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+is paper proposes a novel grey wolf optimization-extreme learningmachine model, namely, the GWO-ELMmodel, to train and
predict the ground subsidence by combining the extreme learning machine with the grey wolf optimization algorithm. Taking an
excavation project of a foundation pit of Kunming in China as an example, after analyzing the settlement monitoring data of cross
sections JC55 and JC56, the representative monitoring sites JC55-2 and JC56-1 were selected as the trainingmonitoring samples of
the GWO-ELM model. And three kinds of GWO-ELM models such as considering the influence of time series, influence of
settlement factors, and after optimization were established to predict the ground settlement near the foundation pit.+e predictive
results are that their average relative error and average absolute error are ranked from large to small as GWO-ELMmodel based on
time series, GWO-ELM model based on settlement factors, and optimized GWO-ELM model for the three kinds of GWO-ELM
models at monitoring points JC55-2 and JC56-1. Accordingly, the optimized GWO-ELM model has the strongest
predictive ability.

1. Introduction

Responding to the demands of domestic social development,
China constantly perfects the construction of urban under-
ground space, and most of the foundation pit works involved
are located in the central area of the city and belong to the deep
foundation pit engineering. Due to the external conditions such
as design and construction way, which can lead to settlement
occurring in nearby area during the construction process, thus
it will more or less affect nearby buildings, traffic road, and
pipeline [1–3]. In order to reduce these negative impacts, it is
necessary to choose scientific response policy and continuously
promote the construction of engineering informatization;
thereby, the settlement data around the project can be collected

timely, and the impact on nearby buildings and facilities can be
analyzed. +us, it can be seen that the key technology in them
includes the prediction and study of the settlement in the
vicinity area of the project.

Grey theory predictionmethod, complex theory method,
and parameter accumulation method are the most common
methods for predicting sedimentation [4–8]. +e most
popular used method is the grey theory prediction method
which has a good effect on sequences including strong
exponential laws and can explain the case of monotone
transformation. However, it is difficult for this method to
describe well when swinging. For example, the GM (1, 1)
model is selected to predict the target of swing data, which
will cause great errors [9, 10].
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Different external environmental conditions have dif-
ferent impacts on the settlement of the area near the project;
the final monitoring data is the result of the combined action
of all the conditions and therefore has obvious nonlinear
characteristics. So, in order to ensure the accuracy of the
prediction results and as far as possible reduce the effects on
nearby facilities, choosing good nonlinear mapping models
is particularly important [4, 11]. Recently, some researchers
chose to use neural network, BP neural network model
[12–14], and support vector machine (SVM) model [15] to
predict deformation of the supporting and bottom settle-
ment, but almost did not involve the settlement in the nearby
area during construction.

Although these intelligent algorithms have made some
achievements [16–18], they also have some limitations. For
example, BP neural network learning algorithm must set the
network training parameters in the algorithm in the ini-
tialization, which usually leads to appearance of a case of
locally optimal solution; SVM model has better prediction
effect than neural network model, but the model itself has
some defects such as difficulty in parameter selection. Ex-
treme learning machine (ELM) is a new algorithm proposed
in recent years [19, 20]; it is based on single hidden layer
feedforward neural networks (SLFNs) and solved the
problem that the number of hidden layers in the neural
network is difficult to determine. Recent research regarding
the application of ELM in geotechnical engineering is suf-
ficiently applied, such as predicting compressive strength of
lightweight foamed concrete using extreme learning ma-
chine model [21], prediction of shield tunneling-induced
ground settlement using machine learning techniques [22],
and landslide displacement prediction based on extreme
learning machine [23]. Compared with traditional predic-
tion models such as BP neural network and SVM, ELM
learns faster, has good generalization ability, and produces
the unique optimal solution. ELM can greatly improve the
accuracy of classification by setting appropriate model pa-
rameters [24, 25]. In conventional methods, these param-
eters are mainly processed by grid search method, gradient
descent method, particle swarm optimization (PSO) of
metaheuristic search algorithm, and genetic algorithm (GA)
of metaheuristic search algorithm [26, 27]. Grey wolf op-
timizer (GWO) [28] is a new metaheuristic algorithm that
imitates the hunting behavior of wolf pack; GWO has the
advantages of simple principle, few adjustment parameters,
strong global search ability, and so on. In the study of
combinatorial optimization problems, it has been proven to
have significant advantages and has been widely applied in
various fields [29–33].

