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*is study aims to study the effect of several structural factors, such as number of atoms (N), shell thickness (d), and temperature
(T), on the structure of amorphous iron nanoparticle (amorphous nano-Fe) by using the molecular dynamics (MD) method with
Sutton–Chen (SC) dip interaction and free boundary conditions. *e structural parameters of amorphous nano-Fe include their
size (D), energy (E), radial distribution function (RDF), coordination number (CN), and coordination number density (CNd).*e
results show that the glass temperature (Tg) and the first peak position (r) of radial distribution function (RDF) have the values of
Tg = 900K and r= 2.55 Å, respectively. Furthermore, the values of parameters D and E are always proportional to N−1/3 and N−1,
respectively. Regarding the effect of number of atoms, shell thickness, and the temperature on the structure of amorphous nano-
Fe, we found that the increase in atoms number leads to decrease in the RDF height and increase in the coordination number
(CN). However, increasing temperature leads to decreasing the shell thickness of amorphous nano-Fe.

1. Introduction

As ferromagnetic material, iron nanoparticles (nano-Fe)
exhibit a transition temperature (Tm) in range from
Tm = 1043 K to Tm = 1881 K [1]. It was reported that re-
ducing the size (D) below D = 20 nm, nano-Fe moved
from ferromagnetic state to super-para-magnetic state
without any residual magnetism. *is phenomenon
provides a various promising application of nano-Fe [2],
including the design of high-speed storage [3], magnetic
resonance cameras [4], catalysts [5], nonlinear optics [6],
sensors [7], and biomedicine (separation of biological
molecules [8, 9], drug transmission, target drug trans-
port, marking of cells, and so on [10]). As reported,
turning the size of nano-Fe might enhance their heat
capacity, magnetism, and biomedical compatibility [11].
In this regard, various many methods have been used to
study the effect of influencing factors, such as number of

atoms, shell thickness, and temperature, on the structure
and phase transition of iron nanoparticle, such as theory
methods, experiment methods, and simulation [12, 13]
methods such as Green function method [14, 15] and
Monte Carlo (MC) method [16] and Bethe model [17].
Among these methods, the molecular dynamics simu-
lation (MD) method has been considered a powerful tool
in both theoretical and experimental studies. Based on the
MD method for Fe bulk, several authors found that its
first peak position (r) of radial distribution function
(RDF) was r = 2.55 Å [18–20] whereas it was r = 2.54,
2.618, and 2.570 Å, by using the experiment method,
Neutrons, and X-rays, respectively [21, 22]. Similarly, its
coordinate number (CN) was CN = 13.23, 12.92, and
12.10 by using MD, Neutrons, and X-rays methods, re-
spectively. *ese obtained data confirmed their tight
relation to the Icosahedron structure (ICO) or the
Frank–Kasper polyhedron structure of the bulk material
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[23]. In this direction, in 2009, Hoang [24] determined
the relationship between crystalline temperature (Tg) and
the size (D) of nano-Fe. He found that, with D values
D = 3.0, 4.0, and 5.0 nm, Tg values are Tg = 860, 878, and
909 K, respectively. *e author also argued that their
energy (E) and number of atoms (N) had a certain re-
lationship with each other. In 2015, Van [25] identified
the structure and crystallization process of nano-Fe at a
temperature (T) of T = 300 K corresponding to annealing
time (t), through 2.5 ×107 steps of MD simulation. *e
authors indicated that after the annealing time at
T = 300 K, nano-Fe was in an amorphous state. In the case
of Ni nanoparticles, several works identified their tran-
sition temperature (Tm), which was always proportional
to their number of atoms (N), N−1/3 [26–31]. *ese au-
thors reported that increasing atoms number (N) (from
N = 336 to N = 8007 atoms) increased their phase tran-
sition temperature (Tm), from Tm = 980 K to Tm = 1380 K
[26]. Similarly, Wen et al. confirmed that glass temper-
ature (Tg) of Ni nanowires was always proportional to
their D−1 value [27]. In recent years, we used the MD
method for studying various metals and alloys, such as Fe
[32–35], Ni [26–32, 36, 37], Ni alloy [38–42], and Al [43].
We found that the first peak position (r) radial distri-
bution function (RDF) of Fe metal is r = 2.55 Å, which is
consistent with both the experimental results [21, 22] and
other previous simulations [18, 19, 21, 22, 25]. In the case
of biomedical applications, to enhance their biological
compatibility, the core/shell hybrid nanostructure has
been developed using nonmagnetic materials (gold, sil-
ver, and polymer) as the shells. In this case, a method for
simulation of core/shell model has been used to identify
structural characteristic quantities based on the forma-
tion of separate layers [44, 45]. At present, there was a
lack of the literature related to the factors influencing on
structure of amorphous nano-Fe. To shed more light on
this issue, in this study, we use the MD method with
Sutton–Chen (SC) embedded interaction potential, the
Verlet [46] algorithm, and free boundary conditions to
research. *e obtained results will serve as the basis for
biomedical magnetic research in the future.

