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 e aim of the study is to further understand the rule of conversion of bottom hole pressure of a vertical well in a dual-permeability
reservoir, which is about the dual permeability under di�erent outer boundary (in�nite, close, and constant value) conditions.
However, there are few articles dealing with the model of a vertical well in a dual permeability reservoir under these three di�erent
outer boundary conditions. Hence, the paper proposes a model of a vertical well in a dual permeability reservoir under three outer
boundary conditions.  e model is solved with a Laplace space equation. We �nd the solution to the model that has a similar
structure under three di�erent outer boundary conditions by combining it with the similar structure theory.  erefore, we put
forward a similar constructing method (SCM) that solves our model.  e concrete steps of the SCM are given in this paper. At the
same time, we draw the curves of the bottom hole pressure and pressure derivative using the modi�ed Stehfest inversion formula
and MATLAB software. In addition, we investigate the evolution of the pressure by changing the parameters (mobility ratio K,
storability ratioω, and cross�ow coe�cientλ). e solution to such a reservoir model obtained in this paper could be used as a basis
for analyzing other typical reservoirs with vertical wells.

1. Introduction

 e dual media is one of the largest storage formations in
the world, and it is mainly composed of fracture and
matrix media. Fluid �ow in dual media can be treated in
two kinds of models. One is the dual-porosity media
model (Figure 1(a)), and the other one is the dual per-
meability media model (Figure 1(b)). In dual-porosity
media, the �uid is stored in the matrix and �ows into a
wellbore through fractures, with a cross-�ow from the
fractures to the matrix, while in the dual permeability
media model, the �uid �ows into the wellbore not only
from the fracture media but also from the matrix media,
with a cross-�ow between these two systems. Hence, the
dual permeability is much more complicated than the
dual-porosity media model. If we let the permeability of
the dual permeability media model be equal to zero, then
the dual permeability media model becomes the dual-

porosity media model.  us, the dual-porosity media
model can be considered as a special case for the dual
permeability media model.

 e study on dual permeability is mainly based on dual
porosity and dual permeability. As regards the dual porosity
model for horizontal wells, in 1988, Rosa and Carvalho [1]
calculated the dynamic downhole pressure of horizontal
wells in dual-porosity media by using the Stehfest Laplace
transformation of the horizontal wells, which are widely
used in the development of oil and gas reservoirs [2–8] with
the progress in drilling and completion technologies. In
1994, a solution to the transient �uid �ow of horizontal wells
in a fractured dual porosity reservoir in Laplace space was
obtained by Liu andWang [9]. In 2012, Guo et al. studied the
dual permeability �ow behavior for modeling horizontal
well production in fractured vuggy carbonate reservoirs [10].

In regards to the dual permeability model, in 1985,
the solution to the vertical model under the outer
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boundary infinite was first obtained through the Laplace
transformation by Bourder [11]. In 1995, Liu and Wang [9]
obtained the solution of the transient flow of slightly
compressible fluid in the 2-D space, which provided a
theoretical basis for related well test analyses. In 2006, the
transient pressure in the dual permeability media of a shear-
sensitive reservoir was studied by Tian and Tong [12]. In
2006, Hi and Tong [13] analyzed the effect of wellbore
storage on bottom hole pressure in deformable dual per-
meability media by setting a mathematical model. In 2008,
Liu [14] analyzed all kinds of reservoirs through the model
curves under infinite boundary conditions in his literature.
In 2010, Kong [15] obtained the solution of the vertical well
in the dual permeability reservoir of signal and double layers
by using Laplace and Weber’s transformation and drew out
the well test curve.

However, all the above studies are mainly based on the
infinite outer boundary conditions, ignoring the close
and constant outer boundary conditions. In 2004, the
solution of a similar structure to the differential equation
as a boundary value problem was put forward [16]. (e
influence of joints on the permeability and mechanical
properties of rocks has been studied in some literature
[17–19]. (ere were a lot of studies [20–26] about the
vertical dual permeability reservoir under three different
outer boundary conditions (infinite, close, and constant
value). However, the studies in the references just stay at
the math level, which cannot meet the demand of the well
test analysis. (erefore, on the basis of the previous study,
we set a model of a vertical well in the dual permeability
reservoir under three outer boundary conditions
(infinite, close, constant value) and solved the model in
Laplace space. We found that the solution to the model
has a similar structure under three different outer
boundary conditions by combining with the similar
structure theory. Hence, we put forward the SCM, and the
concrete steps of the SCM are given in this paper. At the
same time, we drew the curves of the bottom hole
pressure and pressure derivative by using the modified
Stehfest inversion formula and MATLAB software. We
observed and analyzed the change law of the curves by
changing the mobility ratioK, storativity ratioω, and
cross-flow coefficientλ. (e solution to such a reservoir
model obtained in this paper includes and improves the
previous results and may then be used as a basis for
analyzing other typical reservoirs with vertical wells.