In this paper, a new GWO-ELM model is established by
combining the grey wolf algorithm with the extreme
learning machine. Taking an excavation project of a foun-
dation pit in Kunming as an example, after analyzing the
settlement monitoring data of cross sections JC55 and JC56,
the strong representative monitoring sites 55–2 and 56–1
were selected as the training monitoring samples of GWO-
ELM model. And three kinds of GWO-ELM models such as
considering the influence of time series and considering the
influence of settlement factors and after optimization were

established to predict the ground settlement near the
foundation pit.

2. Predictive Model of Ground Settlement of
Foundation Pit Excavation Based on GWO-
ELM

2.1. Extreme Learning Machine Model. ELM is a training
method based on single hidden layer forward neural net-
works (SLFNs), which can calculate and analyze the output
weight of the network. And this process only needs to set the
threshold of hidden layer neurons to obtain the unique
optimal solution and has a high learning speed. For N ar-
bitrary and different samples (xi, yi), where
xi � [xi1, xi2, . . . , xin]T ∈ Rn andyi

� [yi1, yi2, . . . , yin]T ∈ Rm, there are L hidden layer neuron
nodes, and the output of the standard feedforward neural
network whose excitation function is g (x) can be expressed
as

fL(x) � 
L

i�1
βig ai · xi + bi( , xi ∈ R

n
,

ai ∈ R
n
, βi ∈ R

m
,

(1)

where ai � [ai1, ai2, . . . , ain]Tis the input weight from the
input layer to the nodal point of the ith hidden layer; biis the
threshold value of the ithneuron in the hidden layer;
βi � [βi1, βi2, . . . , βim]Tis the output weight of connecting the
ithhidden layer node; ai · xiis the inner product of
vectoraiandxi; and the excitation function g (x) can be se-
lected as “Sigmoid,” “RBF,” or “Sine” and so forth.

If the standard feedforward neural network with L
hidden layer neurons and excitation function g (x) can be
with zero error to approach these N samples, then there
existai, bi, and βi resulting in

fL(x) � 
L

i�1
βig ai · xi + bi(  � yi, i � 1, 2, · · ·, L. (2)

Equation (2) can be simplified to

Hβ � Y, (3)

where H is the output matrix of the neural network. In ELM,
the output weight and threshold are randomly given, and the
hidden layer matrix H becomes a definite matrix, which
makes the training of feedforward neural network transform
to a problem of finding the least square solution of the
output weight matrix; the output weight matrix β is

β � H
+
Y, (4)

where H+ represents the Moore–Penrose generalized in-
verse matrix of the hidden layer output matrix H, which can
be obtained analytically by orthogonal projection or singular
decomposition method and so on.

2.2. Grey Wolf Optimization. Grey wolf optimization
(GWO) is a new swarm intelligent optimization algorithm
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proposed by Mirjalili et al. which reproduces the hunting
behavior of the grey wolf group by simulating the process of
wolf pack tracking, surrounding, chasing, attacking prey,
and such behaviors, so as to achieve the goal of optimization.
GWO has the characteristics of simple principle, few ad-
justment parameters, strong global search ability, and so
forth.

+e searching optimal process of GWO is that a pack of
grey wolves is randomly generated in the search space,
according to the fitness high-low degree ofα, β, and δwolves
of the grey wolf group to evaluate and locate the location of
the prey. +e rest of the individuals take this as the standard
and calculate the distance between themselves and the prey
to complete the prey capture and realize the process of
searching optimal.

Definition 1. (social hierarchy). GWO model has a strict
social class, which can be divided intoα, β, δ, andωwolves on
the basis of the high and low level of the social class; the
social rank in the algorithm is reflected in the fitness high-
low degree.

Definition 2. (surrounding prey). In the process of wolf pack
hunting, they need to surround the prey and determine the
location of the prey; the mathematical equations of encir-
clement behavior are as follows:

D � C · Xp(w) − X(w)


,

X(w + 1) � Xp(w) − μ · D,

C � 2 · r1,

μ � 2a · r2 − a,

(5)

where w is the current iteration number; XP(w) is the
position vector of the prey in generation w; X(w)is the
position vector of individual grey wolf in generation w;
X(w + 1) is the position vector of individual grey wolf in
generation w + 1; C is coefficient vector; r1, r2belong to
random vector, and its value range is [0, 1]; and μ is a vector
of convergence; the value of a declines linearly from 2 to 0
during the iteration.