2. Calculation Methods

Initially, we randomly sowed these atoms Fe in spherical
blocks with size (D), as follows:

D � 2
3N

4πρ
 , (1)

where density (ρ� 7.0 g cm−3) and atoms numbers (N) are
obtained by the molecular dynamics (MD) method. *e
embedded interaction potential Sutten–Chen (SC) and free
boundary conditions [47–50] can be calculated by the fol-
lowing equations:
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where ε� 0.017306 eV, a� 3.471392 Å, C� 24.939,
m� 4.7877, n� 8.137381, and rc � 3.35 Å [26, 51].

Initially, we run the recovery statistics 1× 104 steps NVT
(N: number of atoms, volume: V, and temperature: T at a
constant value of T= 7000K) to nano-Fe existing in a liquid
state, the atoms do not stick together. *ereafter, we de-
crease the temperature (T) from T= 7000K to T= 300K to
change the state of the material from liquid to amorphous
ones with heating rate ∼1× 106 K/s, and the time in each step
of MD simulation is 0.46 fs.

*e effect of various factors, such as number of atoms (N,
N= 3000 atoms: Fe3000, N= 4000 atoms: Fe4000, N= 5000
atoms: Fe5000, N= 10000 atoms: Fe10000, N= 15000 atoms:
Fe15000, N= 20000 atoms: Fe20000), temperature (T,
T= 300K), and pressure (P, P= 0.0GPa), on the structure of
amorphous nano-Fe have been evaluated. Besides, to study
the effect of shell thickness (d= 1 Å to d= 2, 3, 4 Å) with
Fe10000 at T= 300K on the structure of amorphous nano-Fe,
we run 1× 105 steps NVE. On the studying structure of
amorphous nano-Fe, we use the Verlet algorithm with the
heating process (followed the laws of Nosé [52] and Hoover
[53]). To determine the radial distribution function (RDF) of
the amorphous nano-Fe, the X-ray diffraction method has
been used for determining the structural factors. *en, the
Fourier function has been used to calculate their structural
factors [54–58]. Based on these data, their g(r), radial dis-
tribution function (RDF) [59–64], is evaluated by using the
statistical method as follows:

g(r) �
n(r)

4πr
2drρ0

. (3)

Also, the coordination number (CN) [65] can be cal-
culated by using the following equation:

CN � 4πρ
R

0
g(r)r

2dr, (4)

where r is the cut radius (or the minimum position right
after the first vertex of RDF). To check the accuracy of
results, we use tools as the centrosymmetric parameter
[29, 66], the bond angle analysis [67], the bond order
analysis [68], and the AFM analysis method to find the
morphology of surface [69] and fractal and multifractal
geometric structures determined directly from the database
[70].
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3. Results and Discussion

3.1. Effect of Number of Atoms. Figure 1 and Table 1 present
the morphology and structure of amorphous nano-Fe with
the different atomic numbers. As can be seen in Figure 1 and
Table 1, the obtained results indicated that amorphous nano-
Fe, with number of atoms N= 3000 atoms (Fe3000) at
T= 300K, has the spherical shape. *ese Fe atoms are
uniformly distributed, as seen as the red color in Figure 1(a),
with size (D= 4.68 nm) and energy (E= -2.208 eV).

