Dataset. The R*, RMSE,
and MAPE values were calculated thrice by using the three
datasets, i.e., dataset 1, 2, and 3 with 120 data in each dataset
generated by random selection. In order to easily compare
the deviation degree of predictive values (red hollow points)
and true values (black solid points) of ANN, GA-ANN, and
XGBoost, the diagrams of the results are presented side-by-
side (as shown in Figure 11). It is obvious that the predictive
values of XGBoost have the maximal degree of coincidence
with true values shown in Figure 11, and the degree of
coincidence of those points in the ANN is the lowest. It is a
subjective conclusion; therefore, the objective results of
ANN, GA-ANN, and XGBoost were compared. The specific
R? values obtained by the ANN, GA-ANN, and XGBoost are
0.708, 0.833, and 0.874, respectively. Second, for the same
120 groups of testing data, the RMSE values obtained by the
ANN, GA-ANN, and XGBoost are 13.377, 9.413, and
10.982 MPa, respectively. Lastly, the MAPE values obtained
by the ANN, GA-ANN, and XGBoost are 9.733%, 9.289%,
and 9.544%, respectively.

The values in Figure 11 indicate that only the R* value
obtained by XGBoost is the highest, whereas the RMSE and
MAPE obtained by the GA-ANN are the lowest than those
obtained by the ANN and XGBoost, indicating better pre-
diction performance of GA-ANN than that of XGBoost.
However, the results obtained from dataset 2 and dataset 3,
as shown in Figures 12 and 13, respectively, show different
conclusions. For getting the comprehensive results of
comparison, the average R>, RMSE, and MAPE values were
calculated by the ANN, GA-ANN, and XGBoost. Table 6
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FiGURrE 12: Predictive and true values of ANN, GA-ANN, and XGBoost for dataset 2.

shows the average R” values (i.e., R) of the ANN, GA-ANN,
and XGBoost as 0.674, 0.829, and 0.880, respectively, in-
dicating that the highest absolute fraction of variance (R*) by
the XGBoost. The RMSE and MAPE values obtained by
XGBoost were the best. The average RMSE value of the

ANN, GA-ANN, and XGBoost was 15.569, 10.530, and
9.532 MPa, respectively, and the average MAPE value of the
ANN, GA-ANN, and XGBoost was 11.224%, 9.140%, and
8.718%, respectively, certainly verifying the superior pre-
diction performance of XGBoost.
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TaBLE 6: Individual and average values of the R?, RMSE, and MAPE of ANN, GA-ANN, and XGBoost.
R? RMSE (MPa) MAPE (%)
R; (i=1,2,3) R M; (i=1,2,3) M A; (i=1,2,3) A
0.708 13.377 9.733
ANN 0.594 0.674 19.509 15.569 14.128 11.224
0.720 13.820 9.811
0.833 9.413 9.289
GA-ANN 0.837 0.829 11.739 10.530 8.257 9.140
0.818 10.437 9.875
0.874 10.982 9.544
XGBoost 0.893 0.880 8.996 9.532 8.353 8.718
0.872 8.619 8.258
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The above analyses and discussions of the results
obtained by using the random testing dataset and three
same testing datasets clearly indicate more stable pre-
diction performance of XGBoost with the highest

FIGURE 14: Interface for inputting parameters.

prediction accuracy. Therefore, XGBoost is a recom-
mended prediction model and could be used for pre-
dicting the compressive strength of concrete containing
slag and metakaolin.
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FIGURE 16: The results of compressive strength prediction.

9. Application Software for Easy Prediction
Based on XGBoost and GRA

At present, the design and development of application
software based on various prediction models is receiving
increasing attention. This behavior can encourage to develop
software from theory to practical application. Therefore, in
this study, C# programming was utilized for integrating the
involved research results and methods into an application
software (named PSCS V1.0) with straightforward interac-
tive interfaces to help users without the knowledge of
MATLAB to predict and analyze easily and efficiently. With
the help of PSCS, users can just input the dimension of
sample (unifying the compressive strength of concrete under
different dimensions automatically) and main parameters
(the parameters obtained by GRA, i.e., type of cement, W/B
ratio, sand ratio, slag content, MK content, dosage of water-
reducing agent, and curing age), as shown in Figure 14. After
a short wait time for computing of XGBoost (Figure 15), the
final prediction results obtained are shown in Figure 16.

PSCS is a short but strong system and could be used for
predicting the compressive strength of concrete containing
slag and metakaolin. As the dataset used for the training
XGBoost model was collected from various journal articles,
it can ensure the applicability for different cases. In the
following study, relevant literature data were collected
continually for building up a complete and more compre-
hensive database.

10. Conclusions

In conclusion, the proposed novel predictive system
XGBoost was successfully applied to predict the compressive
strength of concrete containing slag and metakaolin, and its
performance was compared with the commonly used ANN
and optimized GA-ANN models. The datasets used for the
training and testing three models were selected from 18
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research articles (containing 600 groups of data), with the
treatments of unifying the compressive strength of concrete,
normalization of data, and selection of main influencing
factors. With the help of GRA, the main input parameters
such as the type of cement, W/B ratio, sand ratio, slag
content, MK content, dosage of water-reducing agent, and
curing age were determined scientifically and reasonably.
After that, the prediction models were trained and tested by
calculating the values of R*>, RMSE, and MAPE. The main
results and conclusions can be drawn as follows:

(1) For the random testing dataset, the R2, RMSE, and
MAPE obtained by the ANN are 0.708, 13.38 MPa,
and 9.72%, respectively, and those obtained by the
GA-ANN are 0.837, 11.74 MPa, and 8.26%, respec-
tively, and the results obtained by XGBoost are 0.872,
8.62 MPa, and 8.25%, respectively, proving a supe-
rior prediction performance of XGBoost than those
of ANN and GA-ANN.

(2) XGBoost also exhibited superior prediction perfor-
mance for prediction of the models based on the
same testing dataset. The average R values of ANN,
GA-ANN, and XGBoost are 0.674, 0.829, and 0.880,
respectively. For the RMSE and MAPE, the average
RMSE values of the ANN, GA-ANN, and XGBoost
are 15.569, 10.530, and 9.532 MPa, respectively, and
the average MAPE values of the ANN, GA-ANN,
and XGBoost are 11.224%, 9.140%, and 8.718%,
respectively. Therefore, XGBoost was the best pre-
diction model for testing the same datasets.

(3) Based on the analyses and discussions obtained by
using the random testing dataset and the same
testing datasets, XGBoost exhibited better perfor-
mance than the ANN and GA-ANN for prediction
capability. Therefore, XGBoost is the best method for
predicting the compressive strength of concrete
containing slag and metakaolin in this study. Lastly,
in order to make XGBoost user friendly and easy to
operate, the application software (PSCS V1.0) was
encoded by C# in this study, making it a short but
strong system that could predict the compressive
strength of concrete containing slag and metakaolin
efficiently.
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