2. Dimensionless Mathematics Model

(e well is regarded as a point source in the paper, and
supposing the outer boundary is a circular boundary.
(erefore, according to [15], we can obtain the dimen-
sionless mathematics model of the dual permeability res-
ervoir as follows:

(e seepage differential equation is as follows:
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where P is the reservoir pressure, MPa; t is the time, h; r

represents any point in the reservoir at the radial distance of
the well, m;R is the outer boundary radius, m;k is the
permeability, μm2;ω is storability ratio, dimensionless; λis
the cross-flow coefficient, dimensionless.

Initial condition is as follows:
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Inner boundary condition is as follows:
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(3)

where pwis the bottom hole pressure, MPa;Sis the skin effect,
dimensionless; Cis the well storage, m3/MPa.

Outer boundary condition is as follows:

P1D ∞, tD(  � P2D ∞, tD(  � 0,

orP1D RD, tD(  � P1D RD, tD(  � 0,
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Figure 1: (e sketch of the dual media. (a) Dual-porosity media; (b) dual permeability.
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(5)

h is the storage thickness, m; μis the viscosity, mPa · s; rwis
the wellbore radius, m;Bis the oil volume coefficient, di-
mensionless; ϕis the porosity, dimensionless; αis the shape
factor, dimensionless.

3. Solutions in the Laplace Space

If we take the Laplace transformation of tD of Eqs.(4)–(12),
we obtain the following equation:
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(6)

where z is the Laplace variable and P1D,P2D,PwD are ele-
ments of Laplace space. (en, the form of the model in
Laplace space can be obtained as follows:
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(7)

Theorem 1. If boundary value problem (7) has a unique
solution, then the solution can be expressed as follows:
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where Ψ(rD, σi) is defined as a similar kernel function.
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where φm,n(x, y, τ) � Km(xτ)In(yτ) + (− 1)m− n+1Im(xτ)

Kn(yτ) and Kv(•),Iv(•) are modified Bessel functions of the
order v. τ is a parameter.

Proof 1. Firstly, we prove the closed outer boundary
condition.

(e general solution to the government equation in the
boundary value problem can be expressed as follows (the
detailed derivation is given in Appendix A):
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where D1, D2 are arbitrary constants. Substitute p1D(rD, z)

and p2D(rD, z) into Eq.(7) separately, the linear system
about D1, D2 can be obtained as follows:
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Because the boundary value problem has a unique so-
lution, the determinant Δ of the coefficients of the linear
system (namely, Eqs. (15)) about D1, D2 is not equal to zero.
Now, according to the Cramer rule, the value of D1, D2 is
obtained as follows:
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Substituting Eq. (16) from Eq. (14), then we can obtain
Eq. (8) by combining with Eqs. (9)–(11) and (12)-(13).

Similarly, when the outer boundary conditions are
infinite and (7), the solution to boundary value problem can
also be expressed as Eq.(8).

According to the boundary condition:
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(e dimensionless bottom hole pressure can be obtained
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If let S1 � S2 � S, then Eq.(19) can be written as follows:

PwD(z) �
1
z

•
1
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. (20)

Now, we analyze the situation of S1 � S2 � S as follows:
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(i) At the later time, when tD⟶∞, z⟶ 0, then Eq.
(20) can be written as follows:
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1
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z)
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□

4. Chart Analysis

We draw the test well special curves of the dual permeability
reservoir under three outer boundary conditions by using
MATLAB software (Figure 2).

(1) In Figure 2, the characteristic curves of both pressure
and the pressure derivative are overlapping under
three different outer boundary conditions in stages
I-IV, which indicate that the changes in bottom hole
pressure are the same before the pressure reaches the
outer boundary.

(2) Stages I-III are the early parts. Because of the in-
fluence of pure wellbore storage in the early times,
the curves of the bottom hole pressure and pressure
derivative coincide and show a line with a slope of 1.
After the influence of pure wellbore storage, the
curve of pressure derivative slopes downward after
the peak appearance. (e level of the peak value
depends on theCDe2S.