As shown in Figure 1(b), the first peak height of RDF, g

(r), has the maximal value of g(r) = 4.242 with the first peak
position (r) at r= 2.55 Å. When we increase atoms number
(N) from N= 3000 atoms to N= 4000, 5000, 10000, 15000,
and 20000 atoms, size (D) increases from D= 4.68 nm to
D= 4.98, 5.30, 6.60, 7.77, and 8.39 nm and energy (E) de-
creases from E=−2.208 eV to E=−2.218, −2.234, −2.256,
−2.276, and −2.289 eV whereas r has a constant value of
r= 2.55 Å and g (r) value varies from g(r) = 4.242 to g(r)
= 4.141, 4.162, 4.170, 4.241, and 4.275 (Table 1), which does
not follow the rule indicating far interaction of amorphous
nano-Fe. *is almost near interaction is consistent with
reported results from experimental method (r= 2.54 Å),
Neutron method (r= 2.62 Å), X-ray method (r= 2.57 Å)
[2, 21, 22], and simulation method (r= 2.55 Å) [18–20].
Figure 2 shows the relationship between size (D) and energy
(E) with the number of atoms (N) of amorphous nano-Fe.

As can be seen in Figure 2, the increase in number of
atoms N leads to increasing size D and decreasing energy
E. Based on these data, the relationship between D and E
with N can be satisfied with the following formula. In case
that D � 12.99–127.5N−1/3 (nm) (Figure 2(a)),
E � 2.209 + 0.004N−1 (eV) (Figure 2(b)). *us, in all cases,
D and E are proportional to N−1/3 and N−1, respectively.
*ese results match well with the published works, such
as the phase transition temperature Tm was proportional
to atom number N−1/3 [26, 28, 71, 72] and to size D−1 [27].
To confirm our findings, we select the Fe10000 nano-
particles amorphous at temperature T � 300 K to match

the experimental data for cubic Fe at temperature
T � 300 K with r � 2.52 Å [21]. Figure 3 presents the
simulation result.

As shown in Figure 3, the first peak position RDF of
Fe10000 nanoparticles amorphous at temperature T� 300K
obtained by the MD method has r� 2.55 Å consistent with
the experimental data for Fe bulk material at T� 300K with
r� 2.52 Å [21]. To further verify these results, we combine
the visualized methods (Figure 4 and Table 2).

As seen, when increase in atoms numbers N (from
N= 3000 atoms to N= 4000, 5000, 10000, 15000, 20000
atoms) leads to r has the constant values is r= 2.55 Å and
g(r) increasing from g(r) = 4.242 (Figure 4a1) to g(r) = 4.141
(Figure 4a2), 4.162 (Figure 4a3), 4.170 (Figure 4a4), 4.241
(Figure 4a5), 4.246 (Figure 4a6), corresponding to shape of
nanoparticle Fe amorphous (Figure 4b1, 4b2,.. 4b6) and
coordination number (CN) has to the constant valuesis
CN= 13. Also, the density coordination number (CNd)
increases from CNd= 29.2% to 30, 2%, 31.4%, 32.2%, 32.4%,
and 32.5% (Table 2). *ese data confirmed that the increase
in N leads to increasing the density of atoms, thus affecting
the structure of amorphous nano-Fe, and the cause of this
phenomenon is the size effect. *e results obtained serve as
the basis for experimental studies in future biomedical
applications. We choose amorphous Fe10000 nanoparticles to
study the influence of factors in the next section.

3.2. Effect of Crust )ickness. Besides the effect of atoms
number, we evaluate also the effect of thickness factor on the
structure of amorphous nano-Fe in its core/shell structure.
Figure 5 shows the result for Fe10000 nanoparticles
amorphous.