Definition 3. (hunting). +e performance of wolf pack
hunting process is hunting location information changed
constantly. Specifically, in the iterative process, the algo-
rithm saves the location of the best three wolves (α,β, andδ)
currently obtained, and according to their information to
update the location of other search unit wolves (ω) to obtain
the optimal solution. Hunting behavior can be expressed as

Dk � Ci · Xk(w) − X(w)


,

Xi � Xk − μi · Dk,

Xp(w + 1) �
X1 + X2 + X3

3
,

(6)

where k � α, β, c; i � 1, 2, 3; and Xp(w + 1)is the position
vector of the grey in generationw + 1.

2.3. Forecasting Based on the GWO-ELM Model. +is paper
combines the grey wolf optimization algorithm with the
extreme learning machine to train and predict the ground
subsidence and proposes a grey wolf optimization-extreme
learning machine model, namely, the GWO-ELM model.

+e basic process is shown in Figure 1. Different states of
influence and corresponding cumulative settlements are
processed by the searching optimal process of GWO. If its
suitability is verified, the relevant influencing factors are
input into the ELM model, and finally the cumulative dis-
placement prediction value is output.

3. The Construction of the GWO-ELM Model
Based on Different States of Influence

3.1. Engineering Case Overview. In this paper, a foundation
pit excavation project in Kunming is selected as a research
case, which covers an area of 1.98 km2. +e ground subsi-
dence measurement near the foundation pit adopts GPS
monitoring technology, and the monitoring cross sections
are divided into 110, which are named after JC1 to JC110 and
set around the project.

+e interval between the section and the section is
70–80m, one cross-section has three monitoring points, and
a total of 330 monitoring points are set. +e research goal of
this paper is a foundation pit in the engineering area, with a
total area of 2465m2, a perimeter of 213m, and a design
depth of 7.6m.+e supporting method of the foundation pit
is a curtain formed of arrangement of cement-soil mixing
piles on the inside, and the formation stratum is composed
of artificial fill, soft plastic clay, mucky clay, and slightly
dense silty soil; the groundwater stable water level buried
depth is 0.6–1.4m. +e settlement of the ground near the
foundation pit is measured every seven days from June 1,
2019, until the end of November 30 and is monitored a total
of 27 times. Figure 2 shows the measured values of the
settlement of the cross sections JC55 and JC56. +e data of
the highly representative monitoring points of JC55-2 and
JC56-1 are selected from them, and the GWO-ELM model
considering different states of influence is constructed to
predict ground settlement near the foundation pit.

3.2. Construction of th GWO-ELM Model Based on the In-
fluence of Time Series. +e first principle for parameter
setting of GWO-ELM based on the influence of time series is
to ensure accurate prediction accuracy, and on this basis, the
model is simplified and the complexity is reduced to avoid
the calculation speed being too slow. After the construction
of the foundation pit starts, the settlement volume of the
nearby ground will increase with the construction time. +e
reason for this phenomenon is that the construction of the
foundation pit will cause the stress release of the nearby soil
to change. +erefore, it is speculated that the construction
time of the foundation pit has a certain correlation with the
ground settlement near the foundation pit, and through the
universal law of past data to predict settlement volume.

In this paper, the settlement volume data of a certain
measurement are represented by the sequenceW (1),W (2),
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..., W (n), and the measurement data after this time are
represented by W (n+ 1), W (n+ 2), ... . Select m mea-
surement data as the input layer of the model in W (1), W
(2), ..., W (n), thereby forming a training sample, and at the
same time, the m+ 1 measurement value W (m+ 1) was set
to themodel output value, constitute a total of n-m groups of
training samples and prediction target values, and start
training; after that, W (n−m+ 1), W (n−m+ 2), ..., W (n)
input into the trained GWO-ELM model, the predicted
value of W (n+ 1) can be calculated out (Figure 3).

When the number of the input layer nodes is set to 12, the
amount of computation generated by the GWO-ELM neural
network model considering the influence of time series is not
large, and at the same time, it can ensure better accuracy of
settlement prediction. To a great extent, themodel performance
was affected by the quantity of hidden layers and the number of
nodes in the initial structure of the model. After comparing the
training time and operation result of different nodes between
the single hidden layer and the two hidden layers, it is found
that the double hidden layer does the prediction accuracy and
meets the requirements; meanwhile, the training time required
is shorter. And the number of nodes with the best performance
should be set to 10. In summary, the GWO-ELMmodel based
on the influence of time series finally adopts the 12-10-2
structure.