(3) Stage IV is the mid-party that mainly replies to the
cross-flow characteristics of the transition zone,
which are influenced by the mobility ratio K, stor-
ativity ratio ω, and cross-flow coefficientλ. We will
conduct further analysis in part 4.2.

(4) Stage V is the latter part that replies to the charac-
teristics of radial flow in the dual permeability. When
the outer boundary condition is closed, the pressure

derivative is a line with a slope of 1(as shown by the
blue dotted line in Figure 2). When the outer
boundary condition is infinite, the pressure deriva-
tive is 0.5 line (as shown by the red dotted line in
Figure 2), and when the outer boundary condition is
a constant value, the pressure derivative will bend
downwards (as shown by the green dotted line in
Figure 2).

Now, we will analyze the impact of K,ω, λon bottom
hole pressure according to the chart (as shown in
Figures 3–11). In Figures 3–5, we let CDe2S � 1, λ � 10− 5

,K � 0.9 and let ω be equal to 10− 1, 10− 2, 10− 3, and 10− 4

separately.
From Figures 3–5, we know that the changes of pa-

rameter ω have an obvious influence on the transition zone
no matter how under which kind of outer boundary con-
ditions. (e stored energy ratio ω decides the width and
depth of the concave pressure derivative curves in the
transition section. With the decrease of a ω, the “concave”
turns more deep and wide.

In Figures 6–8, we let CDe2S � 1,λ � 10− 5,ω � 10− 3 and
let Kequal to 0.6, 0.9, 0.99, 0.999, respectively.

From Figures 6–8, we can obtain that the change ofK has
an obvious effect on the seepage zone of transition under the
three different boundary conditions. For different values of
K, the “concave” has different degrees of depth. (e smaller
the value of K, the “concave” is more shallower and ap-
proximately half of the value of the horizontal line. IfK � 5,
then we can get k1h1 � k2h2, and the characteristics of the
curve are the same with the homogeneous reservoir model,
the pressure derivative will not appear “concave”, and the
greater the value of K, the deeper the “concave”.

In Figures 9–11, we let CDe2S � 1,K � 0.9, and
ω � 10− 3and let λ be equal to 10− 2, 10− 3, 10− 4, and 10− 5,
respectively.

102
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I + II + III IV V
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10-1 100 101 102 103
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P w
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, d
P w

D

104 105 106 107 108

P′wDPwD

Figure 2: Special curves of the pressure and pressure derivative of dual permeability (CDe2S � 1, K � 0.9,ω � 10− 3, λ � 10− 5).
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Figure 3: Dimensionless pressure of vertical wells under the infinite outer boundary influenced by ω (CDe2S � 1, λ � 10− 5, K � 0.9).

ω=10-1, ω=10-2, ω=10-3, ω=10-4

ω=10-1, ω=10-2, ω=10-3, ω=10-4

102

101

100

10-1

10-2

P w
D

, P
w

D

10-1 100 101 102 103

tD (CD)

104 105 106 107 108

P′wDPwD

Figure 4: .Dimensionless pressure of vertical wells under the constant outer boundary influenced by ω (CDe2S � 1, λ � 10− 5, K � 0.9).
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Figure 5: .Dimensionless pressure of vertical wells under the close outer boundary influenced by ω (CDe2S � 1, λ � 10− 5, K � 0.9).
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Figure 6: Dimensionless pressure of vertical wells under the infinite outer boundary influenced by K (CDe2S � 1, λ � 10− 5, ω � 10− 3).
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Figure 7: Dimensionless pressure of vertical wells under the close boundary influenced by K (CDe2S � 1, λ � 10− 5, ω � 10− 3).
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Figure 8: Dimensionless pressure of vertical wells under the constant boundary influenced by K (CDe2S � 1, λ � 10− 5, ω � 10− 3).
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Figure 9: Dimensionless pressure of vertical wells under the infinite outer boundary influenced by λ (CDe2S � 1, ω � 10− 3, K � 0.9).
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Figure 10: Dimensionless pressure of vertical wells under the constant value outer boundary influenced by λ(CDe2S � 1, ω � 10− 3, K � 0.9).
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Figure 11: Dimensionless pressure of vertical wells under the close outer boundary influenced byλ(CDe2S � 1, ω � 10− 3,K � 0.9).
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From Figures 9–11, we can obtain that the position of the
transition zone is determined by the cross-flow coefficientλ.
(e smaller value of λ, the later the transition zone appears,
which reflects that the “concave” is on the right in
Figures 9–11.