As can be seen in Figure 5(a), the core/shell shape of
amorphous nano-Fe has its core (marked in red), shell
(marked in blue), and the thickness (d) of the shell layer. We
assume that its atoms in the core are distributed evenly.
Regarding the core radius (R), when R< 28 Å (Figure 5(b)),
the local structural density ρ(r) has an almost constant value
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Figure 1: Shape (a) and radial distribution function RDF (b) of amorphous nano-Fe with number of atoms N� 3000 atoms.
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of 0.0825 atoms/Å3 (distributing evenly from the core layer
to the shell). However, when R> 28 Å, the local structural
density ρ (r) reduces strongly (Figure 5(b)). In this case,
when the thickness of the shell (d) is 5 Å (Figure 5(b)), the

core exhibits a dense phase, while the shell presents porous
structure. To confirm this result, we combine the shape,
radial distribution function RDF, coordination number CN,
and the visualized method as shown in Figure 6 and Table 3.

Table 1: *e size (D), energy (E), link length (r), and height of first peak RDF g (r) of Fe nanoparticles amorphous with various atoms
number N.

N (atoms) 3000 4000 5000 10000 15000 20000
D (nm) 4.68 4.98 5.30 6.60 7.77 8.39
E (eV) −2.208 −2.218 −2.234 −2.256 −2.276 −2.289
r (Å) 2.55 2.55 2.55 2.55 2.55 2.55
g (r) 4.242 4.141 4.162 4.170 4.241 4.275
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Figure 2: Relationship between size (D) with number of atoms (N) of amorphous nano-Fe (a) and relationship between energy (E) with
number of atoms (N) of amorphous nano-Fe (b).
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Figure 3: Coherence between the radial distribution function of Fe10000 nanoparticles amorphous by the simulation method and the
experimental data of cubic Fe at temperature T� 300K.
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Figure 4: Continued.
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As shown in Figure 6, with the thickness of shell (d),
d= 1 Å, the respective values ofr, g(r), CN, and CNd are
2.55 Å, 3.907, 13, and 32.24%. .*en, the increase in d values

(from d= 1 Å to d= 2, 3, 4 Å) leads to changing the shape of
the Fe nanoparticles amorphous, the coordination number
CN has value constant CN= 13, the coordination number

(b1) (b2)

(b3) (b4)

(b5) (b6)

(b)

Figure 4:*e radial distribution function (a) (a1, a2, . . . a6) and shape (b) (b1, b2, . . . b6) of amorphous Fe nanoparticles with various atoms
numbers.
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Table 2: Coordination number (CN) and coordination number density (CNd) of amorphous Fe nanoparticles with different number of
atoms.

Atoms numbers N (atoms) 3000 4000 5000 10000 15000 20000
Coordination number CN 13 13 13 13 13 13
Coordination number density CNd (%) 29.2 30.2 31.4 32.2 32.4 32.5
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Figure 5: Shape (a) and local structure (b) of core/shell nano-Fe10000 amorphous.
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Figure 6: Continued.
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density CNd increases from 32.4% to 32.5% and increases g

(r) (from 4.19 to 4.23, 4.32, 4.46, and 4.51). However, by
increasing d, the constant values of r and CN are observed at
2.55 Å and values, respectively, while g(r) and CNd in-
creasing. An interesting result is that the coordination
number density of the shell is smaller than that of the core
(the core is in a dense structure).

3.3. Influence of Temperature. Along with the influence of
both atom numbe0r and shell thickness, temperature also
affects the structure of amorphous nano-Fe. Figure 7 and
Table 4 present the obtained data for Fe10000 nanoparticles
amorphous at various temperatures (T) from T= 300K to
T= 500, 700, 800, 900, 1000, and 1100K.

As shown in Figure 7, at temperatures T� 300K, the
results show that Fe10000 nanoparticles amorphous have
spherical shape with size D� 6.6 nm, energy E� −2.256 eV,

link length r� 2.55 Å, height of first peak RDF g(r)� 4.18,
coordination number CN� 13, and coordination number
density CNd � 30.72%. However, the increase in tempera-
tures T from 300K to 500, 700, 800, 900, 1000, and 1100K
leads to increasing E (from −2.256 eV to −2.192, −2.121,
−2.083, −2.065, −2.018, and −1.991 eV), decreasing r (from
2.55 Å to 2.55, 2.55, 2.55, 2.55, 2.5, and 2.5 Å), decreasing g

(r) (from 4.18 to and 2.26), decreasing CN (from 13 to 13, 13,
13, 13, 12, and 12), and decreasing CNd from 32.2% to 30.2,
28.25, 25.43, 26.74, 25.85, and 24.94% (Table 4).