3.3. Construction of the GWO-ELM Model Based on the In-
fluence of Settlement Factors. +ere are many factors that
affect the ground settlement near the foundation pit, and the
influence degree of each factor on the settlement is unsure
(Figure 4). It is very difficult for the previous prediction
methods to accurately predict the amount of settlement
based on these influencing factors. And the advantage of the
GWO-ELM model based on the influence of settlement
factors is that it has a better nonlinear fitting function, so as
to obtain a predicted value with higher accuracy.

Different states
of influence

The accumulative
settlement

The searching optimal
process of GWO Not satisfied

Build ELM model

Suitability
verification

Predictive values of
the accumulative

displacement

Figure 1: Flowchart of predicting ground settlement of foundation pit excavation with GWO-ELM model.
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+e input layer of the GWO-ELM model based on the
influence of settlement factors contains a total of 6 influencing
factors (as shown in Figure 5).+ese factors are used as the input
layer of the model, and the actual measured value of the for-
mation settlement is the output layer of the model. +e number
of nodes in the hidden layer of the model is consistent with the
above model, and the structure of the GWO-ELMmodel based
on the influence of settlement factors is 6-10-2 structure.

In Figure 5, c is soil weight; φ is internal friction angle; c is
soil cohesion; k is weighted average of formation permeability
coefficient; h is deep excavation depth; d is the distance between
the monitoring point and the groove side of the foundation pit.

3.4. Construction of the Optimized GWO-ELM Model Based
on Time Series and Settlement Factors. By optimizing the
GWO-ELMmodel based on the influence of settlement factors,
adding the previous settlement data in the input layer, so that
the input value includes the formation parameters near the
foundation pit, construction conditions, and real-time settle-
ment monitoring data; thus, the design of model is optimized.
As shown in Figure 6, compared with the GWO-ELM model
only considering the influence of sedimentation, the GWO-
ELM model after optimization added the parameters of three
sedimentation time nodes before the prediction target, which
were represented by z1, z2, and z3, respectively. +e model
structure after optimization adopted the 9-10-2 structure.

4. Analysis of Settlement Prediction Results of
the GWO-ELM Model Based on Different
States of Influence

In this paper, the settlement monitoring points JC55-2 and
JC56-1 are selected for GWO-ELMmodel learning. Eighteen
settlement datasets from June 1, 2019, to October 5, 2019,
were used as training samples for training (Figure 7). And

Ground settlement
during excavation

Spatial
effect

Time effect

Soil

Construction factors

Supporting structure

Monitoring point location

Soil weight γ, internal friction angle φ, soil cohesion c

Groundwater level and permeability coefficient

External load

Excavation depth

Supporting structure type

Design parameters of supporting structure

Axial force of anchor (inner support)

Anchor (inner support) layers

Figure 4: Influencing factors of ground settlement near the foundation pit.
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Figure 5: GWO-ELM model structure based on the influence of
settlement factors.
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nine settlement datasets from October 12, 2019, to No-
vember 30, 2019, were used as test samples.+e following are
the prediction results of the GWO-ELM model based on
different states of influence.

4.1. Settlement Results Prediction Analysis of the GWO-ELM
Model Based on Time Series. It can be seen from Figure 8
and Table 1, considering the influence of time series, the
prediction results of the GWO-ELM model for the set-
tlement monitoring sites JC55-2 and JC56-1 are relatively

close to the actual monitoring settlement results. At the
monitoring point JC55-2, the absolute error range of the
actual accumulative settlement and the predicted value is
within 0.98m–4.70m, and the average absolute error is
2.42m; the relative error range is within 8.79%–43.80%,
and the average relative error value is 25.40%. At the
monitoring point JC56-1, the absolute error range of the
actual accumulative settlement and the predicted value is
within 2.45m–3.39m, and the average absolute error is
2.84m; the relative error range is within 7.13%–9.52%, and
the average relative error value is 8.41%.
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Figure 7: Comparison of GWO-ELM model prediction results based on different influence states.
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4.2. Settlement Results Prediction Analysis of the GWO-ELM
Model Based on Settlement Factors. As can be seen from
Figure 9 and Table 2, considering the influence of settlement
factors, the prediction results of the GWO-ELM model for the
settlement monitoring points JC55-2 and JC56-1 are close to the
actual monitoring results. At the monitoring point JC55-2, the
absolute error range of the actual cumulative settlement and the
predicted value is within 0.95m–1.62m, and the average ab-
solute error is 1.34m; the relative error range is within 8.22%–
19.47%, and the average relative error value is 14.26%. At the
monitoring point JC56-1, the absolute error range of the actual
cumulative settlement and the predicted value is within
1.30m–1.85m, and the average absolute error is 1.64m; the
relative error range is within 4.00%–5.44%, and the average
relative error is 4.86%. Compared with the GWO-ELM model
that only considers the influence of time series, the prediction
accuracy of this model is higher.