5. Conclusions

(1) In this paper, we obtain the expression of bottom
hole pressure of the dual permeability reservoir by
using the SCM in Laplace space, and we provide a
more complete testing chart for analyzing the change
law of the pressure of dual permeability.

(2) Using the SCM to solve the model of a vertical well in
a dual permeability reservoir can avoid the cum-
bersome process of derivation, and the SCM only
includes simple arithmetic, so it is easily understood
and grasped. At the same time, the steps of SCM
provide a clear algorithm flow for programs.

(3) We obtain the simplified formula of solution
(Eqs.(30) ∼ (31)) for themodel of the vertical well in
a dual permeability reservoir, which contributes to
analyzing the characteristics of the early and later
parties in Figures 2–11.

(4) We draw the curves of the bottom hole pressure and
pressure derivative by using the modified Stehfest
inversion formula and MATLAB software. We ob-
serve and analyze the change law of the curves by
changing the mobility ratio K, storativity ratioω, and
cross-flow coefficientλ, which may provide an im-
portant theoretical value for further studying the
dual permeability reservoir.

Appendix

In boundary value problem (7), the general solutions to
governing system (7) can be expressed by modified Bessel
functions I0(σrD)、 K0(σrD) as follows:

P1D rD, z(  � AI0 σrD(  + BK0 σrD( ,

P2D rD, z(  � CI0 σrD(  + DK0 σrD( ,

⎧⎨

⎩ (A.1)

where A, B, C, D, σ are undetermined coefficients.
Substituting Eq.(A.1) into Eq (7), the system can be

obtained as follows:

AI1 σRD(  − BK1 σRD(  � 0,

CI1 σRD(  − DK1 σRD(  � 0,
 (A.2)

i.e.,

A

B
�

C

D
�

K1 σRD( 

I1 σRD( 
. (A.3)

Substituting Eq.(A.3) into Eq(A.1), respectively, the
system can be obtained as follows:

P1D rD, z( Bφ0,1 rD, RD, σ( /I1 σrD( ,

P2D rD, z( Dφ0,1 rD, RD, σ( /I1 σrD( ,

⎧⎨

⎩ (A.4)

where
φm,n(x, y, τ) � Km(xτ)In(yτ) + (− 1)m− n+1Im(xτ)Kn(yτ).

By the property of the Bessel function [27], we know that
I0(σrD)、K0(σrD)satisfy the following equation:

Z0″(x) � Z0(x) +
1
x

Z1(x). (A.5)

Substituting Eq. (A.4) into governing Eq. (7)
and combining Eq.(A.5), the system can be obtained as
follows:

Kσ2 − ωz − λ B + λD � 0 ,

λB + (1 − K)σ2 − (1 − ω)z − λ D � 0 .

⎧⎪⎨

⎪⎩
(A.6)

According to Eq. (A.6), we obtain the equation as
follows:

+
(ωz + λ)[(1 − ω)z + λ] − λ2

K(1 − K)
� 0.

(A.7)

Solving the above equation, we obtain solutions as
follows:

σ21 �
1
2

ωz + λ
K

+
(1 − ω)z + λ

1 − K
  + Δ ,

σ22 �
1
2

ωz + λ
K

+
(1 − ω)z + λ

1 − K
  − Δ ,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.8)

where

Δ �

������������������������������

ωz + λ
K

−
(1 − ω)z + λ

1 − K
 

2

+
4λ2

K(1 − k)




. (A.9)

According to the structure principle of the solution to
the homogeneous linear differential equation, we know that
the linear combination of the two linear independent so-
lutions is still the solution to the original equation. (ere-
fore, solutions to governing system (7) can be expressed as
follows:

P1D rD,z( 

P2D rD,z(  � D1
φ0,1 rD,RD,σ1( 

I1 RDσ1( 
+ D2

φ0,1 rD,RD,σ2( 

I1 RDσ2( 
.

(A.10)

If Bof Eq. (A.6) recorded as aD, then we obtain
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Kσ2 − ωz − λ aD + λD � 0

λaD + (1 − K)σ2 − (1 − ω)z − λ D � 0.

⎧⎪⎨

⎪⎩
(A.11)

According to the above system, we can obtain

a � 1 +
(1 − ω)z − (1 − K)σ2

λ
� −

λ
Kσ2 − ωz − λ

 . (A.12)

Hence, we obtain the following equation:

a1 � 1 +
(1 − ω)z − (1 − K)σ21

λ
,

a2 � 1 +
(1 − ω)z − (1 − K)σ22

λ
.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(A.13)
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