In the case of D value, it keeps a constant value of
D� 6.6nm when increasing T. Figure 8 presents the relation-
ship between energy (E) and temperature (T). As shown in
Figure 8, the increase in T value (from 300K to 500, 700, 800,
900, 1000, and 1100K) leads to increasing energy E (−2.256 eV
to −1.991 eV). Regarding the temperature range from T� 800K
to T�1000K, the energy of Fe10000 nanoparticles amorphous
significant changes, corresponding to the crystallization

0

2

4

5

1

3

g 
(r

)

d=3Å

0 2 4 6 8 10
r (A0)

(c1) (c2)

(c)

d=4Å

0

2

4

5

1

3

g 
(r

)

0 2 4 6 8 10
r (A0)

(d1) (d2)

(d)

Figure 6: Shape (a) (a1, b1, c1, and d1) and radial distribution function RDF (b) (a2, b2, c2, and d2) of amorphous Fe nanoparticles with
various crust thicknesses.
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phenomenon (Tg) at T� 900K (glass temperature, Tg � 900K,
corresponding with E� −2.065 eV). *e result obtained that
Tg� 900K is completely consistent with the Curie phase

transition temperature (Tc) [34] and glass transition tempera-
ture Tg [71], which shows that, with amorphous Fe nano-
particles, Tg �Tc and there was no sudden increase in energy at

Table 3: Coordination number and coordination number density of amorphous Fe nanoparticles with various crust thicknesses.

*icknesses d (Å) 1 2 3 4
Coordination number CN 13 13 13 13
Coordination number density CNd (%) 32.24 32.30 32.40 32.50
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Figure 7: Shape of amorphous Fe10000 nanoparticles at temperatures T� 300K (a) and radial distribution function RDF (b) of amorphous
Fe10000 nanoparticles at different temperatures (from T� 300K to T�1100K).

Table 4: Coordination number and coordination number density of amorphous Fe nanoparticles with different temperatures.

Temperatures T (K) 300 500 700 800 900 1000 1100
Energy E (eV) −2.256 −2.192 −2.121 −2.083 −2.065 −2.018 −1.991
Coordination number CN 13 13 13 13 13 12 12
Coordination number density CNd (%) 32.20 30.20 28.25 25.43 26.74 25.85 24.94
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Figure 8: Relationship between energy and temperature of amorphous Fe10000 nanoparticles.
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the crystallization phase transition.*e reason is that, with very
small heating rate, the Fe nanoparticles gradually transit from
the amorphous state to the liquid state and vice versa. *ese
results are quite interesting. *e results obtained are basis for
future experimental studies to use amorphous Fe nanoparticles
in magnetic applications.

4. Conclusion

*e molecular dynamics (MD) method successfully indi-
cates that amorphous nano-Fe exhibits the potential em-
bedded Sutton–Chen (SC) and free boundary conditions.
*e obtained results show that the first peak position (r) of
the radial distribution function (RDF) has the value
r= 2.55 Å, which is consistent with the published data from
the experimental method, Neutron method, X-ray method,
and another simulation method. *e size (D) and energy (E)
of amorphous nano-Fe are proportional to the atoms
number N−1/3 and N−1, respectively. *e obtained data for
radial distribution function (RDF), coordination number
(CN), and density coordination number (CNd) are all
consistent with the published works by simulation and
experimental studies. Amorphous nano-Fe at temperature
(T) T= 300K has the amorphous structure (with CN= 13),
in which the increase in D value leads to decreasing energy
(E). *e molecular dynamics method for the core/shell
Fe10000 nanoparticles amorphous indicates the core layer
(with radius r< 28 Å) in dense structure, while the shell layer
is in the porous structure. In addition, identified glass
temperature (Tg), Tg = 900K, result obtained completely
consistent with the Curie phase transition temperature (Tc),
which shows that, with amorphous Fe nanoparticles,
Tg =Tc= 900K, and this is quite interesting and interesting
results basis for future experimental studies.

Data Availability

*e data that support the findings of this study are available
from the corresponding author upon reasonable request.
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