4.3. Settlement Results Prediction Analysis of the Optimized
GWO-ELMModel. It can be seen from Figure 10 and Table 3

that the prediction results of the optimized GWO-ELM
model for settlement monitoring points JC55-2 and JC56-1
are very close to the actual monitoring results. At the
monitoring point JC55-2, the absolute error range of the
actual accumulative settlement and the predicted value is
within 0.35m–0.65m, and the average absolute error is
0.47m; the relative error range is within 3.22%–7.97%, and
the average relative error value is 4.98%. At the monitoring
point JC56-1, the absolute error range of the actual cu-
mulative settlement and the predicted value is within
0.56m–0.74m, and the average absolute error is 0.66m; the
relative error range is within 1.72%–2.28%, and the average
relative error value is 1.95%. Compared with the GWO-ELM
model that only considers the influence of settlement, the
prediction accuracy of this model is higher.

4.4. Comparison of GWO-ELM Model Prediction Errors of
Different Influence States. As shown in Figures 11(a) and
11(b), for the three GWO-ELMmodels at monitoring points
JC55-2 and JC56-1, their average relative error and average

Table 1: Settlement results prediction of GWO-ELM model based on time series.

Time
Accumulative
settlement of

JC55-2

Accumulative
settlement of

JC56-1

Predictive
results of
JC55-2

Predictive
results of
JC56-1

Absolute
error of

JC55-2 (m)

Absolute
error of

JC56-1 (m)

Relative
error of

JC55-2 (%)

Relative
error of

JC56-1 (%)
10/12 −8.18 −32.54 −10.58 −29.54 2.41 3.00 29.41 9.22
10/19 −7.83 −32.49 −6.15 −29.78 1.68 2.71 21.40 8.33
10/26 −8.09 −32.44 −5.66 −29.66 2.43 2.77 30.05 8.55
11/2 −9.55 −32.99 −5.66 −35.45 3.89 2.45 40.74 7.43
11/9 −10.73 −34.12 −6.03 −37.17 4.70 3.04 43.80 8.92
11/16 −10.69 −34.59 −12.06 −31.75 1.37 2.84 12.85 8.20
11/23 −11.20 −35.12 −12.18 −32.62 0.98 2.50 8.79 7.13
11/30 −11.60 −35.64 −9.72 −32.25 1.88 3.39 16.18 9.52
Min — — — — 0.98 2.45 8.79 7.13
Max — — — — 4.70 3.39 43.80 9.52
Mean — — — — 2.42 2.84 25.40 8.41
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Figure 8: Settlement results prediction of GWO-ELM model based on time series.
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Figure 9: Settlement results prediction of GWO-ELM model based on time series.

Table 2: Settlement results prediction of GWO-ELM model based on time series.

Time
Accumulative
settlement of

JC55-2

Accumulative
settlement of

JC56-1

Predictive
results of
JC55-2

Predictive
results of
JC56-1

Absolute
error of JC55-

2 (m)

Absolute
error of JC56-

1 (m)

Relative
error of

JC55-2 (%)

Relative
error of

JC56-1 (%)
10/12 −8.18 −32.54 −9.60 −30.77 1.42 1.77 17.37 5.44
10/19 −7.83 −32.49 −9.35 −30.77 1.52 1.72 19.47 5.30
10/26 −8.09 −32.44 −9.60 −31.14 1.51 1.30 18.62 4.00
11/2 −9.55 −32.99 −10.58 −34.58 1.03 1.59 10.78 4.82
11/9 −10.73 −34.12 −9.11 −35.69 1.62 1.57 15.13 4.59
11/16 −10.69 −34.59 −9.60 −32.74 1.09 1.85 10.18 5.35
11/23 −11.20 −35.12 −9.60 −33.48 1.60 1.64 14.29 4.68
11/30 −11.60 −35.64 −12.55 −33.97 0.95 1.67 8.22 4.69
Min — — — — 0.95 1.30 8.22 4.00
Max — — — — 1.62 1.85 19.47 5.44
Mean — — — — 1.34 1.64 14.26 4.86
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Figure 10: Settlement results prediction of the optimized GWO-ELM model.
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absolute error are ranked from large to small as GWO-ELM
model based on time series, GWO-ELM model based on
settlement factors, and optimized GWO-ELM model. Ac-
cordingly, the optimized GWO-ELM model has the
strongest predictive ability.

+rough the comparison of different models, it is found
that the more factors considered, the higher the prediction
accuracy of the model in the prediction process. +e opti-
mized GWO-ELMmodel is more suitable for the settlement
prediction of foundation pit excavation.

Although the optimized model in this paper predicts
settlement displacement with high accuracy, the amount of
data collected by the model is still relatively small. If you
want to apply the model to other projects, you need to
improve the applicability of the model. In order to improve

application ability, one needs to learn settlement data in
other engineering projects.

5. Conclusion

(1) +is paper combines the grey wolf optimization
algorithm with the extreme learning machine to
train and predict the ground subsidence and pro-
poses a novel grey wolf optimization-extreme
learning machine model, namely, the GWO-ELM
model. Taking an excavation project of a foundation
pit in Kunming as an example, after analyzing the
settlement monitoring data of cross sections JC55
and JC56, the representative monitoring sites JC55-
2 and JC56-1 were selected as the training

Table 3: Settlement results prediction of the optimized GWO-ELM model.

Time
Accumulative
settlement of

JC55-2

Accumulative
settlement of

JC56-1

Predictive
results of
JC55-2

Predictive
results of
JC56-1

Absolute
error of

JC55-2 (m)

Absolute
error of

JC56-1 (m)

Relative
error of

JC55-2 (%)

Relative
error of

JC56-1 (%)
10/12 −8.18 −32.54 −8.62 −33.11 0.44 0.57 5.33 1.75
10/19 −7.83 −32.49 −8.37 −33.23 0.54 0.74 6.89 2.28
10/26 −8.09 −32.44 −8.74 −31.88 0.65 0.56 7.97 1.72
11/2 −9.55 −32.99 −9.97 −32.37 0.41 0.62 4.34 1.89
11/9 −10.73 −34.12 −11.08 −34.83 0.35 0.71 3.22 2.07
11/16 −10.69 −34.59 −11.20 −33.85 0.51 0.74 4.79 2.15
11/23 −11.20 −35.12 −11.57 −34.46 0.37 0.66 3.30 1.87
11/30 −11.60 −35.64 −12.06 −36.31 0.46 0.67 3.98 1.87
Min — — — — 0.35 0.56 3.22 1.72
Max — — — — 0.65 0.74 7.97 2.28
Mean — — — — 0.47 0.66 4.98 1.95
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Figure 11: Comparison of GWO-ELM model prediction errors of different influence states.
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monitoring samples of the GWO-ELM model. And
three kinds of GWO-ELM models such as con-
sidering the influence of time series and considering
the influence of settlement factors and after opti-
mization were established to predict the ground
settlement near the foundation pit.

(2) After learning the monitoring data with the GWO-
ELM model considering the influence of time series,
it is found that, at settlement monitoring points
JC55-2 and JC56-1, the average absolute error be-
tween the actual accumulated settlement and the
predicted value was, respectively, in 2.42m and
2.84m, and the average relative error was, respec-
tively, in 25.40% and 8.40%.

(3) +e average absolute error between the actual cu-
mulative settlement and the predicted value at the
settlement monitoring points JC55-2 and JC56-1 of
the GWO-ELM model considering the settlement
factor is 1.34m and 1.64m, respectively, and the
average relative error values are 14.26% and 4.86%.
Compared with the GWO-ELM model which only
considers the influence of time series, this model
can better predict the settlement of the ground near
the excavation of the foundation pit.

(4) At the settlement monitoring points JC55-2 and
JC56-1 of the optimized GWO-ELM model, the
average absolute error between the actual cu-
mulative settlement and the predicted value is,
respectively, in 0.47 m and 0.66 m, and the av-
erage relative error is, respectively, in 4.98% and
1.95%. Compared with the previous two models,
the prediction results of the monitoring points
JC55-2 and JC56-1 are closer to the actual
monitoring results, and the prediction effect is
better.
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